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Traditional AAC (Advanced Audio Coding) audio steganalysis methods rely on manual feature extraction, which results in low
detection accuracy and low efficiency. Nowadays, the new steganalysis model based on neural network is very attractive, but its
scale is large and its detection accuracy needs further improvement. Aiming at the above problems, this paper proposes a
lightweight AAC audio general steganalysis model based on ResNeXt network. Firstly, the residual signal of QMDCT
(Quantized Modified Discrete Cosine Transform) coefficients is calculated through a fixed convolution layer composed of
multiple sets of high-pass filters. Then, based on the original structure of ResNeXt network, two ResNeXt blocks are designed
to form a residual learning module, by which the steganalysis features in the QMDCT coefficients are further extracted. Finally,
the classification module consisting of the fully connected layer and the Softmax layer is designed to obtain the classification
result. The experimental results show that the model detection accuracy can reach more than 94% under all relative embedding
rates when it operates on both the steganography algorithm based on the small value area of the QMDCT coefficient and the
steganography algorithm based on the Huffman code sign bit. For the algorithm based on Huffman codeword mapping, even
with the relative embedding rate of 0.1, the detection accuracy of the model can reach 85.5%, which is obviously better than
the existing steganalysis schemes. Compared with other steganalysis schemes based on neural network, the model in this paper
has fewer parameters, and reduces the scale by more than 40%, which is more lightweight and more efficient.

1. Overview

Digital steganography is a technology of hiding a secret
into digital carriers, which is often used for covert com-
munication. Common carriers include images, audios, texts,
and so on. However, steganography is easy to be maliciously
used by illegal organizations or individuals. The opponent of
steganography, namely steganalysis, has been widely studied
to detect whether secret messages are hidden in digital media.

With the rapid development of the network and multi-
media technologies, a large number of compressed audios
have been widely spread on the Internet. AAC and MP3 are
two most popular audio compression standards. Compared
with MP3 with the same bit rate, AAC has obvious advan-
tages in encoding quality and compressed volume. In many
compressed audio applications, the AAC audio compression
standard gradually replaces the MP3 audio compression

standard. The wide spread of AAC audio compression stan-
dard has spawned a variety of steganography algorithms for
AAC compressed audio.

Reference [1] (after this referred to as the MIN method)
performed steganographic embedding by modifying the
quantized coefficients in the small value region of the MDCT
(modified discrete cosine transform) coefficients. Reference
[2] (after this referred to as the SIGN method) realized the
embedding of secret information by modifying the sign bits
of the quantization coefficients in the MDCT coefficients
that are less than a certain threshold. Reference [3] used
matrix coding to modify the least significant bit of the Huff-
man coding escape sequences to realize the embedding of
secret information. Reference [4] (after this referred to as
the HCM method) classified Huffman codewords and
embeds secret information by replacing the corresponding
Huffman codewords. Reference [5] realized the embedding
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of secret information based on the modified sections of the
Huffman coding of AAC. Reference [6] proposed an
adaptive AAC steganography scheme based on distortion
minimization model. Reference [7] proposed a secure
AAC steganography scheme based on multiview statistical
distortion. Although the above steganography algorithms
have different embedding domains of secret information,
they embed secret messages by modifying the compression
parameters of AAC audio, which will eventually lead to
different degrees of modification of QMDCT coefficient of
AAC Audio. Therefore, QMDCT coefficients contain the
steganalysis features.

There are few steganalysis methods about AAC at this
stage. In order to detect the steganography algorithm in
the AAC Huffman coding domain, reference [8] extracted
the Markov transition probability of the adjacent scale factor
band’s codebook as the steganalysis feature and used the cal-
ibration technology to improve the detection accuracy. In
order to detect the steganography algorithm in the AAC
modified discrete cosine transform domain, reference [9]
proposed to design steganalysis features by extracting multi-
order differences between interframe and intraframe of
MDCT coefficients. When the relative embedding rate is
greater than 50%, good steganalysis performance is achieved.
Reference [10] proposed a steganalysis method to detect
AAC steganography algorithms by extracting statistical
features of QMDCT coefficients. Because MP3 and AAC
have a similar theoretical basis, the steganalysis method for
MP3 has a certain reference value for AAC audio steganaly-
sis. Reference [11] extracted the difference between the
quantization step sizes of adjacent frames of MP3 as the ste-
ganalysis features. Reference [12] proposed to extract the
statistical distribution difference of the number of bits in
the audio bit pool before and after recompression as the
steganalysis features. Reference [13] proposed an MP3 stega-
nalysis method by deriving a combination of features from
quantized MDCT coefficients, which include frequency-
based subband moment statistical features, accumulative
Markov transition features, and accumulative neighboring
joint density features on second-order derivatives. Reference
[14] proposed an effective MP3 steganalysis algorithm by
extracting joint point-wise and block-wise correlations of
quantified modified discrete cosine coefficient matrix. How-
ever, all of the above solutions are based on manual feature
extraction, with poor performance and poor generality,
and cannot meet the needs of the current stage.

With the successful application of deep learning technol-
ogy in various fields, neural networks are gradually applied
to the detection of audio steganography algorithms. Refer-
ence [15] applied DBN (Deep Belief Network) to speech
steganalysis task for the first time, which improved the
detection accuracy. However, this method did not take
advantage of neural network in adaptive feature extraction.
Reference [16] proposed a convolutional neural network to
detect ±1 LSB (least significant bit) steganography in the
temporal domain, which achieved better results than stega-
nalysis algorithms based on handcrafted features. Based on
the theory that the steganalysis modification of different
embedded domains of compressed audio will change the

decoded audio signal, reference [17] proposed a general ste-
ganalysis scheme suitable for detecting different embedded
domains of AAC and MP3. However, for the complex
AAC steganalysis algorithm, the detection performance of
this scheme needs to be further improved. In order to detect
the MP3 steganography algorithm in the Huffman coding
domain, reference [18] proposed a steganalysis method
based on convolutional neural network. The experimental
results show that the CNN-based scheme performs better
than the handcrafted steganalysis features. Although this
method can be used to detect AAC audio steganography
algorithm, the detection performance is still poor. The num-
ber of model parameters is large, which is not conducive to
deployment to the production environment.

To sum up, the neural network-based audio steganaly-
sis method achieves better performance than traditional
steganalysis methods based on manual feature extraction.
However, there are still many problems that remain
unsolved. The classification accuracy is not high enough
when the relative embedding rate is low. The existing neu-
ral network models are relatively complex and large in scale
and cannot achieve the purpose of high efficiency. How to
take advantage of the feature extraction of neural network,
improve the detection accuracy of steganalysis model, and
improve the performance of neural network is still a very
challenging problem.

This paper proposes a lightweight general steganalysis
method named LARXNet based on ResNeXt to detect
AAC steganography algorithms. The main contributions
of our work are summarized as follows: (1) in order to
extract the available features introduced by the AAC audio
steganography algorithm, the QMDCT coefficient matrix is
adopted as the input of the neural network. Almost all
AAC audio steganography methods lead to changes in
the QMDCT coefficients of AAC audio, so the QMDCT
coefficients contain the noise information generated by
the steganography algorithms. (2) We use a set of high-
pass filters to preprocess the input data and suppress the
adverse effect of the audio signal itself on steganalysis.
Then, the residual data of QMDCT coefficients and the
original data are concatenated in depth to make full use
of the input data. (3) In order to more effectively extract
the classification features of steganography schemes, refer-
ring to the design experience of existing steganalysis
methods, we designed two basic ResNeXt blocks based on
ResNeXt [19] and built a lightweight deep residual net-
work. The detailed parameters of the network model are
adjusted through experiments. LARXNet does not suffer
from gradient vanishing and network degradation problems
and can automatically extract weak steganalysis features. The
experimental results show that LARXNet greatly improves
the detection performance of three classic AAC audio stega-
nography algorithms compared with the existing audio
steganalysis methods.

The rest of this paper is organized as follows. The rele-
vant knowledge is introduced in Section 2. The scheme of
this paper is presented in Section 3. And Section 4 shows
the experimental setup and results. Finally, the conclusions
are drawn in Section 5.
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2. Relevant Knowledge

2.1. AAC Audio Encoding. AAC is a perceptual compression
coding standard based on a psychoacoustic model, and its
basic working principle is shown in Figure 1.

The AAC coding process is mainly divided into four
steps: MDCT filtering, spectral processing, coefficient quan-
tization, and noiseless coding. MDCT is a critical step in the
encoding process. AAC coding adopts the method of time-
domain aliasing, and each frame contains 1024 time-
domain sampling points, which together with the 1024
sampling points of the previous frame form 2048 time-
domain signals. And cooperate with the psychoacoustic
model to confirm the corresponding window type, perform
MDCT filtering according to the window, and obtain 1024
spectral coefficients. After time-domain noise shaping, joint
stereo coding module prediction, and other frequency-
domain processing, the obtained spectral coefficients are
quantized. The quantized coefficients are then subjected to
Huffman noiseless coding. Finally, the bitstream is packaged
to get standard AAC audio.

2.2. AAC Steganography Algorithm. A variety of AAC stega-
nography algorithms have emerged in recent years.
Although these steganography algorithms are embedded in
different stages and positions during AAC encoding, the
basic idea behind these steganography schemes still fine-
tunes the compression parameters to hide secret informa-
tion. This section will introduce steganography schemes for
three different embedding methods.

2.2.1. MIN Algorithm. The small value area is the area where
the QMDCT coefficients are {-1, 0, 1}, which are basically
concentrated in the middle- and high-frequency parts. If it
is closer to the high frequency, the quantized coefficient
magnitude is basically {-1, 0, 1}. The quantization error in
this part is relatively large, and the bits used in the encoding
process are relatively small. Therefore, small changes to the
small value region have little effect on the audio quality.
The QMDCT coefficients in the small value area are gener-
ally coded by the No. 1 and No. 2 codebooks of the Huffman
codebook. In the coding process, the index is obtained by
taking every four quantized coefficients as a group. The
specific calculation formula is

index = 27 ∗ quant i½ � + 9 ∗ quant i + 1½ �
+ 3 ∗ quant i + 2½ � + quant i + 3½ � + 40,

ð1Þ

where i is the serial number of a group of spectral coeffi-
cients. Then, according to the index of the corresponding
Huffman code table, the corresponding codeword is
searched for Huffman encoding. The MIN algorithm per-
forms information hiding by modifying the last of a set of
quantized coefficients. The modification rules used are as
follows:

(1) When quant ½i + 3� = 0, if the embedded bit is 0, the
quantization coefficient quant ½i + 3� remains

unchanged. If the embedded bit is 1, then the quan-
tization coefficients quant ½i + 3� are random ±1

(2) When quant ½i + 3� = 1, if the embedded bit is 0,
quant ½i + 3� is changed to 0. If the embedded bit is
1, it remains unchanged

(3) When quant ½i + 3� = ‐1, if the embedded bit is 0,
then quant ½i + 3� is modified to 0. If the embedded
bit is 1, then quant ½i + 3� remains unchanged

2.2.2. SIGN Algorithm. The AAC encoding process uses mul-
tiple Huffman codebooks. AAC coding adopts the Huffman
codebook with the optimal number of coding bits for coding.
The codebooks 3, 4, 7, 8, 9, 10, and 11 are all Huffman code-
books with signed bits. The sign bits of the nonzero quan-
tized coefficients are appended to the corresponding
Huffman codeword in order. Among them, each Huffman
codeword in the codebooks 3 and 4 encode four quantization
coefficients, and the data stream format is shown in Figure 2.

Each Huffman codeword in the codebooks 7, 8, 9, and 10
encode two quantization coefficients, and the data stream
format is shown in Figure 3.

Each Huffman codeword in the codebook 11 encode two
quantized coefficients and uses escape sequences to repre-
sent quantized coefficients greater than 16. The data stream
format is shown in Figure 4.

As shown in the figure, Huffman_code represents the
Huffman codeword, representing the frequency coefficients
w, x, y, and z. Sign_w, Sign_x, and Sign_y, and Sign_z are
the corresponding sign bits of the nonzero frequency coeffi-
cients. There may be 0~4 sign bits, each of which is 1 bit. A
sign bit of 0 indicates that the coefficient is negative, and a
sign bit of 1 indicates that the coefficient is positive.

In this way, the sign bit of the quantized coefficient can
be replaced with a binary secret message for steganography.
In order to minimize the distortion caused by modifying the
sign bits of the coefficients, a threshold α is set. Then, the
sign bits of the quantized coefficients between ‐α and α are
modified to embed the secret message, and the undesired
quantized coefficients are skipped. This will not modify
any other parameters and ensure the good imperceptibility
of the algorithm.

2.2.3. HCM Algorithm. The Huffman codeword itself has no
redundant space that can be used for steganography, and the
bits of the Huffman codeword cannot be directly modified
for information embedding, but the Huffman codeword
can be replaced with another approximate Huffman code-
word to embed the secret message.

The AAC audio compression standard has strict regula-
tions. According to the characteristics of the Huffman code-
book, arbitrarily modifying or replacing the Huffman
codeword may cause the code stream structure of AAC
audio to be confused; then, it cannot be decoded normally.
Huffman codewords are also known as VLC codewords.
The VLC codewords in the two codeword spaces for code-
word mapping must satisfy the following conditions:

Code len vlcið Þ = Code len vlcj
� �

, ð2Þ
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Sign vlcið Þ = Sign vlcj
� �

, ð3Þ

wi −wj

� �
+ xi − xj
� �

+ yi − yj
� �

+ zi − zj
� �

, ð4Þ

where Code lenðvlciÞ is the codeword length of the code-
word vlci. SignðvlciÞ is each sign bit of the codeword vlci.
wi, xi, yi, and zi are the quantization coefficients represented
by the codeword vlci. i and j are the numbers of the
codewords.

The VLC codewords satisfying Equations (1), (2), and
(3) are divided into two types of codeword spaces, which
are defined as V0 and V1, respectively.

V0 = v0, v1,⋯,vi,⋯,vIf g,
V1 = v0, v1,⋯,vj,⋯,vI

� �
,

ð5Þ

where vi and vj represent the VLC codewords in the code-
word spaces V0 and V1, respectively. i = 0, 1,⋯, I is the
codeword number in the codeword space V0. j = 0, 1,⋯, I
is the codeword number in the codeword space V0. I + 1
represents the length of codeword space. The remaining
codewords form the codeword space V2. The codeword
spaces V0 and V1 are used to represent binary information
“0” and “1,” respectively. Therefore, the HCM algorithm
can be described as follows: if the secret information is “0,”
the VLC codeword should belong to the codeword space
V0. If the secret information is “1,” the VLC codeword
should belong to the codeword space V1. If the current code-
word does not meet the requirements, it needs to be replaced
with a codeword corresponding to another codeword space.
When the codeword belongs to the codeword space V2, the
current codeword is skipped and the embedding operation is
not performed.

2.3. ResNeXt Network. The ResNeXt [19] network is an
improved network of the ResNet [20]. The ResNeXt com-
bines the ideas of ResNet identity mapping and residual
learning with the idea of segmentation, transformation,
and merging of the Inception structure in GoogleNet [21].
The structure of the original ResNeXt block is shown in

Figure 5(a). “ConvðN , 1 × 1, pÞ” means that the kernel size
of the convolutional layer is 1 × 1, the input channels are
N , and the output channels are p. It adopts ResNet’s strategy
of easily expanding repeated layers, dividing high-dimensional
convolutions into multiple groups of low-dimensional convo-
lutions, and each group of low-dimensional convolutions uses
the same topology. Then, the features of all grouped low-
dimensional convolutions are combined to obtain the final
convolution result. The number of divided groups is called
cardinality. Reference [19] shows that increasing the cardinal-
ity can achieve better results than increasing the depth and
width of the network.

As shown in Figure 5(b), the original ResNeXt block can
be expressed based on grouped convolution [22] more suc-
cinctly. All 1 × 1 convolutional layers can be replaced with
a single wider 1 × 1 convolutional layer. The grouped convo-
lution can divide the input channel into multiple branches,
which can perfectly implement the segmentation operation
required by the ResNeXt block. The parentheses are the
number of input channels, the size of the convolution kernel,
and the number of convolution kernels, and c is the number
of groups of grouped convolutions. Since the equivalent
form based on grouped convolution is concise and easy to
implement, our network model is constructed using the
equivalent form.

3. Scheme of This Paper

In order to apply the ResNeXt residual network to AAC
audio steganalysis work, this paper designs the correspond-
ing network structure according to the relevant characteris-
tics of audio steganalysis. The overall structure and design
details of the steganalysis model in this paper will be intro-
duced in detail below.

3.1. The Overall Structure. The network structure is shown in
Figure 6. The first part is a high-pass filter and a merge oper-
ation, which combines the high-pass filtered features and the
original features into new features in depth, as the input of
the first convolutional layer. The second part consists of a
normal convolutional layer and a residual learning module
containing three sets of ResNeXt modules. The size of the
convolution kernel of the first convolution layer is 3 × 3,
the number of convolution kernels is 64, and the step size
is 1. The residual learning module includes three groups,

WAV

AAC

Psychoacoustic model

MDCT
filters

Spectrum
processing

Quantization
coding

Huffman
coding

Bitstream

Figure 1: AAC audio coding procedure.

Huffman_code Sign_w Sign_x Sign_y Sign_z... ...

Figure 2: Bitstream structure of codebooks 3 and 4.

Huffman_code Sign_x Sign_y... ...

Figure 3: Bitstream structure of codebooks 7, 8, 9, and 10.
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and each group includes one ResNeXtBlock1 module and
two ResNeXtBlock2 modules, which are arranged in order.
The number after the module name is the number of con-
volution kernels for group convolution in the module. The
number of group convolution kernels for the three groups
is 16, 32, and 64, respectively. The third part is the classi-
fication module, which includes a global average pooling
and a fully connected layer. Global average pooling
converts the feature map of the residual learning module
into a 128-dimensional feature vector and feeds it to the

fully connected layer. Finally, the Softmax classifier is used
to obtain the corresponding classification probability as
the final steganalysis result.

3.2. QMDCT and Preprocessing Modules. The network uses
QMDCT coefficients as input data. The QMDCT coefficients
play a key role in the AAC coding process. The time-domain
audio signal is converted into frequency-domain MDCT
coefficients through an MDCT filter and then quantized to
obtain QMDCT coefficients. Finally, the QMDCT

Conv (N, 1×1, p)

Conv (p, 1×1, N) Conv (p, 1×1, N) Conv (p, 1×1, N)

Conv (p, 3×3, p) Conv (p, 3×3, p) Conv (p, 3×3, p)

Conv (N, 1×1, p) Conv (N, 1×1, p)
Total

c
Paths

...

+

+

N-dim in

N-dim out

(a)

Conv (c·p, 1×1, N)

Conv (c·p, 3×3, c·p)
Group = c

Conv (N, 1×1, c·p)

N-dim in

+

N-dim out

(b)

Figure 5: Original architecture of ResNeXt block.

QMDCT martix
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+

Conv, 3×3, 64
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ResNeXtBlock2, 16

ResNeXtBlock2, 16
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ResNeXtBlock2, 32

ResNeXtBlock2, 32

ResNeXtBlock1, 64

ResNeXtBlock2, 64

ResNeXtBlock2, 64

Figure 6: Overall structure of the proposed model.
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Figure 4: Bitstream structure of codebook 11.
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coefficients are noise-free encoded by Huffman coding and
packed into audio data stream together with other compres-
sion parameters. Huffman coding is a lossless coding, so
QMDCT coefficients and Huffman coding correspond to
each other. Regardless of the MIN, SIGN, or HCM algo-
rithm, the modifications caused by the embedding process
are reflected in the QMDCT coefficients. Previous studies
have shown that the statistical features of the QMDCT
matrix are effective for MP3 steganography. MP3 and AAC
have similar coding principles. The idea of steganalysis for
MP3 can be used for reference to AAC steganalysis. In addi-
tion, reference [9] proposes an AAC steganalysis method
based on QMDCT coefficients, which shows that QMDCT
is effective in AAC steganalysis.

AAC stereo contains 1024 coefficients per channel per
frame. 25 frames of AAC audio are used as a basic analysis
unit to form a 50 × 1024 QMDCT coefficient matrix. For a
better description, the coefficient matrix is expressed as

Q1,1 ⋯ Q1,j ⋯ Q1,1024

⋮ ⋱ ⋮ ⋮

Qi,1 ⋯ Qi,j ⋯ Qi,1024

⋮ ⋮ ⋱ ⋮

Q50,1 ⋯ Q50,j ⋯ Q50,1024

2
666666664

3
777777775
, ð6Þ

where Qi,j represents the QMDCT coefficient. i ∈ f1, 2, 3,⋯
,50g is the index of the channel. j ∈ f1, 2, 3,⋯,1024g is the
index of the QMDCT coefficients in one channel.

The AAC audio encoding process performs lossy com-
pression of audio time-domain signals. Although the lossy
compression process will cause a little loss to the original
signal, in a short time, the MDCT coefficients can still show
continuity in the time and frequency domains, that is, the
correlation between frames within a frame. The preprocess-
ing module used in reference [17] has a good effect, which
can enhance the correlation between frames, suppress the
influence of carrier content on steganalysis features, and
improve the accuracy of steganalysis. This paper follows
the high-pass filter (HPF) used in reference [17] to extract
more steganalysis features.

3.3. Residual Learning Module. Referring to the design expe-
rience of audio steganalysis network, this paper designs two
kinds of ResNeXt blocks based on the original ResNeXt
block structure, as shown in Figure 7.

Considering the scale and actual performance of the net-
work, this paper sets the cardinality of the ResNeXt block to
8. Each ResNeXt block consists of three convolutional layers
and a shortcut connection. The three convolutional layers
are 1 × 1 convolution, 3 × 3 group convolution, and 1 × 1
convolution in sequence. Except for the last convolutional
layer, the other convolutional layers are followed by a BN
(batch normalization) layer, and the ReLU activation func-
tion is used to increase the nonlinearity of network. The out-
put of the last convolution layer is added to the input
characteristics passed by the shortcut and activated using

the ReLU activation function. The group convolution stride
of the ResNeXtBlock1 module is 2, which can reduce the size
of the feature map to half the size of the input feature map
and replace the pooling layer. Steganalysis feature loss
caused by pooling layers can be reduced. However, the input
and output feature map dimensions of the ResNeXtBlock1
module are inconsistent, so the shortcut connection needs
to be mapped using 1 × 1 convolution to ensure that the
input and output dimensions are consistent. The experi-
ments also test the performance of target shortcut mapping
using 3 × 3 convolutions. Taken together, using 1 × 1 convo-
lution as target shortcut mapping has the best performance.
The group convolution stride of the ResNeXtBlock2 module
is 1, and the input and output feature maps have the same
dimensions, and the input and output of the module can
be directly added.

4. Experimental Results and Analysis

4.1. Experimental Setup. There is no publicly available AAC
audio dataset at this stage. Reference [18] provides a large
WAV audio dataset with a sampling frequency of 44.1KHz
and a length of 10 s. 15,000 WAV audios are selected and
encoded into M4A files with a bitrate of 128Kbps by AAC
audio encoder. Then, three steganography algorithms, MIN
[1], SIGN [2], and HCM [4], are implemented to generate
the stego-AAC audio files. For the three steganography algo-
rithms, the random secret information is embedded in the
audio files during the encoding process at the relative
embedding rate of 0.1, 0.2, 0.3, 0.5, and 1.0, so that we get
15000 cover-stego pairs. Relative embedding rate is the per-
centage of embedded message length to the maximum
embedded message length. Among them, 9000 cover-stego
pairs are used as training set, 3000 cover-stego pairs are used
as validation set, and the remaining 3000 cover-stego pairs
are used as test set.

The model in this paper is built using the TensorFlow
deep learning framework. The experimental software envi-
ronment is Windows 10 64-bit operating system, and the
hardware environment is Intel (R) Xeon (R) W-2133 CPU,
NVIDIA GTX 2080Ti 11GB GPU, and 32GB memory.
Adam optimizer with β1 = 0:9, β2 = 0:999, and ϵ = 10−7
was used to update the network parameters. The network
is trained with an initial learning rate of 0.001. We adopted
the learning rate strategy that the validation loss as a mon-
itor was employed in the training stage, and if the valida-
tion loss does not decrease within 5 epochs, the current
learning rate will be reduced with a decay rate of 0.9. The
batch size during the training stage is set to 32 (16 cover-
stego pairs). The weights of all convolutional layers and
fully connected layers are initialized via the Xavier uniform
initializer [23]. And the initialization of biases is zero. The
parameters of the model with the best performance on val-
idation accuracy are saved every epoch. The average detec-
tion accuracy on the test set is used as the experimental
evaluation metric.

4.2. The Influence of Model Structure on Detection Accuracy.
Different network structures will affect the final detection
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accuracy. In order to obtain the optimal model structure, a
lot of experiments have been done with different network
structures for the HCM steganography algorithm with a rel-
ative embedding rate of 0.3. In order to reduce the random-
ness of the experiments, 10 experiments are performed for
each different network structure. The average detection
accuracy of 10 experiments was taken as the final detection
result. Table 1 shows the modified network structure param-
eters and the corresponding average detection accuracy.
Among them, model #1 is the network structure proposed
in this paper. The average detection accuracy of LARXNet
is 95.13%, which can achieve the best steganalysis perfor-
mance and is significantly better than other network struc-
tures. The average detection accuracy of the #2 model is
93.56%. It can be seen that the high-pass filter layer is bene-
ficial to capture better steganographic feature information
and improve the detection accuracy of the model. The aver-
age detection accuracy of the #3 model is 94.25%. A set of
modules has been added, and a large number of parameters
have been added, but the result is not better, it should be that
the model has overfitted. Both the #4 model and the #5
model have adjusted the cardinality of ResNeXt module.
The number of parameters of the ResNeXt module is related
to the cardinality; the larger the cardinality, the smaller the
number of parameters. According to the experimental
results, considering the scale of the lightweight model in this
paper, setting the cardinality of the ResNeXt module to 8 can
obtain the best network performance. The average detection
accuracy of the #6 model is 94.10%. It is proved that using
1 × 1 convolution on the target shortcut is better than 3 × 3
convolution, and using 3 × 3 convolution will nearly double
the parameters and increase the training time of the net-
work. Compared with other variant models, LARXNet has
the highest detection accuracy, which is the most effective.

4.3. Experimental Comparative Analysis. For the three stega-
nography algorithms MIN, SIGN, and HCM, four existing
audio steganalysis methods are compared with LARXNet
under different relative embedding rates, including two tra-
ditional audio steganalysis methods based on manual feature
extraction (MDI2 [9] and JPBC [14]) and two neural
network-based audio steganalysis models (Spec-ResNet
[17] and WASDN [18]). The comparison results with
methods based on manual feature extraction are shown in
Table 2. The average detection accuracy of 10 experiments
was taken as the evaluation index. The comparison results
with the steganalysis model based on neural network are
shown in Table 3. In addition to selecting the average detec-
tion accuracy as the evaluation index, the number of model
parameters and model size are also compared to measure
the scale of the modulus. In order to clearly show the change
of detection accuracy, Figures 8–10 are drawn at the same
time as a visual display of the data in Tables 2 and 3.

From the data in Table 2, the detection difficulty of our
model for the three steganography algorithms is ranked as
HCM, SIGN, and MIN from difficult to easy. Due to the rel-
atively large modification of the audio carrier by the MIN
algorithm, the high-frequency noise generated by steganog-
raphy is relatively strong. It is easier to detect by steganalysis
tools. For the three steganography algorithms, with the
improvement of the relative embedding rate, the modifica-
tion of original covers will grow up and the detection accu-
racy of various steganalysis schemes also will increase. The
detection accuracy of LARXNet for the MIN algorithm
reaches more than 98%. The detection performance of tradi-
tional audio steganalysis methods depends on the selection
and extraction of features, which requires researchers to be
proficient in the characteristics of steganography algorithms.
The designed features are highly targeted, and it is not easy
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Figure 7: Structure of ResNeXtBlock1 and ResNeXtBlock2.
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to extract comprehensive features. Therefore, for the JPEC
steganalysis algorithm and the MDI2 steganalysis algorithm,
the detection performance of the HCM algorithm is signifi-
cantly higher than that of the SIGN algorithm. The possible
reason is that two traditional steganalysis algorithms cannot
accurately extract the noise characteristics of the SIGN algo-
rithm. Our model based on the latest ResNext network can
automatically extract the steganographic noise features in
the audio carrier and exert the powerful feature extraction
and feature fusion capabilities of the neural network, which
is very suitable for steganalysis tasks. Therefore, our model
can still achieve an excellent classification effect when the
relative embedding rate is low, with an average increase of

more than 30%. Even for the most difficult HCM algorithm
to detect, when the relative embedding rate is 0.1, the detec-
tion accuracy of our model can reach 85.5%. For the three
steganography algorithms, the detection accuracy of our
model is higher than that of traditional steganalysis methods
based on handcrafted features. Overall, LARXNet effectively
detects existing AAC steganography algorithms at different
relative embedding rates.

From the data in Table 3, it can be seen that the number
of parameters of the model in this paper is the least, and the
size of the model is the smallest. Compared with the optimal
Spec-ResNet, the model size is reduced by more than 40%.
Because the WASDN model does not use the global average

Table 1: Detection accuracies of different network structures.

Number Network structure parameters Accuracy (%)

#1 Proposed model—LARXNet 95.13

#2 Remove the high-pass filter layer 93.56

#3 A set of ResNeXt modules are added 94.25

#4 The cardinality of ResNeXt module is adjusted to 16 93.85

#5 The cardinality of ResNeXt module is adjusted to 4 93.82

#6 ResNeXtBlock1 shortcut replaced with 3 × 3 convolution kernel 94.10

Table 2: Comparison of detection results of traditional steganalysis methods.

Steganalysis method Steganography algorithm
Accuracy (%)

0.1 0.2 0.3 0.5 1.0

Our model—LARXNet

MIN 98.65 99.05 99.12 99.34 99.90

SIGN 94.27 96.65 98.54 99.12 99.87

HCM 85.50 91.65 95.13 96.85 99.55

MDI2

MIN 56.12 64.35 75.12 86.43 97.66

SIGN 54.83 62.47 68.45 71.55 74.48

HCM 57.84 63.23 69.20 78.57 92.60

JPBC

MIN 63.25 74.52 81.45 92.38 99.92

SIGN 55.81 57.42 61.42 65.07 76.08

HCM 62.79 73.02 80.05 91.69 99.35

Table 3: Comparison of detection results of neural network steganalysis methods.

Steganalysis model Steganography algorithm
Accuracy (%)

Parameters (K) Model size (MB)
0.1 0.2 0.3 0.5 1.0

Our model—LARXNet

MIN 98.65 99.05 99.12 99.34 99.90

102 1.49SIGN 94.27 96.65 98.54 99.12 99.87

HCM 85.50 91.65 95.13 96.85 99.55

Spec-ResNet

MIN 94.31 95.72 96.43 98.81 99.85

206 2.49SIGN 92.12 93.29 94.79 98.48 99.82

HCM 72.50 81.53 88.03 93.27 98.35

WASDN

MIN 93.57 94.52 95.96 98.70 99.61

73000 692.27SIGN 90.24 92.19 93.25 98.35 99.57

HCM 69.32 73.47 81.10 85.32 92.95
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pooling layer, all fully connected layers need to use a large
number of parameters, accounting for the vast majority of
the total number of parameters. So the number of parame-
ters of the WASDN model reaches 73 million. For the
MIN algorithm and the SIGN algorithm, the three stegana-
lysis models can achieve more than 90% detection accuracy

at a low relative embedding rate of 0.1. At a relative embed-
ding rate of 1.0, the accuracy of all three models is close to
100%. This is because the MIN algorithm and the SIGN
algorithm modify the audio carrier to a large extent, and
the noise generated during the embedding process is stron-
ger. At the same time, the steganalysis method based on
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Figure 8: Detection accuracy of MIN algorithm.
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Figure 9: Detection accuracy of SIGN algorithm.
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neural network has powerful feature extraction ability and
can effectively extract the feature information of MIN algo-
rithm and SIGN algorithm. For the HCM algorithm that is
more difficult to detect, our model has obvious advantages.
Compared with Spec-ResNet model, the accuracy is
improved by 13 percentage points at the embedding rate of
0.1. In general, the neural network-based steganalysis
method does not require the manual design of complex fea-
tures and can automatically extract more comprehensive ste-
ganalysis features with better detection performance than
traditional steganalysis methods. Our model combines the
advantages of ResNet and GoogleNet, which not only
improves the detection performance of the model but also
reduces the number of parameters of the model. Compared
with WASDN, our model adopts a residual structure, which
can alleviate the problems of network overfitting and net-
work degradation and speed up model training. Compared
with Spec-ResNet and WASDN, our model adopts grouped
convolution and uses the strategy of split-transform-merge,
which can extract more diverse and comprehensive stegana-
lysis features. At the same time, this structure can reduce
network parameters and network scale. Therefore, our
model can achieve optimal results. Thanks to the powerful
feature extraction capability of ResNeXt, the model in this
paper has the best detection results under various relative
embedding rates and is more suitable for complex steganaly-
sis environments.

5. Conclusion

This paper proposes a lightweight network model based on
the ResNeXt network to detect AAC steganography algo-

rithms. Firstly, the data is preprocessed with a high-pass fil-
ter; then, our model is carefully designed based on the
ResNeXt model, and our model is fine-tuned experimentally.
Finally, we design comparative experiments to verify the
effectiveness of LARXNet. The experimental results show
that our model can be used to detect a variety of AAC steg-
anography algorithms with different relative embedding
rates. Although the relative embedding rate is relatively
low, LARXNet still has excellent detection performance.
For the HCM algorithm with a relative embedding rate of
0.1, the detection accuracy of LARXNet is 85.5%, which is
13 percentage points higher than Spec-ResNet. Our model
significantly outperforms existing audio steganalysis
schemes under the same experimental conditions. Com-
pared with the neural network-based audio steganalysis
method, LARXNet requires fewer parameters and storage
space, reduces the model size by more than 40%, and has
better detection accuracy, which can be applied to more sce-
narios, such as mobile devices. However, new adaptive AAC
steganography algorithms have recently appeared, and there
is no targeted steganalysis scheme yet. Our model also needs
to be further improved to detect adaptive steganography
methods. In the future, we will continue to optimize the net-
work structure according to the adaptive steganography
algorithms’ characteristics and improve our model’s detec-
tion performance for the adaptive steganography algorithms.

Data Availability

The data used to support the findings of this study are
included within the article.
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Figure 10: Detection accuracy of HCM algorithm.
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