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Machine learning and data analytics are two of the most popular subdisciplines of modern computer science which have a
variety of scopes in most of the industries ranging from hospitals to hotels, manufacturing to pharmaceuticals, mining to
banking, etc. Additionally, mining and hospitals are two of the most critical industries where applications when deployed
security, accuracy, and cost effectiveness are the major concerns, due to the huge involvement of man and machines. In this
paper, the problem of finding out the location of man and machines has been focused on in case of an accident during the
mining process. The primary scope of the research is to guarantee that the projected position is near to the real place so that the
trained model’s performance can be tested. The solution has been implemented by first proposing the MLAELD (Machine
Learning Architecture for Excavators’ Location Detection), in which Bluetooth Low Energy (BLE) beacons have been used for
tracking the live locations of excavators preceded by collecting the data of the signal strength mapping from multiple beacons at
each specific point in a closed area. Second, machine learning techniques are proposed to develop and train multioutput
regression models using linear regression, K-nearest neighbor regression, decision tree regression, and random forest re-
gression. These techniques can predict the live locations of the required persons and machines with a high level of precision
from the last beacon strengths received.

1. Introduction

The mining industry constantly plays a vital role in the
economic growth of a country due to its correlation with
energy resources. Therefore, the engrossment of modern
technology and its applications in this field have become
very high. Machine learning technique has a comprehensive
scope in almost all fields. It can be utilized to explore and
experience fresh data for prediction. This allows corpora-
tions to develop effective business plans based on the
forecasts of the ML algorithms. One of the remarkable
achievements of this century is the deployment of

geolocation services which made it possible to navigate, and
track and locate a person or an object. The primary goal of
the research is to guarantee that the projected position is
near to the real place so that the trained model’s perfor-
mance can be tested. On the other hand, these services have
some limitations too; e.g., GPS has unequivocal limitations
such as an error radius of about 10 meters and loss of signal
strength at a height or deep down in Earth.

It is even more substantial when considering an indoor
area and hence cannot be used to track people or objects in
non-GPS visibility areas such as indoor or underground
areas. GPS delivers the most accurate surveying and
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mapping data available. GPS-based data collection is faster
than traditional surveying and mapping procedures, re-
quiring less equipment and personnel.

In addition to geolocation services like maps, navigation,
and tracking applications, there is also a demand for indoor
tracking and navigation systems. This includes navigation
inside a large building, detecting the presence and move-
ment of employees inside office spaces, tracking the
movement of people inside stores to place various products
strategically, and crowd control in hospitals and healthcare
institutions. Therefore, there is an urgent requirement for
the development of indoor positioning systems which can be
very acute in workplaces like mines, where the risks of
significant accidents always loom over. These excavation
sites contain numerous hazardous zones. Due to the envi-
ronmental situations, the safety and security of the exca-
vators pose a problem for the staff overseeing the system.
Even mild negligence in security and safety can result in
worker fatalities and damage to costly equipment.

In this research work, a combination of Bluetooth tech-
nology and machine learning has been used for predicting the
accurate locations of excavators (man and machines deployed
on the mining site). The limitation of GPS has been overcome
in underground areas by using Bluetooth Low Energy (BLE)
beacons for exchanging the signals at the working site. BLE
can work on low-power consumption and is designed to
transmit a limited volume of data for the application of
positioning systems. It plays an indispensable role in sup-
porting IoT (Internet of Things) applications for wireless
communication. One of the major obstacles of Bluetooth Low
Energy is that it cannot be utilized for greater data rates such
as those provided by wireless and cellular technology. BLE
beacons can be installed at the suspected positions with man
or machines at work, and the signal strength between the
beacons can be measured using RSSI (Received Signal
Strength Indicator). RSSI is a measurement of the relative
level of power which is acquired by the RF client system which
is an access point (AP) or a router. The signal strength is lower
if the distance between the AP and the receiver is more; with
the increase in the distance, the rates of wireless data transfer
get reduced. The RSSI is used to show how much the remote
attached client may hear a specific AP.

In this case, the beacons are placed inside a large indoor
hall and act as data points. Additionally, the received signal
strength is recorded from all these beacons at specific areas
inside the room. Consequently, a database called Beacons
Database (BDB) is created from these signal records. In this
process, the next step is achieved by executing the popular
machine learning algorithms including linear regression, K-
nearest neighbor regression, decision tree regression, and
random forest regression on BDB for predicting the loca-
tions of excavators. However, BDB is divided into train and
test datasets; the train dataset is used to train the models of
machine learning algorithms, and the test dataset is used to
check the authenticity of the predicted outcome. The per-
formance of these models is compared based on the Root
Mean Square Error (RMSE) and R-Squared (R?) values.
Subsequently, the model with the least error rate is chosen as
the most suitable model.

Wireless Communications and Mobile Computing

2. Related Works

The mineral investigation is a very important assignment for
a country and is very fruitful if it produces the expected
outcome. However, it is so sensitive that a single point of
failure can stop the process temporarily and sometimes
destroy the project, which reflects in a huge loss of man and
machine assets. Hence, companies try to provide the best
resources for ensuring the successful completion of a mining
project. The mining process has been improved as the era of
technology begins; e.g., the struggle of deploying wireless
communication technologies starts from the early 1970s,
and the first VHF radio waves [1-5] were deployed;
thereafter, UHF, WLAN, and RFID have been used. The
applications based on UHF, WLAN, and RFID provide a
potential boost to productivity and mining efficiency by
providing better automation capabilities of machines, clear
communication between deployed labor, and an easily ap-
proachable management information system [6, 7]. The
increasing demand of the mining industry results in more
involvement of costly machines and a huge amount of labor.
Therefore, the requirement of reliable and accurate moni-
toring devices for underground lines [8], overhead, and
WAMS [9] has increased tremendously.

Communication in underground mining can be done via
three mechanisms, ie., TTE (through the earth), TTW
(through the wire), and TTA (through the air) transmission
[10]. Because of the limitations of the first two methods, the
third method, i.e., TTA, is the most popular one, in which
ultrahigh frequency and super high frequency are used for
wireless communication. In the evolution of wireless
technologies, one of the most popular technologies, known
for low-power consumption, reliability, security, and ease of
operation, is ZigBee [11].

A lot of research has been presented for location de-
tection in indoor environments using beacons, ZigBee, and
other technologies which are focused on the progression of
wireless data transmission in underground mines [12].
ZigBee technology is a wireless technology that was created
as an open worldwide standard to meet the special re-
quirements of low-cost, low-power wireless IoT networks.
Therefore, the suggestion has been assessed for the rees-
tablishment of applications and technology; modeling of
digital, systematic, and metric-dependent propagation
strategies; and wireless system designs by considering the
immediate physical environment, antenna positioning, and
patterns of radiation. Furthermore, a new study has been
presented by introducing a magnetic induction based
transmission technique [13] to resolve the different issues
raised due to the conditions of the soil environment. This
study exposed the possibility of MI-WUSNs (Wireless
Underground Sensor Networks) and the implementation of
wireless communication systems, including voice and data
transmission for underground mines [14], and also
addressed the development of wired, semi-cellular, and
wireless networking services.

Additionally, the digital communication protocols for
MI-WUSNSs were proposed [15]; the effects of data com-
munication parameters such as symbol rate and modulation
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schemes have been evaluated for oil reservoirs. Suitable
ranges for propagation linking nodes for specific water,
crude oil, and soil formulations were explored.

The Wireless Network Sensor System was a suitable
optimization technique. Later, a new model of communi-
cation channel was introduced [16]; it recognizes the
transmission characteristics of EM waves (of terahertz) in
the dynamic underground surroundings used in under-
ground mines [17], which are used for the implementation of
the systemic function of staff placement strategies in haz-
ardous locations. It examines an economic and continuous
monitoring strategy for the safety of excavators, which
would help in an efficient and precise positioning of man and
machines. In some other models, a mine quantitative ap-
proach [18] was used for calculating data and machinery
(nodes) availability utilizing a Self-Encryption Program
(SES) program that encrypts data until it is submitted to the
cloud. As a continuation [19], a smart helmet which is
capable of detecting dangerous situations during the mining
process was designed. A miner removing the mining helmet
was indicated to be in a hazardous situation. Air temper-
ature, heart rate, and level of toxic gases (e.g., carbon
monoxide, hydrogen sulfide, and methane) are the factors
that are often used to classify the health situation of workers.

In some other cases [20], integrating on-channel signal
booster strategies with the “daisy chain” repeater system
was developed by utilizing wide-band linear amplifiers and
selective filters to broaden the signals transmitted from
base stations into subways across the ground. This tech-
nique satisfies the criteria for delivering radio communi-
cations that are multichannel, not just for subway stations,
but also for paramedical, fire, police, and paging services
etc., which are done at a much lower cost. In [21], different
radio frequency communication strategies are used in
underground mines through medium wave frequency
(MF), very high frequency (VHF), and ultrahigh frequency
(UHF) for electromagnetic transmission. Here, induction
methods were also implemented to satisfy various types of
mining conditions in both the laboratory and coal mines
located underground. Another hybrid multimode model
[22] for wireless communication in underground coal
mines was proposed and evaluated for important param-
eters such as the size of the mine tunnel, operating fre-
quency, and position of the transmitter/receiver. In this era
of IoT, the development of Smart SAGES by utilizing the
potential of IoT technologies was proposed [23]. As a result,
a reliable and robust communication system would be set
up for SAGES. This system ensures the confidentiality and
durability of the SAGES data transmitted to the cloud, and
details can be retrieved efficiently using a mobile
application.

3. MLAELD (Machine Learning Architecture for
Excavators’ Location Detection)

The problem of finding out the location of excavators by
analyzing the database of RSSI values received from BLE
beacons can be explained with the help of MLAELD as
shown in Figure 1.

The MLAELD can be demonstrated by the following key
terms.

3.1. Bluetooth Beacons. Bluetooth beacons can be used to
determine precise locations of mobile devices using specific
applications. A beacon transmits a Bluetooth Low Energy
(BLE) signal within a distance of 50 meters (LOS) that can be
detected by compatible devices. The signal is brief and does
not change significantly; in fact, beacons are often very small
and battery-powered. Bluetooth uses radio technology to
carry the beacon broadcast which is relatively inexpensive
for mass production. More specifically, Bluetooth Low
Energy (BLE) beacons are used to work on low power by
transmitting a signal that compatible applications can re-
ceive and detect. Effectively, it is a one-way broadcast where
beacons transmit the signal with applications to receive
them. In other words, an application can be used to detect
the beacon and use the signal to regulate the location of a
mobile device (excavators). Some beacon technologies used
in India are given in Figure 2.

3.2. Bluetooth-Based Localization. BLE beacon generators
are compact, affordable, battery-operated wireless trans-
mitters, typically referred to as beacons, and possess several
protocol modes. BLE transmits its identifier to local
electronic devices like smartphones or single-board com-
puters that can detect BLE signals. Consistently, beacons
can send data packets to the receiver in a regular interval of
20 milliseconds to 10 seconds. The Bluetooth Special In-
terest Group (SIG) [25] adopted BLE as a Bluetooth
subsystem to maintain device discovery that enables low-
power consumption, and it is engineered for applications
that do not require large volumes of data to be exchanged.
The main difference between Bluetooth Low Energy (BLE)
and classic Bluetooth is BLE’s low-power consumption
which means that devices can run for years on a small
battery. BLE is used in applications where periodic ex-
change of small amounts of data is needed with a broad
connectivity spectrum; e.g., within reach of 60 meters, BLE
4.0 will achieve data transmission rates of 25 Mbps. These
beacons are rather prevalent among IoT devices because of
their affordability and low-power demands which make
them one of the most promising technologies for localized
location tracking while eliminating interference with other
Wi-Fi devices.

3.3. Triangulation. The geometrical triangulation approach
is the most widely employed positioning technique. Unlike
the trilateration [26] approach of calculating distances, the
geometrical triangulation process comprises over three
sensors to perform the positioning operation, which is
achieved by calculating the strength of the transmitted signal
or the signal’s propagation period. The triangulation geo-
metrical approach is not only quick but also simple,
straightforward, and easy to build for the positioning al-
gorithm. It works well in the absence of interference and
barriers. However, in an indoor environment, as the signal
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gets reflected from the walls, floor, roof, and other obstacles
in the room, the triangulation method does not yield good
results in such scenarios.

3.4. Android Support for BLE. Android is one of the most
widely used operating systems, so it has been selected to test
the full solution, and Android apps are available on the
Google play store for BLE support. However, other oper-
ating systems’ apps are also available, e.g., CocoaPods for
iOS. An Android smartphone is used in this research to
detect the BLE strength at different locations using the BLE
app to take RSSI readings from different beacons.

3.5. Received Signal Strength Indicator (RSSI). RSSI tests the
intensity of a received radio signal, and a higher value in-
dicates a stronger signal. RSSI is utilized in Bluetooth to
determine that the signal transmitted is within the Golden
Receiver Power Range (GRPR), which is used to describe the
optimal spectrum of the strengths of the incoming signals.
RSSI is calculated in dB, and the GRPR signal amplitude
corresponding to a RSSI can be positive, negative, or zero dB
depending upon whether the signal strength is above or
below the GRPR.

3.6. Data Collection and Preprocessing. In this research work,
the training data is collected in an indoor hall as given in
Figure 1. The carpet area of the hall is divided into squares of
1 square foot each. Thereafter, 13 BLE beacons are placed at
different locations inside the hall to send data packets to the
receiver. The Bluetooth strength from these 13 beacons is
measured at a few locations inside the hall to create a dataset.
The position of the receiver and the RSSI for all the 13
beacons get recorded.

First, the data is transformed into a format compatible
with classification algorithm to predict the location. Second,
the data is split into two columns representing the x and y
coordinates of the location, which are then used to train and
develop regression models. Regression models are built with
a predictive performance based on independent variables,
and they are frequently used to figure out the relationship
between variables and forecasts. It is observed that the
beacon signal strength ranges from —40 to —200. A value of
—40 indicates the strongest possible signal, and —200 indi-
cates the weakest possible signal.

In Figure 3, a correlation or heatmap is given among the
values of beacons B1 to B13. A correlation map shows how
closely related are the values in the different features. II-
lustratively, the correlation coefficient between b3001 (i.e.,
B1) and b3008 (i.e., B8) is 0.33, which reflects the positive
behavior of both beacons concerning the receiver. Therefore,
it can be said that both the beacons are present in the same
direction from the receiver. On the other hand, the corre-
lation coefficient between b3004 (i.e., B4) and b3002 (i.e., B2)
is —0.41, which shows the negative behavior of both beacons
for the receiver. Hence, it can be said that the receiver is
present between both of the beacons.

3.7. Model Training. The next step for predicting the ex-
cavator’s specific location is model training, in which su-
pervised machine learning [27] techniques are used.
Supervised learning techniques include the process of
learning and developing a function that can map inputs to
outputs based on similar input/output pairs. The function is
inferred using training data that is labeled or has an assigned
target variable. In supervised machine learning, every data
point is a pair consisting of an input value and a corre-
sponding output value. Learning algorithms generate an
estimated function after following the study of the training
data points, which can be used to predict the output vectors
of different inputs once the function has been trained. In an
optimal situation, the algorithm can determine the depen-
dent variable or the class labels of data points to which the
algorithm has never been exposed. For this, the algorithm
generalizes its learning from the training data to unno-
ticeable circumstances. There is a wide range of supervised
learning techniques which can be used. An algorithm that
works well in a situation might not work the same in other
circumstances. In this paper, different supervised learning
algorithms are used and their performances, as well as
precision, are compared.

3.7.1. Multioutput Regression Techniques. Regression anal-
ysis is a type of predictive modeling method which predicts a
potential value based on subjective predictors. The inter-
action between a contingent (target) variable and an inde-
pendent (predictor) variable is explored using regression
analysis. Traditional machine learning predominantly uses
just one output/target variable. In multioutput regression,
the outputs are dependent not only upon the inputs but also
upon one another. This dependency means that the outputs
are often not independent of one another and may require a
model which can predict both outputs together or each output
contingent upon the different outputs. Some regression al-
gorithms can be used to solve multioutput regression problems
directly such as linear regression, K-nearest neighbor regres-
sion, and decision tree regression.

3.7.2. Linear Regression. Linear regression is a linear ap-
proach which is used to predict the interaction between an
independent variable and a dependent variable response
(or a scalar response). The scenario that operates for one
explanatory variable is called simple linear regression. Re-
gression models are designed with a predictive performance
centered on independent variables, which is often used to
work out the connection between variables and forecasting.
Specific regression models differ based on the form of re-
lationship that is assumed between the dependent and in-
dependent variables, and the number of independent
variables used. In regression models, R-Squared (R*) and
Root Mean Squared Error (RMSE) are the two accuracy
metrics used to measure how well a regression model
performs compared to other models.

R-Squared calculates how much variation the model can
identify in a dependent variable. It is the square of the
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correlation coefficient (R). The value of R-Squared is between
0 and 1, so a higher value implies a closer match between the
expected values and the real ones. This indication is a fair
measure of how well the model matches the dependent
factors. However, this does not take into consideration issues
such as overfitting. R-Squared is a relative measure of how
well the model conforms to dependent variables.

Mean Square Error (MSE) is an estimator of how well the
model fits the exact solution. It is computed by the square
sum of the prediction errors. Root Mean Square Error
(RMSE) is MSE’s square root value. It is used more often
than MSE for two reasons: firstly, MSE values may often
become too high for simple comparisons; secondly, the
square of error determines MSE, and therefore the square
root takes it up to the same degree of estimation error,
making it easy to understand.

3.7.3. K-Nearest Neighbors [27]. K-NN assumes a correla-
tion between the current case data and the present cases and
incorporates the new case into the category that is more
identical to the available ones. The K-NN algorithm stores all
the available information and classifies a new data point
depending on its resemblance, which ensures that it will
quickly be grouped into an appropriate group as new data
arises. It is a nonparametric algorithm that requires no
assumptions about the underlying data. In K-NN, a given
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point is selected first using the distance method. There are
many ways to calculate the distance between the given point
and its closest location, which is called the Euclidean,
Manbhattan, or Hamming distance. The Euclidean distance
metric is used by most machine learning algorithms, in-
cluding K-Means, to assess the similarity of data. In this
paper, the Euclidean distance has been considered.

3.7.4. Decision Tree. Decision tree [27] (Figure 4) splits
down a dataset into further small subsets, thus con-
structing a correlated decision tree simultaneously. The
result is a tree with decision nodes and leaf nodes,
which includes two or more branches, each
representing data for the evaluated attribute. The leaf
node represents a decision made on the calculated nu-
merical endpoint. The highest decision node of a graph
that correlates to the strongest indicator is considered as
the root node.

3.7.5. Random Forest. A random forest [27] (Figure 5) is an
ensemble methodology that can implement both regression
and classification tasks using several decision trees and by
using the strategy referred to as bootstrap aggregation,
which is widely recognized as bagging. The underlying
principle behind this is to incorporate several decision trees
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to assess the final version, rather than depending on indi-
vidual decision trees. Random forest has several decision
trees as its base learning models. The bootstrap method
includes random row sampling, function dataset sampling,
and generating sample datasets for each model. Each de-
cision tree has a large variance, but when we add them all
together concurrently, the resulting variance is small. Since
each decision tree is appropriately trained on that specific
sample data, the performance is not based on one decision
tree but on several decision trees. In this method, the result is
the mean of all the outputs referred to as aggregation.

4. Result Analysis

In this research, thirteen Qualcomm CSR102x BLE modules
are used as Bluetooth beacons. The data collected at different
points are used to train multioutput machine learning

algorithms to develop models that can make precise pre-
dictions about the location of the Bluetooth signal receiver
based on signal strength. The test results vary marginally
from the training data due to the speculative variance of RSSI
in indoor wireless networks, which degrades the position
estimator efficiency. BLE support is offered to Android from
version 4.3 (API level 18) to version 5.0 (API level 21).
The MLAELD has been used for implementing the ma-
chine learning algorithms (linear regression, K-NN, decision
tree, and random forest), and the performances of all these
algorithms have been compared using R* and RMSE values.
This step is divided into two different categories as follows.

4.1. Comparison of Actual and Predicted Location of Beacons.
The main focus of the research work is to ensure that the
predicted location is close to the actual location, so that the
efficiency of the trained model can be measured.
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FIGURE 7: Scatter plot showing the actual and predicted values of x coordinate by a K-NN model (a) and the actual and predicted values of y

coordinate by a K-NN model (b).

The Beacons Database (BDB) [28] provides the location
of x, y coordinates along with the signal strength. The models
have been trained using this BDB by dividing it into train
and test datasets using an 8:2 ratio. Training data is an
extremely large dataset that is used to teach a machine
learning model. Test dataset is a tertiary dataset in machine
learning that is used to test a machine learning algorithm
after it has been trained on an initial training dataset. The
results of actual and predicted locations can be categorized
based on selected machine learning algorithm as follows.

4.1.1. Actual and Predicted Values by Linear Regression.
The actual and predicted values for x and y coordinates are
depicted in Figure 6. The blue dots represent the actual
values, and the red dots represent the predicted values. The
scattering of these dots far from each other shows the dif-
ference between actual and predicted values. Overlapping
shows that the actual and predicted values are very close to
each other. In Figure 6, the values of x coordinates are
scattered showing that the errors comparative to other
methods are high.
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FIGURE 8: Scatter plot showing the actual and predicted values of x coordinate by a decision tree model (a) and the actual and predicted
values of y coordinate by a decision tree model (b).
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FIGURE 9: Scatter plot showing the actual and predicted values of x coordinate by a random forest model (a) and the actual and predicted
values of y coordinate by a random forest model (b).

TaBLE 1: RMSE and R? values for different models on the training

dataset.

Model RMSE R?
Linear regression 1.79 0.79
K-nearest neighbor 1.25 0.89
Decision tree 1.05 0.92
Random forest 1.07 0.92

4.1.2. Actual and Predicted Values by K-NN. The actual and
predicted values of x and y coordinates by the K-nearest
neighbor algorithms are shown in Figure 7.

In this case, the values are not saturated at one place as in
Figure 6. Here, values are scattered, and most of the predicted

values overlap the actual values. Therefore, the accuracy in-
creases, in this case, compared to linear regression.

4.1.3. Actual and Predicted Values by Decision Tree. The
actual and predicted values of x and y coordinates by de-
cision tree are given in Figure 8. In this case, the results are
improved compared to linear regression but are almost
similar to those of K-NN.

4.1.4. Actual and Predicted Values by Random Forest.
The actual and predicted values of x and y coordinates by
random forest are given in Figure 9. In this model, the results
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TaBLE 2: RMSE and R? values for different models on the test dataset.

Model RMSE R?

Linear regression 1.78 0.76

K-nearest neighbor 1.45 0.84

Decision tree 1.62 0.81

Random forest 1.43 0.85

are improved compared to the other three methods. Extra
white space on the figure indicates that most of the values are
overlapped, which reflects a higher accuracy of prediction.

4.2. Performance Comparison Using R® and RMSE Values.
In this section, the numerical difference between actual and
predicted values is discussed using R* and RMSE values for
training and testing data. If the main goal of the model is
prediction, then the major criteria are to calculate the RMSE
value, which gives the information of accurate prediction of
response, and a lower value of RMSE shows a better fit.

However, R” gives information about how two values are
closely related. Therefore, a higher value or value closer to +1
of R* indicates a good fit of values into the model.

The main focus of the research work is to ensure that the
predicted location is close to the actual location.

Table 1 shows the comparison of the various RMSE and
R® values for the four algorithms implemented on the
training dataset. The decision tree regression and the ran-
dom forest regression provide considerably the best per-
formance among the four models.

Table 2 shows the comparison of the various RMSE and
R? values for the four algorithms implemented on the test
dataset. The random forest regression provides considerably
the best performance among the four models.

5. Conclusion

In this work, a machine learning-based model has been
designed to predict the location based on the RSSI values
handled by a Bluetooth receiver. The model can be used for
precisely locating trapped excavators or machines under-
ground. Apart from that, it can be used at another place
where similar requirements are found; e.g., it can be used in
supermarkets where it can assist customers in locating shops
and track the movement of customers, which can help in
product placement. This study is limited to detecting the
location of a receiver using a fixed number of BLE beacons
inside an indoor hall. In the future, a similar study can be
conducted inside a long tunnel with hundreds of beacons to
detect precise locations by further leveraging a Wi-Fi setup
in the area. This can help in developing a model which can be
used to identify the location using Bluetooth, not just in a
small indoor area but in a much larger space. Location
detection and tracking using Bluetooth can also be used in
monitoring the movement and flow of a crowd in a busy
street or inside a busy supermarket.

As this technology can be used to track and detect a
person’s location in real time, it can be used in crowded fairs
and shops to trace lost people or children with ease. It can
also be used to detect the last known location of a person

stuck in a building during a fire or an earthquake, which can
help fire fighters or disaster response teams track and rescue
the person swiftly. Using indoor positioning in museums
can be the best way to reduce expenditure on hiring staff and
guides. It can assist tourists in navigating through the
museum and in exploring various artifacts.
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The data shall be made available on request.
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