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Electric Internet of things (EIoT) that integrates 5G and edge computing can provide data transmission and processing guarantee
for smart grid. However, computation offloading optimization including joint optimization of server selection and computation
resource allocation still faces several challenges such as difficulty in tradeoff balance among various quality of service (QoS)
parameters, coupling between server selection and computation resource allocation, and multi-device competition. To address
these challenges, we propose an empirical matching-based computation offloading optimization algorithm for 5G and edge
computing-integrated EIoT. The optimization objective is to minimize the computation offloading delay by jointly optimizing
large timescale server selection and small timescale computation resource allocation. We first model the large timescale server
selection problem as a many-to-one matching problem, which can be decoupled from small timescale computation resource
allocation by establishing a matching preference list based on empirical performance. Then, the large timescale server selection
problem is solved by pricing-based matching with a quota algorithm. Furthermore, based on the obtained suboptimal result of
large timescale server selection, the small timescale computation resource allocation problem is subsequently solved by
Lagrange dual decomposition, the result of which is used to update large timescale empirical performance. Finally, extensive
simulations are carried out to demonstrate the superior performance of the proposed algorithm by comparing it with existing
algorithms.

1. Introduction

In order to achieve the energy supply-demand balance and
the safe and stable operation of the smart grid, massive elec-
tric Internet of things (EIoT) devices need to be deployed to
support multiple types of real-time data collection, such as
voltage, current, active/reactive power, electric energy, tem-
perature, and humidity [1–3]. The integration of 5G and
edge computing provides a viable solution for the real-time
data monitoring. Specifically, 5G provides communication
guarantee for real-time data collection and information
interaction due to the advantages of high reliability, wide
connection, and low delay [4]. Compared with ad hoc net-
works, 5G with central control functionality can achieve
centralized and efficient resource scheduling and manage-
ment for computation offloading optimization in EIoT. Edge

computing provides computation guarantee for real-time
data processing with the superiority of high-speed computa-
tion and low-delay transmission [5, 6]. Compared with
cloud computing, edge computing alleviates the high trans-
mission delay and network congestion by reducing trans-
mission distance between devices and servers. In addition,
it outperforms fog computing in terms of privacy, security,
and computation capacity due to the unified security man-
agement and abundant computation resources.

Computation offloading plays a crucial role in 5G and
edge computing-integrated EIoT, which includes server
selection and computation resource allocation [7, 8]. First,
devices select an appropriate server and offload the computa-
tion task to the selected edge server via 5G for real-time pro-
cessing. Then, edge servers allocate computation resources
based on service requirements and computation capacity to
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reduce computation delay [9]. However, the computation off-
loading optimization for 5G and edge computing-integrated
EIoT still faces several challenges.

(i) Difficulty in tradeoff balance among various QoS
parameters: services in 5G and edge computing-
integrated EIoT have differentiated quality of ser-
vice (QoS) requirements in delay, reliability, and
so on. The QoS parameters are mutually influenc-
ing; e.g., improving reliability by using extra signal-
ing overhead may harm delay and vice versa. Hence,
it is necessary to balance the tradeoff among various
QoS parameters through computation offloading
optimization.

(ii) Coupling between large timescale server selection
and small timescale computation resource alloca-
tion: server selection in large timescale leads to
changes in the characteristics and number of
devices served by servers, which in turn affects the
computation resource allocation in small timescale.
The inefficient decisions of computation resource
allocation in small timescale directly affect the data
computation delay performance of devices, which
in turn affects the evaluation of the empirical per-
formance of the servers in large timescale and may
result in frequent server selection switching.

(iii) Multi-device competition in server selection and
computation resource allocation: the contradiction
between limited computation resources and multi-
ple devices not only leads to competition for power-
ful servers in large timescale server selection but also
causes competition for CPU frequency in small
timescale computation resource allocation. In par-
ticular, the performance of delay and reliability is
severely reduced by the competition for the same
server.

Computation offloading within multi-access edge
computing (MEC) has drawn extensive research in acade-
mia. In [10], Zaman et al. provided a survey of mobility
management-based task offloading in edge networks. The
taxonomy of research work classification is based on objec-
tives, constraints, models, scenarios, and so on, and several
future research directions for offloading in edge computing
were presented. Lagrange dual approach has been widely
adopted for addressing computation offloading problems
with convex properties. In [11], Zhou et al. studied a
multi-access edge computing-based task offloading algo-
rithm for lightweight user by combining machine learning
with Lagrange dual approach to minimize offloading energy
consumption. In [12], Wang et al. proposed a Lagrange dual
method-based communication resource allocation algorithm
to minimize the weighted sum-energy consumption in MEC.
Nevertheless, Lagrange dual approach cannot handle non-
convex problems which are common in multi-access net-
works. As an alternative approach, game theory is explored
to cope with multi-user task offloading problems in MEC.
In [13], Apostolopoulos et al. proposed a noncooperative

game-based distributed cognitive data offloading algorithm
to maximize users’ utilities. In [14], Wang et al. proposed a
noncooperative game-based computation offloading algo-
rithm to adjust the offloading probability of each user and
maximize vehicular utility. The drawback of game theory lies
on required prior knowledge to derive utilities of players,
which are essential to solve both cooperative and noncoop-
erative games. Compared with game theory, reinforcement
learning is more suitable for addressing computation off-
loading problems with uncertain information. In [15], Dinh
et al. studied a model-free reinforcement learning-based
computation offloading mechanism to maximize the utility
function of each mobile user. In [16], Gao et al. proposed a
novel Q learning-based computation offloading scheme for
MEC system to minimize the system loss function. However,
the aforementioned works have not considered the difficulty
in tradeoff balance among various QoS requirements such as
delay and reliability. Moreover, they focus on single time-
scale computation offloading optimization, while the cou-
pling and mutual interconnection between large timescale
server selection and small timescale computation resource
allocation are neglected. The elimination of multi-access
competition requires cooperation among different devices,
which imposes another challenge on reinforcement
learning-based computation offloading.

Matching theory is an effective method to solve the opti-
mization of mutual relationship between two sides [17]. In
[18], Seng et al. proposed an efficient task virtual machine
matching algorithm to coordinate the offloading problems
among mobile users and edge servers. In [19], Zhou et al.
proposed a low complexity and stable computation offload-
ing mechanism to minimize the total network delay based
on pricing-based matching. However, the existing works
only consider the one-to-one matching, which is not suitable
to the scenario that the same server can serve multiple
devices at the same time. In [20], Liu et al. proposed a
many-to-one matching-based channel allocation algorithm
for mobile users, which achieves higher throughput perfor-
mance. In [21], Wang et al. proposed a many-to-one match-
ing theory-based subchannel allocation algorithm to reduce
the energy efficiency. However, the joint optimization of reli-
ability and delay is ignored. In [22], Zhang et al. proposed a
joint optimization algorithm of computation offloading and
computation resource allocation, which optimizes network
stability and achieves the tradeoff between energy efficiency
and average service delay. Nevertheless, the aforementioned
works do not consider the coupling between small timescale
computation resource allocation and large timescale sever
selection.

Motivated by the aforementioned challenges including
difficulty in tradeoff balance among various QoS parameters,
coupling between large timescale server selection and small
timescale computation resource allocation, and the multi-
device competition in server selection and computation
resource allocation, we propose an empirical matching-
based computation offloading optimization algorithm for
5G and edge computing-integrated EIoT. The optimization
objective is to minimize the computation offloading delay
by jointly optimizing large timescale server selection and
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small timescale computation resource allocation. We first
model the large timescale server selection problem as a
many-to-one matching problem, which can be decoupled
from small timescale computation resource allocation by
establishing matching preference lists based on empirical
performance. Then, the large timescale server selection
problem is solved by pricing-based matching with quota
algorithm. Furthermore, based on the obtained suboptimal
result of large timescale server selection, the small timescale
computation resource allocation problem is subsequently
solved by Lagrange dual decomposition, the result of which
is used to update large timescale empirical performance.
Finally, extensive simulations are carried out to demonstrate
the superior performance of the proposed algorithm by
comparing it with existing algorithms. The main contribu-
tions of this paper are summarized as follows:

(i) Differentiated QoS guarantee: differentiated QoS
demands such as reliability and delay are guaran-
teed through the minimization of the long-term
total delay of all devices under the constrains of
server computation capacity and transmission sig-
nal-to-interference-plus-noise ratio (SINR). Specifi-
cally, reliability is enforced by eliminating servers
which cannot satisfy the SINR constraint from the
device preference lists.

(ii) Multi-timescale computation offloading optimiza-
tion: server selection is optimized in large timescale
based on empirical matching with empirical perfor-
mance enabled matching preference list and
pricing-based matching with quota enabled match-
ing conflict elimination. On the basis, computation
resource allocation is optimized in small timescale
based on Lagrange dual decomposition to reduce
computation delay.

(iii) Extensive performance evaluation: compared with
two state-of-the-art algorithms, simulation results
demonstrate that the proposed algorithm has supe-
rior performance in computation offloading delay.
Moreover, the impacts of key parameters such as
quota and SINR threshold on delay performance
are revealed to provide guidance for the real-world
implementation of computation offloading optimi-
zation in 5G and edge computing-integrated EIoT.

The rest of the paper is organized as follows. Section 2
demonstrates the system model of computation offloading
for 5G and edge computing-integrated EIoT and formulates
the multi-timescale joint optimization problem. Section 3
introduces the proposed empirical matching-based compu-
tation offloading optimization algorithm. The simulation
results are shown in Section 4. Section 5 concludes the
paper.

2. System Model

In this paper, we consider a scenario of computation offload-
ing for 5G and edge computing-integrated EIoT, as shown in

Figure 1. The set of M devices and N base stations (BSs) are
represented as M = f1, 2,⋯,m,⋯,Mg and N = f1, 2,⋯,
n,⋯,Ng, respectively. The edge server and BS are located
in the same place to provide computation and communi-
cation services. For simplicity, we denote the sets of BS
and edge server as N . An example is shown in Figure 1,
where the process of computation offloading includes
two stages, i.e., server selection and computation resource
allocation. In the first stage, when devices 1, 2, and 3
select the same BS 1 with limited offloading quota of 2
devices, BS 1 chooses to allocate computation resources
for devices 1 and 2 and reject the access request of device 3.
Device 3 finally offloads the computation task to BS 2 with
a larger quota. We assume that BSs receive the time synchro-
nization signal from the 5G time synchronization network
and broadcast to all edge servers and devices to ensure that
computation offloading is performed on the basis of time
synchronization [15, 23].

A slot model is adopted [24] where server selection is
optimized in large timescale, i.e., epoch, and computation
resource allocation is optimized in small timescale, i.e., slot.
The total optimization period has G epochs, each of which
consists of T0 slots, i.e., T =GT0. The sets of epochs and
slots are denoted as G = f1,⋯, g,⋯,Gg and T = f1,⋯, t,
⋯, Tg. The slot set of the g-th epoch is given by

T gð Þ = g − 1ð ÞT0 + 1, g − 1ð ÞT0 + 2,⋯, gT0f g: ð1Þ

The key notations used in this paper are summarized in
Table 1.

2.1. Transmission Model. At each epoch, a device selects a
server for computation offloading. Define xm,nðgÞ as the
server selection variable, where xm,nðgÞ = 1 represents that
device m selects server n for computation offloading, and
otherwise, xm,nðgÞ = 0. Considering uplink data transmis-
sion, the SINR between device m and server n in the t-th slot
is [25]

γm,n tð Þ = PTX tð Þhm,n tð Þ
BnN0 + λm,n tð Þ , ð2Þ

where Bn is the transmission bandwidth. PTXðtÞ is the trans-
mission power, hm,nðtÞ is the channel gain between device m
and server n in the t-th slot, N0 is the noise spectral power
density, and λm,nðtÞ is the electromagnetic interference
power.

To ensure reliability requirement, SINR constraint is
given by

γm,n tð Þ ≥ γmin, ð3Þ

where γmin is SINR threshold for data reliable transmission.
The transmission rate between device m and server n in the t
-th slot is given by

Rm,n tð Þ = Bn log 1 + γm,n tð Þ� �
: ð4
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We assume that the size of packets arriving at device m
in the t-th slot is AmðtÞ. Hence, the transmission delay of
device m offloading AmðtÞ data to server n in the t-th slot is

τOm,n tð Þ = Am tð Þ
Rm,n tð Þ : ð5Þ

2.2. Computation Model. Define f m,nðtÞ as the allocated com-
putation resources by server n to device m. The computation
delay for processing AmðtÞ data in the t-th slot [26] is given by

τCm,n tð Þ = εmAm tð Þ
f m,n tð Þ , ð6Þ
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Figure 1: Computation offloading for 5G and edge computing-integrated EIoT.

Table 1: Summary of notations.

Notations Definition Notations Definition

M Number of devices τOm,n tð Þ Transmission delay of m to n in the t-th slot

N Number of BSs τCm,n tð Þ Computation delay for processing Am tð Þ in the t-th slot

G Number of epochs τm,n tð Þ The total computation offloading delay

T Number of slots f n,max The maximum computation resources

G Set of epochs f m,n tð Þ Allocated computation resources by n to m

T Set of slots L The preference list of devices

M Set of devices γm,n tð Þ SINR between m and n in the t-th slot

N Set of BSs or edge servers Rm,n tð Þ Transmission rate between m and n in the t-th slot

xm,n gð Þ Server selection variable θm,n gð Þ Preference value of m towards n in the g-th epoch

Bn Transmission bandwidth pn gð Þ Server price of matching m with n

PTX tð Þ Transmission power ~τm,n gð Þ Average offloading delay of m in the g-th epoch

hm,n tð Þ Channel gain between m and n γmin SINR threshold for data reliable transmission

N0 Noise spectral power density z Iterative index of Lagrangian multiplier update

λm,n tð Þ Electromagnetic interference power ρζn tð Þ t, zð Þ The update step length of ζn tð Þ
ζn tð Þ Lagrangian sub vector εm Data computation density of m

Qn The quota of n Am tð Þ The size of packets arriving at m in the t-th slot

4 Wireless Communications and Mobile Computing



where εm is the data computation density of device m, i.e., the
required CPU cycles to process one bit data.

The total allocated computation resource of server n
should be lower than the maximum computation resource
f n,max, i.e.,

〠
M

m=1
f m,n tð Þ ≤ f n,max: ð7Þ

2.3. Problem Formulation. The total delay that device m
selects server n for computation offloading is composed of
the transmission delay and the computation delay, i.e.,

τm,n tð Þ = τOm,n tð Þ + τCm,n tð Þ: ð8Þ

The objective is to minimize the long-term total delay of
all devices under the constrains of servers’ computation
capacity and transmission reliability, which can be expressed
as

P1 : min
xm,n gð Þf g, f m,n tð Þf g

〠
T

t=1
〠
M

m=1
〠
N

n=1
xm,n gð Þτm,n tð Þ

s:t: C1 : xm,n gð Þ = 0, 1f g, ∀m ∈M,∀n ∈N ,∀g ∈ G ,

C2 : 〠
M

m=1
xm,n gð Þ ≤Qn, ∀n ∈N ,∀g ∈ G ,

C3 : 〠
N

n=1
xm,n gð Þ = 1, ∀m ∈M,∀g ∈ G ,

C4 : 〠
M

m=1
f m,n tð Þ ≤ f n,max, ∀n ∈N ,∀t ∈T ,

C5 : γm,n tð Þ ≥ γmin, ∀m ∈M,∀t ∈T ,
ð9Þ

where Qn is the quota of server n, C2 represents that each
edge server can be selected by at most Qn devices at the same
time, C3 represents that each device can select only one edge
server for computation offloading in an epoch, C4 represents
the edge server computation resource constraint, and C5
represents the SINR constraint.

We neglect energy consumption because major delay-
sensitive EIoT devices can continuously draw energy from
the power grid. Nevertheless, the proposed algorithm can
also be extended to the scenario where energy consumption
is minimized.

3. Empirical Matching-Based Computation
Offloading Optimization Algorithm for 5G
and Edge Computing-Integrated EIoT

In this section, we introduce the problem transformation.
Then, we propose the empirical matching-based large time-
scale server selection algorithm and Lagrange dual

decomposition-based small timescale computation resource
allocation for 5G and edge computing-integrated EIoT.

3.1. Problem Transformation. The long-term stochastic joint
optimization problem P1 includes two subproblems, i.e.,
large timescale server selection problem and small timescale
computation resource allocation problem. The large time-
scale server selection problem is first modeled as a many-
to-one matching problem, which is decoupled from small
timescale computation resource allocation by establishing
matching preference list based on empirical performance
of delay and reliability. Then, the large timescale server
selection problem is solved by pricing-based matching with
quota algorithm. Based on the obtained suboptimal result
of large timescale server selection strategy, the small time-
scale computation resource allocation problem is subse-
quently solved by Lagrange dual decomposition, the result
of which is used to update large timescale empirical
performance.

3.2. Empirical Matching-Based Large Timescale Server
Selection. The large timescale server selection optimization
problem is transformed into a many-to-one matching prob-
lem, which is defined as a triple (M,N ,L), whereM andN
represent the sets of matching devices and servers, respec-
tively, and L represents the preference list of devices.

Theorem 1. A matching ϕ is a many-to-one correspondence
of set M to set N based on the preference list L . ϕðmÞ = n
represents the matching of device m and server n, i.e., xm,nðgÞ
= 1. Specially, server n can match at most Qn devices at the
same time.

To decouple the large timescale server selection from the
small timescale resource allocation, the preference list is
established based on empirical performance of delay and
reliability. The empirical matching-based large timescale
server selection algorithm is summarized in Algorithm 1,
including preference list establishment and the pricing-
based iterative matching [27].

3.2.1. Preference List Establishment. In the initialization, each
EIoT device first traverses all servers once to obtain the value
of ~τm,nðgÞ. At the beginning of the g-th period, the server
selection decision is made based on the empirical informa-
tion up to the current period. Thus, the preference value of
device m towards server n in the g-th period is defined as
θm,nðgÞ, which is expressed as

θm,n gð Þ = −
∑g−1

i=0 xm,n ið Þ~τm,n ið Þ
∑g−1

i=0 xm,n ið Þ
− pn gð Þ, ð10Þ

where pnðgÞ represents the server price of matching device
m with server n, the initial value of which is set as zero
and ~τm,nðgÞ represents the average offloading delay of device
m in the g-th epoch, which is expressed as

5Wireless Communications and Mobile Computing



~τm,n gð Þ = 1
T0

〠
gT0

t= g−1ð ÞT0

〠
N

n=1
xm,n tð Þτm,n tð Þ: ð11Þ

3.2.2. The Implementation Procedure of Pricing-Based
Iterative Matching

3.2.3. Empirical Matching-Based Large Timescale Server
Selection Algorithm

(Step 1) When g = 0, initialize xm,nðgÞ = 0, qn =Qn, pnð
gÞ = 0, ∀m ∈M,∀n ∈N ,∀g ∈ G [1]. Define Θ
as the set of unmatched devices, and set Θ =
M at the beginning. Define Γn as the set of
devices proposed to server n, and set Γn =∅
at the beginning. All devices traverse all servers
once to complete the initialization of the prefer-
ence list g ≤G.

(Step 2) When $g \le G$, each m ∈Θ calculates its pref-
erence value θm,nðgÞ towards n as (10) and sorts
θm,nðgÞ in descending order to obtain the pref-
erence list LmðgÞ.

(Step 3) Each m ∈M proposes its most preferred server
inLmðgÞ. Each server, e.g., n, adds m into Γn if
m proposes n. Forn ∈N , if ∣Γn ∣ ≤qn, n matches
with the devices, e.g., m, from the proposed
devices, i.e., xm,nðtÞ = 1. Update qn = qn − ∣Γn ∣ .
Update Θ =Θ \m. Otherwise, n updates the
price pnðgÞ as (13). Unmatched devices execute
steps 2 ~ 3, until every device m has been
matched with a server, i.e., ϕðmÞ ≠∅, or there
exists no available server for unmatched device
m.

The implementation procedure of pricing-based match-
ing consists of three phases, which are introduced as follows.

Step 1. When g = 0, initialize xm,nðgÞ = 0, qn =Q, pnðgÞ = 0,
∀m ∈M, ∀n ∈N , ∀g ∈ G , the set of unmatched devices as
Θ =M, and the set of devices which proposed to server n
as Γn =∅.

Step 2. Each m ∈Θ calculates the preference value θm,nðgÞ
for unmatched device m towards n as (10) and sorts θm,nðg
Þ in a descending order to obtain the preference list LmðgÞ
. We introduce ≻m to compare the preferences towards dif-
ferent servers. For example, n≻mn′ means that device m pre-
fers server n than server n′, which is expressed as

n≻mn′ ⇔ θm,n gð Þ > θm,n′ gð Þ: ð12Þ

When a server is selected by multiple devices exceeding
to its quota, the server increases the price pnðgÞ with incre-
ment Δpn to eliminate matching conflicts, which is expressed
as

pn gð Þ = pn gð Þ + Δpn: ð13Þ

Then, the preference list LmðgÞ is updated according to
new preference value as ð10Þ and ð12Þ.

Step 3. Each m ∈M proposes to its most preferred server in
LmðgÞ. Then, each server, e.g., n, adds m into Γn if m pro-
poses to n. n matches with the devices, e.g., m, from the pro-
posed devices, i.e., xm,nðgÞ = 1. Repeat until every device m
has been matched with a server.

Therefore, the optimal matching result can be obtained
as

xm,n gð Þ = 1⇔ ϕ mð Þ = n: ð14Þ

3.2.4. Complexity Analysis. The computation complexity of
the proposed server selection algorithm mainly depends on
preference value calculation, preference list establishment,
and pricing-based iterative matching process, where the
complexities of these three steps are, respectively OðMNÞ,
OðMN log ðMNÞÞ, and OðMNÞ. Hence, the complexity of
the proposed algorithm is Oð2MN +MN log ðMNÞÞ.
3.3. Lagrange Dual Decomposition-Based Small Timescale
Computation Resource Allocation. Based on the many-to-
one matching-based large timescale server selection, the
small timescale computation resource allocation is subse-
quently optimized. For edge server n, the computation
resource allocation problem in the t-th slot can be expressed
as

P2 : min
f m,n tð Þf g

Ψn tð Þ

s:t: C3 : 〠
M

m=1
f m,n tð Þ ≤ f n,max,∀n ∈N ,∀t ∈T ,

ð15Þ

where ΨnðtÞ can be expressed as

Ψn tð Þ = 〠
M

m=1
τCm,n tð Þ = 〠

M

m=1

εmAm tð Þ
f m,n tð Þ : ð16Þ

Based on Jensen’s inequality theorem [28], (16) satisfies
f ðEðΨnðtÞÞ ≤ Eð f ðΨnðtÞÞÞÞ while f ð·Þ is a convex function.
Therefore, P2 is a convex function and can be solved by
Lagrange dual decomposition [29]. Define ζnðtÞ as a
Lagrangian subvector corresponding to constraint C3. The
Lagrange equation can be expressed as

L f m,n tð Þ, ζn
� �

=Ψn f m,n tð Þ� �
+ ζn tð Þ 〠

M

m=1
f m,n tð Þ − f n,max

" #
:

ð17Þ

Based on Lagrange dual decomposition, P2 can be trans-
formed as

max
ζn tð Þ>0

min
f m,n tð Þf g

L f m,n tð Þ, ζn tð Þ� �
: ð18Þ
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Based on Karush-Kuhn-Tucker conditions, it can obtain

f m,n t, z + 1ð Þ =max argf m,n tð Þ ∇f m,n
tð Þ = 0, 0

n o
, ð19Þ

where z is the iterative index of Lagrangian multiplier
update. Lagrangian multiplier ζnðtÞ update can be expressed
as

ζn t, z + 1ð Þ =max ζn t, zð Þ + 〠
M

m=1
f m,n tð Þ − f n,max

" #
ρζn tð Þ t, zð Þ, 0

( )
,

ð20Þ

where ρζnðtÞðt, zÞ is the update step length.

4. Simulation Results

In this section, we introduce the simulation results and anal-
ysis. We consider a computation offloading scenario of EIoT
with 20 devices and 5 servers. In the case of largescale fading,
the channel gain is calculated according to hm,nðtÞ = 127 +
30 log ðrm,nÞ [30], where rm,n is the distance between device
m and server n, and distributed within ½0:03,0:05� km.
According to the actual environment of EIoT, the electro-
magnetic interference power varies from 28dBm to 30
dBm. The specific simulation parameters are summarized
in Table 2 [31–35]. Two existing algorithms are employed
for comparison. The first one is the price matching-based
computation offloading (PMCO) algorithm [27], where
server-side computation resources are allocated equally.
The second one is the greedy matching-based computation
offloading (GMCO) algorithm [36], where large timescale
server selection is solved based on greedy matching strategy
and small timescale computation resource allocation is
implemented once in the first time slot of each epoch. In
addition, we extend the proposed algorithm to a large-scale
computation offloading scenario with 100 devices to verify
its effectiveness and robustness. The simulation software is
MATLAB 2021. The real execution time of the proposed
algorithm is about 49ms per time slot, which achieves real-
time or near-real-time. When adopting dedicated execution
module such as DSP, the real execution time can be further
reduced to millisecond level or even microsecond level.

4.1. Transmission Delay Performance. Figure 2 shows the
box plots of transmission delay. Compared with PMCO
and GMCO, the proposed algorithm can reduce the median
transmission delay by 13:85% and 19:82% and reduce the
transmission delay fluctuation by 65:79% and 68:29%,
respectively. The proposed algorithm utilizes empirical
matching-based large timescale server selection to reduce
the transmission delay, thus performing the best. PMCO
outperforms GMCO in terms of transmission delay because
PMCO considers the server selection optimization based on
price matching, thus effectively reducing the transmission
delay.

4.2. Computation Delay Performance. Figure 3 show the box
plots of computation delay. Compared with PMCO and

GMCO, the median computation delay is decreased by
24:78% and 16:05%, and the computation delay fluctuation
is decreased by 46:77% and 31:25%, respectively. The pro-
posed algorithm utilizes Lagrange dual decomposition-
based small timescale computation resource allocation to
improve computation delay performance, thus performing
the best. PMCO performs worse than GMCO in terms of
computation delay. The reason is that GMCO considers
the computation resource allocation, which leads to a lower
computation delay.

4.3. Total Computation Offloading Delay Performance.
Figure 4 shows the total computation offloading delay versus
time slot. The proposed algorithm outperforms PMCO and
GMCO by 14:96% and 19:79%. The reason is that the pro-
posed algorithm can avoid adversarial channels to improve
delay performance through large timescale server selection.
Then, given the large timescale server selection strategies, it
further optimizes the small timescale computation resource
allocation in each slot. However, PMCO neglects the optimi-
zation of computation resource allocation. The GMCO algo-
rithm based on greedy matching and single-slot
computation resource allocation cannot solve matching con-
flict from the perspective of the whole network and adjust
the allocation strategies based on real-time information.

Figure 5 shows the total computation offloading delay
versus number of devices. As the number of devices
increases from 10 to 100, the total computation offloading

Table 2: Simulation parameters.

Parameter Value Parameter Value

M 20 N 5
Qn 6 G 20
T 200 T0 10
Bn 0:1MHz γmin 10 dB
Am 0:2,0:5½ � Mbits PTX 0:1W
f n,max 10, 30½ �GHz N0 −114 dBm
Δpn 5 εm 1000 cycles

Proposed PMCO GMCO
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Figure 2: Transmission delay of different algorithms.
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delay of PMCO and GMCO increases by 28:21% and 28:99
%, while the total computation offloading delay of the pro-
posed algorithm is slightly increased by 10:14%. The reason
why total computation offloading delay increases is that the
conflicts caused by multiple devices selecting the same server
increases, and the computation resource allocated to each
device is poorer. Even in a multi-access scenario with 100
devices, the proposed algorithm can adaptively balance the
performance return of all devices through pricing-based iter-
ative matching and adjust the resource allocation strategies
based on dynamic data arrival.

Figure 6 shows the impact of the quota Qn on transmis-
sion delay and computation delay. The bars in the figure
represent the transmission delay and the curves represent
the computation delay. When Qn increases from 4 to 8, the
transmission delay and computation delay of PMCO and
GMCO are decreased by 7:85%, 6:62%, 6:79%, and 11:13%
, in which those of the proposed algorithm are obviously
decreased by 14:11% and 11:13%. The reason for it is that
the final delay performance depends on the worst computa-

tion offloading situation, where the larger Qn means the
greater offloading possibility to servers with better channels
and computation resources for devices. In addition, the pro-
posed algorithm can well coordinate the competition among
multiple devices for servers and computation resources
based on empirical information and real-time resource
allocation.

Table 3 shows the impact of γmin on total computation
offloading delay. With the increasing of γmin, the total com-
putation offloading delay decreases first and then increases.
When γmin = 12dB, the total computation offloading delay
reaches the minimum value. The reason is that when γmin
increases from 8 to 12dB, stringent reliability constraints
impel devices to select servers with better empirical channel
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Figure 3: Computation delay of different algorithms.
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states, thus significantly reducing transmission delay at the
beginning. However, as γmin continues to increase from 12
to 16dB, the servers with better channel states will be occu-
pied by more devices resulting in a higher computation
delay.

5. Conclusion

In this paper, we investigated a multi-timescale computation
offloading optimization problem for 5G and edge
computing-integrated EIoT. Specifically, we proposed an
empirical matching-based computation offloading optimiza-
tion algorithm, which includes the joint optimization of
large timescale server selection and small timescale compu-
tation resource allocation. Compared with the existing
PMCO and GMCO algorithms, the proposed algorithm
could reduce the total computation offloading delay by
14:96% and 19:79%, respectively. It could also reduce the
median transmission delay by 13:85% and 19:82%, the
transmission delay fluctuation by 65:79% and 68:29%, the
median computation delay by 24:78% and 16:05%, and the
computation delay fluctuation by 46:77% and 31:25%.
Finally, future research directions are outlined.

5.1. Computation Offloading under Extensive EIoT Scenarios
with Incomplete Information. In large-scale EIoT scenarios,
considering the prohibitive signaling overheads, global state
information such as the channel state between devices and
servers, the amount of available computation resources of
servers, and the computation resource allocation policy of
servers is unknown to devices. Server selection needs to be
optimized under incomplete information. A feasible
approach is to empower computation offloading for EIoT
by learning through interaction with the environment by
exploring advanced artificial intelligence algorithms such as
deep reinforcement learning and federated learning.

5.2. Insecure Computation Offloading under Malicious
Attack. With the extensive access of massive devices, EIoT
faces various malicious attacks including distributed denial
of services (DDoS), time synchronization attack, sinkhole
attack, and tampering attack. These malicious attacks make
computation offloading in EIoT insecure, which results in
loss and tampering of important information, such as fault
data, alarm data, and load fluctuation, endangering the
supply-demand balance as well as stable and secure opera-
tion of power grid. To solve this problem, advanced security
technologies such as blockchain, identity authentication,
encryption, and trusted computing can be adopted to ensure
the secure data transmission and processing in computing
offloading.
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