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In this paper, we focus on the vehicle-to-vehicle dynamic channel in tactical communication environments, which shows time-
varying and nonstationary characteristics due to the fast mobility, directional antennas, and harsh terrain. These situations
present great challenges for the channel state information (CSI) acquisition. To obtain an accurate CSI and reduce pilot
overhead, we propose a CSI predictor based on the long short-term memory (LSTM) network. As an improved recurrent
neural network (RNN), LSTM units have an excellent learning result on both long- and short-term inputs by adding the gating
mechanism. Using the outdated sampling CSI sequence as input data of LSTM units enables the predictor to extract complex
data characteristics and capture the temporal law of the nonstationary channel. Simulation results are demonstrated to verify
that the LSTM-based predictor has better performance than conventional algorithms in IEEE 802.11p standard. Additionally,
the key factors that affect the performance of the proposed predictor are further analyzed.

1. Introduction

Tactical vehicle platforms include the armored vehicles and
the unmanned ground vehicles (UGVs), which have been
widely employed in the land battlefield nowadays [1]. These
platforms are interconnected through the mobile ad hoc net-
work (MANET) to perform the military missions [2]. In
actual operations and maneuvers, the time-varying and non-
stationary channel characteristics are caused by the fast
mobility, directional antennas, and harsh terrain, which
leads to poor transmission conditions and link interruption.
Therefore, the reliability and validity of the vehicle-to-
vehicle (V2V) wireless link are faced with great challenges.
To tackle this problem, adaptive link transmission scheme
and channel equalization techniques depending on the
channel state information (CSI) are proposed to improve
the system performance in this scenario [3–6]. Various data
pilot-aided (DPA) channel estimation methods have been
proposed to extract accurate CSI, which utilizes the

demapped data symbols as pilot information. The con-
structed data pilot (CDP) scheme evaluates the reliability
of estimated subcarrier value by comparing the adjacent
symbols and deciding whether or not to replace the esti-
mated value [7]. The spectral temporal averaging (STA)
algorithm [8] averages the estimated values in the time-
frequency domain to reduce detection error. In test fre-
quency domain interpolation (TRFI) scheme, the unreliable
estimated value is renewed by frequency domain interpola-
tion of the reliable data pilots [9]. However, these traditional
DPA channel estimation approaches have difficulties in
combating the dynamic time-frequency selective channel
characteristics in such high mobile and complex environ-
ment [10]. On the one hand, the shorter coherence time
and bandwidth will lead to frequent pilot insertion and
reduce the effective communication rates [11]. On the other
hand, the demapping and detection errors incur error prop-
agation and limit the estimation performance. Additionally,
estimated CSI will quickly be outdated due to the feedback
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delay and nonstationary channel characteristics in the
dynamic time-varying conditions [12].

Recently, deep learning (DL) techniques show great prom-
ise due to the powerful feature extraction capability and data-
driven characteristics. Extensive research has applied DL tech-
niques to DPA channel estimation process. The authors of
[13] introduce an autoencoder- (AE-) based on neural net-
work to conventional DPA channel estimation scheme where
the AE is trained for updating the estimated value and attenu-
ate the error propagation effect. In [14], the authors proposed
a DL-based MIMO-OFDM channel estimation scheme. The
convolutional neural network (CNN) and bidirectional long
short-term memory (LSTM) are applied for frequency-
domain interpolation and time-domain prediction, respec-
tively. A gated recurrent unit- (GRU-) based channel estima-
tion is developed in [15]. The error propagation in DPA
process is suppressed by extracting the complex time-
frequency correlation features. Simulation results show that
the proposed method exhibits a performance gain without
increasing computation complexity. In [16], a novel LSTM-
based channel estimation scheme was designed for IEEE
802.11p standard in nonstationary V2V scenario. The pro-
posed network structure is utilized for tracking channel char-
acteristic and mitigating noise.

Compared with channel estimation techniques, channel
prediction provides us with a more effective solution to the
above problems. Based on the outdated historical CSI, channel
prediction technique can extract the future CSI in a given
period without sacrificing the scarce pilot resources and
achievable data rates. Additionally, channel prediction tech-
nique can explore the changing law of the channel state and
speculate on the future CSI in advance to weaken the effect
of outdated information. Therefore, the channel prediction
can overcome the disadvantage of excessive pilot overhead
and outdated effect in channel estimation, which is suitable
for the time-varying and nonstationary V2V channel. In this
paper, we propose a predictor based on LSTM neural network
for the dynamic V2V channel [17]. By introducing a new
internal cell state and the gating mechanism, the LSTM neural
network can not only record the history information but also
control the path of data transmission. Therefore, the LSTM
units are sensitive to both long- and short-term inputs. The
LSTM-based predictor can capture the complex law of the
dynamic channel and exploit the temporal correlation to get
the accuracy and real-time CSI within a period. This method
can not only avoid the extra pilot overhead but also improve
the prediction accuracy by virtue of the powerful feature
extraction capabilities of the LSTM neural network. The main
contributions of our work are summarized as follows:

(I) the system and V2V channel model in the tactical
communication environments is developed, and
the nonstationary channel characteristics are ana-
lyzed in detail.

(II) To mitigate the effect of the outdated information,
a two-stage LSTM-based prediction scheme is pro-
posed to explore the temporal correlation of the
CSI and realize the future CSI prediction.

(III) The proposed predictor is shown to outperform the
conventional algorithms by evaluating the normal-
ized mean-squared error (NMSE) index. Besides,
the impact of key factors on the propose scheme
is analyzed in the end.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the V2V system and nonstationary chan-
nel model for the tactical communication environments, in
which the effect of fast mobility, directional antennas, and
harsh terrain are taken into consideration. Section 3 pro-
poses a two-stage LSTM-based channel prediction scheme
and the architecture of the predictor. Simulation results that
demonstrate the system performance are provided in Section
4. Finally, Section 5 gives the conclusions.

2. System and Nonstationary Channel Model

Figure 1 illustrates a point-to-point V2V communication
system, where directional antennas are equipped in both
transmit and receive platforms to improve the signal to
interference plus noise ratio (SINR) and increase the com-
munication distance in the tactical environments. Due to
the complex scattering environment, the received signals
can be divided into two components: the line-of-sight
(LoS) component and the non-LoS (NLoS) component.
Therefore, the channel impulse response can be expressed as

h t, τð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
K

K + 1

r
hLoS tð Þδ τ − τLoS

� �
,

+
ffiffiffiffiffiffiffiffiffiffiffi
1

K + 1

r
〠
N−1

n=1
hNLoSn tð Þδ τ − τNLoSn

� � ð1Þ

where K and N represent the Rice factor and the total
number of the multipath component, respectively. hLoSðtÞ
and τLoS represent the channel complex coefficient and the
delay of the LoS component. hNLoSn ðtÞ and τNLoSn are the
channel complex coefficient and the delay of the n-th NLoS
path. hLoSðtÞ and hNLoSðtÞ can be expressed as

hLoS tð Þ = ejΦ
LoS
ej2πf

LoS
D,Tx cos ϕLoSTx −γTxð Þt × ej2πf

LoS
D,Rx cos ϕLoSRx −γRxð Þt , ð2Þ
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where the channel variable fΦLoS, f LoSD,Tx, f LoSD,Rx , ϕLoSTx , ϕLoSRx g
represents the initial phase, the maximal Doppler shift
caused by the motion of TX, the maximal Doppler shift
caused by the motion of RX, the direction of departure,
and the direction of arrival of the LoS path, respectively. f
ΦNLoS,n

m , f NLoS,nD,Tx , f NLoS,nD,Rx , ϕNLoS,nTx,m , ϕNLoS,nRx,m g are the channel
parameters of the m-th scattering path in the n-th NLoS
path component. γTx (γRx) is the movement angle of the
TX (RX) and M denotes the number of the scattered path.
By taking the Fourier transform of Equation (1), the time-
varying transmission function can be expressed as

H t, fð Þ =
ð+∞
−∞

h t, τð Þe−j2πf τdτ =
ffiffiffiffiffiffiffiffiffiffiffi
K
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r
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� +
ffiffiffiffiffiffiffiffiffiffiffi
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〠
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hNLoSn tð Þe−j2πf τNLoSn :
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Due to the fast mobility and low height of transmitting
and receiving antennas deployed in mobile vehicle, the num-
ber and strength of propagation paths change frequently, so
the channel statistic characteristics are time-varying, result-
ing in the nonstationary channel feature [11]. The “birth-
death” process introduced in [18] is employed to model
the “lifetime” of the multipath component, and the transi-

tion between “birth” and “death” can be described using
the state transition matrix. In such tactical scenario, an addi-
tional term zðtÞ can be used to account for the frequent
changing state of the multipath component [19].

The directional antenna misalignment problem of the
harsh terrains should be considered in the tactical environ-
ments. As shown in Figure 2, when mobile vehicle move
on the flat terrain, the maximum gain direction of the trans-
ceiver antenna beam can be aligned. However, the main
beam of the transceiver antenna cannot be aligned in the
undulating terrain, resulting in a time-varying power loss
of the propagation path. According to [20], the antenna
power pattern Gðθ, ψÞ is applied to represent the directional
misalignment effect, where fθ, ψg denotes the direction of
the antenna main beam. Based on the above analysis, the
time-varying and nonstationary V2V channel in tactical
communication environments can be reformulated as Equa-
tion (5), where the channel parameters {GðθLoSTx , ψLoS

Tx Þ, Gð
θLoSRx , ψLoS

Rx Þ, zLoSðtÞ} represent the directional antenna power
pattern of TX and RX as well as the state of the LoS path,
respectively. The channel parameters of the n-th path in
the NLoS component are {GðθNLoSTx,n , ψNLoS

Tx,n Þ, GðθNLoSRx,n , ψNLoS
Rx,n Þ,

zNLoSn ðtÞ}. Note that the propagation environment changes
during the moving process; thus, the parameters in Equation
(5) are all time-varying.
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Figure 1: Point-to-point vehicle-to-vehicle communication system in the tactical environments.
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3. Long Short-Term Memory-Based
Channel Prediction

According to the above analysis, the CSI obtained using the
channel estimation technique is outdated due to the signifi-
cant time-varying and nonstationary channel characteristics.
Here, we employ an LSTM-based predictor to explore com-
plex channel characteristics and extract real-time CSI. The
proposed model is trained and optimized by minimizing
the root mean square error (RMSE) JðΘÞ between the pre-
dicted CSI Ĥðt, f Þ and supervision value Hðt, f Þ. JðΘÞ can
be expressed as Â

J Θð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Q
〠
Q

q=1
Ĥq t, fð Þ −Hq t, fð Þ� �2

vuut , ð6Þ

where Q denotes the number of channel sequence sam-
ples in the training process.

3.1. Two-Stage Prediction Scheme. The whole prediction
scheme can be divided into two stages: the training and pre-
diction stage, as shown in Figure 3.

The proposed LSTM-based predictor will learn the cor-
relation between the historical CSI in the training stage.
Then, the trained model takes the outdated CSI as the input
data to extract the future moment CSI in the prediction
stage. Note that the training stage is complex and time-con-
suming, but it can be finished in offline mode. Moreover,
with the development of hardware technology, high-
performance processing modules are deployed in tactical
devices. Hence, the computing power and processing capac-
ity of tactical devices has been greatly enhanced, which can
support the computational requirement of the proposed
approach.

3.2. Architecture of the Channel Predictor. Figure 4 illustrates
the architecture of the proposed LSTM-based channel pre-
dictor. By adding the cell state and the gating mechanism,
the LSTM cell addresses the problem of gradient explosion
or disappearance of the RNN. The LSTM cell is mainly
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Figure 2: The misaligned angle of the transceiver antenna in different terrains.
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composed of three gates, namely, the forget gate f t , the input
gate it , and the output gate ot . The three gates and candidate
states ~ct are calculated by the external state ht−1 at the previ-
ous moment and the input xt ∈ℝM×1, which can be
expressed as

f t = σ Wf · xt , ht−1½ � + bf
� �

, ð7Þ

it = σ Wi · xt , ht−1½ � + bið Þ, ð8Þ
ot = σ Wo · xt , ht−1½ � + boð Þ, ð9Þ

~c tð Þ = tanh Wc · xt , ht−1½ � + bcð Þ, ð10Þ
where fWf ,Wi,Wo,Wcg and fbf , bi, bo, bcg are weight
matrices and bias vectors for LSTM units, respectively. The
gates f t and it are then combined to update the memory unit
ct , as shown in Equation (11) and Equation (12). Finally, by
calculating ct and ot , the internal state is transferred to the
next external state ht .

ct = f t⨀ct−1 + it⨀~ct , ð11Þ

ht = ot⨀tanh ctð Þ: ð12Þ
The above process can not only achieve the linear trans-

mission of the cyclic information but also nonlinearly output
the information to the external state. Therefore, the LSTM
neural network can realize excellent learning results for time
series in both long and short terms. During the training pro-
cess, the LSTM structure will automatically learn and update
the weight matrixW∗ and bias term b∗. The LSTM Layer1 is
an input layer to receive historical CSI, and the two follow-
ing LSTM layers play a key role in exploring the temporal
features of the nonstationary channel. Finally, the output
layer is a fully connected layer, which will reshape and out-
put the predicted CSI Ĥðt, f Þ. The rectified linear unit (Relu)
function is selected as the activate function for all layers. It
should be noted that the neural network modules are only

capable of dealing with the real-valued data, but channel
coefficients are complex-valued. To improve the efficiency,
most articles decompose complex channel coefficients into
real and imaginary parts in training stage [13, 15, 16]. In test
stage, the separating parts predicted by the neural network
will be recombined into the complex value as the channel
coefficients. The LSTM-based V2V channel prediction algo-
rithm for tactical communication environments can be sum-
marized as Algorithm 1.

3.3. Computation Complexity Analysis. In this subsection,
the multiply accumulate (MAC) operation is used to analyze
the computation complexity of the proposed LSTM-based
predictor, which comes from the matrix operation of the
neural network. The CSI sample xt ∈ℝM×1 is the input data
of the LSTM Layer1, whose weight matrices and bias vectors
are Wi,Wo,Wf ,Wc ∈ℝðM+L1Þ×L1 and bi, b0, bf , bc ∈ℝL1×1,
respectively. Therefore, the MAC operation for the first
LSTM layer is 4K ½ðM + L1Þ L1 + L1� where K is the length
of the input sequence. For the other LSTM layers ð2 ≤ j ≤ J
Þ, the input data is ht−1 ∈ℝ

ðLj−1×1Þ, so the MAC operation
for them is 4K · ½∑J

j=2ð2Lj−1 · Lj + LjÞ�. Finally, MAC opera-
tion for the output layer can be expressed as 4K · ðLJ ·M +
MÞ.

4. Numerical Simulation Result

In this section, simulation results are performed to validate
the performance of the proposed prediction scheme. The
simulations are performed on the TensorFlow-GPU 2.0.0
platform and relevant parameters are set as follows. The
total number of paths is set to 12 and the Rician factor K
is 20 dB. The amplitude of the multipath component follows
Rayleigh distribution. For the directional antennas, a half-
wave oscillator antenna is selected, whose maximum beam
angle is 78°. The neuron numbers in the three LSTM layers
are 128, 256, and 512, respectively. To avoid overfitting, we
set the dropout value to 0.3. To improve the training effi-
ciency, the Adam optimizer is used. The epoch limit for
training and the batch size are 500 and 128, respectively.
The sizes of training and test sets are 20000 and 2000,
respectively. To verify the generalization property of the pro-
posed algorithm, the channel model parameters of test set
are not the same as the training one. There are new channel
parameters for the test set. For example, the test set included
terrain and Doppler shift parameters that were not pre-
sented in training set. In addition, the channel prediction
is performed based on the outdated CSI, which will be
regarded as the input data for neural network model. In this
paper, we adopt the traditional comb-type pilot pattern to
estimate the outdated CSI. The pilot symbols are equally dis-
tributed on the subcarriers with a spacing of 4. The length of
input sequence is set to 30. Absolutely, as the input length
increases, more channel features can be captured by LSTM
networks, and the changing law of channel can be extracted
more accurately. Certainly, as the dimension of input data
increases, the complexity of neural networks also increases
greatly.

Train data LSTM-Based
predictor

 Model training
stage

Tactical V2V
communication

system

Predicted
CSI

 CSI prediction stage

Historical
CSI

Figure 3: Two-stage prediction scheme for vehicle-to-vehicle
channel in tactical communication environment.
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To evaluate the prediction accuracy, we take the normal-
ized mean square error (NMSE) as the performance index,
which can be calculated using

NMSE = E
1
P
〠
P

p=1

Ĥp t, fð Þ −Hp t, fð Þ		 		2
2

Hp t, fð Þ		 		2
2

( )
, ð13Þ

where P is the total number of the test samples and Ef·g
denotes the expectation operation.

We first analyze the temporal correlation of the V2V
channel with different Doppler shift, as shown in
Figure 5(a). As the Doppler shift decreases, the correlation
coefficient gradually increases due to the longer coherence
time, indicating that the channel information is predictable
within a certain time interval. Figure 5(b) shows the

LSTM layer 1

Dropout layer

LSTM layer 2

Output layer

LSTM layer 3

Dropout layer

LSTM
cell ft

tanh

tanh

+

Predicted CSI

Historical CSI

LSTM
cell •

•

•

……

…

…

…

.... ..

1 32

…

…

…

Ht+K

Ht+2

Ht+1

Ht–K+1

Ht

Ht–1

ct–1

ht–1

ct

ctit ot

ht

xt

. ..
. ..

1 32 MM–1

MM–1

𝜎𝜎𝜎

~

Figure 4: The architecture of the long short-term memory-based prediction framework.

input: Complex CSI sequence, the set of hyperparameters Θ.
1: Training stage:
2: Generate the input data of the training set by dividing the complex channel sequence into two subsequences according to the real
and imaginary component.
3: for epoch e =1 : Edo
4: Explore the temporal non-stationary characteristics of the V2V channel using the LSTM-based neural networks model.
5: Obtain the predicted CSI via the model.
6: The hyperparameters are optimized by minimizing the loss function JðΘÞ in Equation (6).
7: end
8: Prediction stage:
9: Generate the test input data by converting the complex data to real domain.
10: Predict the target CSI via inputting the historical data into the trained LSTM-based predictor.
output: The trained LSTM-based channel predictor.

Algorithm 1: The long short-term memory-based vehicle-to-vehicle channel prediction algorithm for tactical communication
environments.
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comparison results of antenna pattern gain in four terrain
conditions, including flat terrain (FT), lightly undulating ter-
rain (LUT), moderately undulating terrain (MUT), and
heavily undulating terrain (HUT). It can be seen that a more
undulating terrain will cause severe fluctuations of direc-
tional antenna gain and make the changing law of the V2V
channel more complex, which will bring more challenges
to channel prediction.

As shown in Figure 6, the conventional channel estima-
tion algorithms in IEEE 802.11p standard, such as con-

structed data pilots (CDP) [7] and spectral temporal
averaging (STA) [8], show bad performance due to the esti-
mation error propagation effect caused by noise and channel
variation. Compared with conventional algorithms, the pro-
posed LSTM-based predictor realizes performance improve-
ment due to the strong ability of the DNNs in extracting
complex features and correlation relationships. For a fair
comparison, the multilayer perception (MLP) in [21] is
deployed with the same number of layers and neurons as
the proposed LSTM-based predictor. Due to the great
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Figure 5: (a) Temporal correlation characteristic with different maximal Doppler shifts. (b) Comparison of the antenna power gain in
different terrain conditions.
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advantages of the LSTM neural networks in processing time-
series data, there is also a performance gain between the pro-
posed scheme and MLP.

Figure 7 analyzes the key factors that affect the perfor-
mance of the proposed scheme. The training and test data-

sets of the four terrains are generated according to the
direction of antennas main lobe fθ, ψg in corresponding ter-
rains. The mobility scenarios are indicated by the maximal
Doppler shift of 5, 10, 15, and 20Hz, which are consistent
with the vehicle speed. Therefore, the training and test
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Figure 6: The NMSE of the proposed scheme and conventional algorithms for different SNRs.
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Figure 7: The NMSE of the proposed scheme for different terrain with different vehicle speeds.
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datasets of different Doppler shift are generated according to
different vehicle speed in actual scenario. With the increase
in the Doppler shifts, the temporal correlation of the V2V
channel weakens and the prediction accuracy gradually
decreases. Additionally, it is intuitive that the proposed
scheme is more suitable to be applied for the less undulating
terrain under the same vehicle speed. This is because the
temporal changing law of antenna gain is more complex in
undulating terrain, which will increase the difficulty for the
LSTM-based model to extract the channel characteristics
and reduce the accuracy of the performance.

5. Conclusion

In this paper, we first introduced the V2V channel model
and nonstationary characteristic in tactical communication
environments. Then, we proposed a LSTM-based channel
predictor to reduce pilot overhead and mitigate the impacts
of outdated information. The simulation results showed that
the proposed method can get better prediction accuracy than
other conventional algorithms in the index of NMSE. Based
on above analysis, it can be concluded that the terrain condi-
tions and the vehicle speed influence on the performance of
the proposed scheme. In future work, we will design the
adaptive transmission scheme according to the predicted
CSI to overcome the adverse influence of the V2V channel
and improve the reliability and validity of the tactical com-
munication system.
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