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The single-stand reversible cold rolling mill is important equipment in the production of steel strips. The rolling schedule is the
core technological content in the strip production of the single-stand reversible cold rolling mill. The scientific rolling schedule is
the fundamental guarantee for the production capacity of the rolling mill, product quality, accuracy, shape quality, energy saving,
and consumption reduction. This paper takes the dynamic rolling process of single-stand cold rolling as the research object, the
purposes of increasing production capacity, saving energy, and reducing consumption are achieved by optimizing the rolling
schedule. Based on the study of the mechanism model and the analysis of a large number of field measured data, a slice of
mathematical models of the rolling process suitable for engineering calculation are proposed, and a few objective functions
suitable for the single-stand reversible cold rolling process are designed. On this basis, the artificial fish swarm algorithm is
improved into a multiobjective optimization algorithm for the optimization of rolling schedule, and the optimal rolling load
distribution scheme is obtained. Finally, the optimization method of rolling schedule proposed in this paper is applied to the
actual rolling production. The results show that the proposed method can improve productivity and save energy compared
with the empirical rolling schedule, and the feasibility and validity of the proposed algorithm are verified.

1. Introduction

The cold-rolled sheets and strips are an important steel
product for iron and steel enterprises, and it is also the prod-
uct with the highest technical content in iron and steel prod-
ucts. It is widely used in automobiles, ship, construction,
home appliances, light industry, machinery manufacturing,
chemicals, hardware products, and packaging industries.
The single-stand reversible cold rolling mill is important
equipment for steel sheet and strip production. Although,
compared with the tandem cold rolling mill, the single-
stand reversible cold rolling mill has the disadvantages of
low production efficiency and low yield, but the advantage
of it is that the production method is relatively flexible, suit-

able for the production of ultrathin strip steel, low invest-
ment, and can produce a variety of small batches of
products of different specifications. Therefore, the single-
stand reversible cold rolling mill has an irreplaceable role.
With the continuous improvement of the quality require-
ments of cold-rolled products and the pressure of cost, envi-
ronmental protection, market, and other aspects, the
production of modern single-stand reversible cold-rolling
mills has the extreme pursuit of high precision, high yield,
high production efficiency, and low production cost. In this
case, for the single-stand cold rolling mill, in addition to
improving the control accuracy of the automatic control sys-
tem through advanced control methods, the rolling process
is also put forward with higher requirements. Rolling
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schedule is the core process technology in rolling produc-
tion, which has a significant impact on production, quality,
cost, production safety, and process control accuracy. Rea-
sonable rolling schedule can not only improve the produc-
tivity of strip steel, reduce energy consumption but also
ensure product quality, improve process control accuracy,
response speed, equipment utilization efficiency, and bring
great economic benefits.

The cold rolling process has a complex mechanism, with
typical characteristics of multivariable, strong coupling, non-
linear, and time-varying, it is very difficult to calculate accu-
rately. Therefore, the traditional main methods of rolling
schedule design are empirical form method, energy con-
sumption curve method, and load distribution method based
on rolling theory.

The empirical form method refers to the method of
directly assigning the reduction amount and thickness of
each pass or stand through the operator’s production experi-
ence, and recording this experience through a table to form a
standard rolling specification table as the basis for load dis-
tribution. The most significant advantage of the empirical
form method is that it is easy to use and does not require
complex theoretical calculations and machine operations
[1]. At present, this method is still used in many steel com-
panies. However, the empirical form method completely
relies on the operator’s experience, and it may not be opti-
mal with the change of production conditions.

The energy consumption curve method is drawing the
relationship between the power required for rolling a unit
mass of rolled pieces and the thickness or elongation accord-
ing to the historical rolling data. Since the inlet thickness and
target thickness of the rolled piece have been determined,
the total rolling power can be calculated from the energy
consumption curve. On the premise that the load distribu-
tion ratio of each pass is known, the intermediate thickness
of each pass can be derived according to the energy con-
sumption curve, it means the reduction amount distribution
scheme can be determined. This method has a long history
of application and has been applied in hot tandem rolling
as early as 1964 [2]. This method is effective when rolling
strips of the same specification, but it is difficult to guarantee
the rolling accuracy once the specification is changed, and it
is necessary to repeat the experiment to draw the curve.

The load distribution method based on the rolling theory
is to give full play to the production capacity of the rolling
mill and prevent the overload of the mill load, so that the
ratio between the production load and the limit load of each
pass is constant, which is also called the load proportionality
principle. The load value (reduction rate, rolling force, and
motor power) of each pass can be calculated according to
the relevant rolling mathematical model. Furthermore, the
target thickness for each pass is obtained by solving a set
of nonlinear equations. The Newton-Raphson method was
used to solve the nonlinear equation system [3], but this
method needs to solve the inverse of the Jacobian matrix
and the reciprocal of the rolling load to the thickness, which
is complicated to calculate and sensitive to the initial value
[4]. Many scholars have improved this method and reduced
the amount of computation [5, 6]. However, the load distri-

bution method based on rolling theory still cannot get rid of
the dependence of artificial experience.

To get rid of the influence of empirical values, optimiza-
tion techniques are introduced into rolling schedule optimi-
zation. Especially, with the improvement of industrial
computer performance, many single-objective and multi-
objective intelligent optimization algorithms have been
applied to rolling schedule design in recent years, and vari-
ous objective functions have been established for different
technological objectives. Because of the high efficiency and
fast running speed, the rolling schedule design based on sin-
gle objective optimization algorithm has been widely used in
practical production. Jin et al. designed the load distribution
using a genetic algorithm method with excellent flatness as
the objective function [7]. Cao et al. used the self-adaptive
particle swarm optimization algorithm to design the load
distribution model [8]. With the increasing requirements
of rolling production, the increasing factors need to be con-
sidered, and the results of load distribution according to a
single objective function are difficult to fully meet the vari-
ous requirements of the rolling process. Therefore, multiob-
jective optimization methods are gradually introduced into
rolling schedule design. The optimization method of multi-
objective rolling schedule is divided into a priori method
and a posteriori method. In the priori method, the multiob-
jective optimization problem is transformed into a single-
objective optimization problem by means of a weighted
sum. Yang et al. used a set of fixed weight coefficients to con-
vert the motor power consumption objective function and
the slip prevention objective function into a comprehensive
objective function and optimized the rolling schedule
through an improved artificial bee colony algorithm based
on chaos theory [9]. Chen et al. proposed a schedule optimi-
zation model based on cost functions, which take rolling
force, motor power, interstand tension, and stand reduction
into consideration, and the Nelder-Mead simplex method
was used to optimize the rolling schedule [10]. Bu et al.
transformed the power objective function, tension objective
function, and flatness objective function into a comprehen-
sive objective function through the influence function, and
the Tabu search algorithm was used to optimize the rolling
schedule [11]. Wang et al. designed a dynamic adjustment
model for the weight coefficients of objectives based on roll-
ing length and used NSGA-II to optimize the rolling sched-
ule [12]. The difficulty of the a priori method lies in the
determination of the weight coefficient, and the choice of
the weight coefficient directly affects the optimization effect.
Compared with the prior method, the posterior method is
more suitable for practical applications. The posterior
method obtains a set of complementary dominant Pareto
solution set for selecting according to the actual require-
ments without setting weight coefficients. Che et al. used
the chaotic multiobjective quantum genetic algorithm to
optimize the rolling schedule with the equal relative load
and flatness of the last stand as the objective functions
[13]. Li and Fang designed a robust multiobjective optimiza-
tion model of rolling schedule for tandem cold rolling and
proposed a differential evolution algorithm based on the
evolutionary direction [14]. Wei et al. used an improved
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multiobjective particle swarm algorithm to optimize the
objective functions of equal relative load and slip rate, and
the method was applied to a five-stand tandem mill [15].
Wang et al. proposed a multiobjective particle swarm opti-
mizer with dynamic opposition-based learning to optimize
the rolling schedule with the objectives of minimum energy
consumption, relative power margin, and slippage prevent-
ing [16]. Hu et al. selected five objectives as optimization
objectives and used a multiobjective evolutionary algorithm
based on decomposition and Gaussian mixture model to
design the rolling schedule [17]. Taking the practical engi-
neering application as the starting point, Zoheir et al. used
the NSGA-II algorithm to realize the optimization of the
rolling schedule of the tandem mill, and fully compared with
the optimization results of the single-objective rolling sched-
ule and the original rolling schedule [18]. At present, the
main research is on the optimization of rolling schedule
for continuous rolling mills, and the optimization of multi-
objective rolling schedules for single-stand cold rolling mills
is less. How to give full play to the advantages of the multi-
objective optimization algorithm in the optimization of the
rolling schedule of the single-stand rolling mill still needs
to be further research.

In this paper, a rolling schedule optimization method
based on multiobjective artificial fish swarm algorithm is
developed to solve the rolling schedule optimization prob-
lem of single stand reversing cold mill. The major works of
this paper are as follows:

(1) The related problems of multiobjective optimization
of rolling schedule for single-stand cold rolling mill
are discussed

(2) A few of the mathematical models of the rolling pro-
cess of single-stand cold rolling mill suitable for
practical engineering applications are proposed

(3) The artificial fish swarm algorithm is improved into
a multiobjective optimization method and applied
to the rolling schedule optimization

(4) The proposed method is verified by practical engi-
neering application, and the results are satisfactory

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the related problems of the design of rolling
schedule and gives a mathematical model of rolling process
suitable for engineering applications. The basic theory of
artificial swarm algorithm and the detail of the proposed
method are introduced in Section 3. Section 4 makes the
application and verification of the proposed method in the
practical rolling project. Section 5 contains some conclu-
sions plus some ideas for further work.

2. Problems Related to the Optimization of
Rolling Schedule

The technological characteristic of rolling production of
single-stand reversible cold rolling mill is that the raw mate-
rial of the steel strip undergoes reciprocating rolling in mul-
tiple passes and finally reaches the finished product
thickness. The design of rolling schedule is assigning the
rolling technological parameters according to the rolling
strategy and the rolling mathematical model, including roll-
ing pass, pass reduction, rolling force, front and back ten-
sion, and rolling speed. For a single-stand reversing cold
rolling mill, the pass reduction is the most important tech-
nological parameter. The distribution of the rolling reduc-
tion of each pass constitutes the load distribution scheme.
After the load distribution scheme is determined, it will
directly lead to the determination of rolling force, rolling
power, and rolling speed according to the rolling mathemat-
ical model. Therefore, the optimization of the rolling sched-
ule of the single-stand reversing cold rolling mill is mainly
the optimization of the load distribution. According to set-
ting the specific optimization objective, the optimal load dis-
tribution scheme is obtained by the optimization algorithm,
and other rolling technological parameters are then calcu-
lated. Figure 1 shows the flow chart of the design of the roll-
ing schedule for a single-stand reversing cold mill. The
design and optimization of the rolling schedule is also one
of the core functions of the rolling process automation sys-
tem, and its role is to provide the reasonable preset values
for the basic automation system. It can be seen that the opti-
mization of the rolling schedule involves three problems: the
mathematical model of the rolling process, the objective
functions, and the optimization method.

Start

Technical parameters overrun?

Determine the total rolling passes

Set the parameters of rolling
speed, tension, etc.

Calculate rolling parameters
(rolling force, power, etc.)

Modify rolling
schedule

Yes

No

Output rolling schedule

End

Initialize the reduction ratio of
each pass.

Figure 1: The flow chart of rolling schedule design of single-stand
reversible cold rolling mill.
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2.1. The Main Mathematical Model of the Rolling Process.
Mathematical models are the basis for rolling schedule
design and the important basis for calculating the objective
functions. The mathematical models required for the design
of the rolling schedule of single-stand reversible rolling mill
include rolling force model, deformation resistance model,
friction coefficient model, forward slip model, tension
model, rolling torque and power model, and rolling pass
model. Among them, the most important is the rolling force
model and the model related to the rolling force.

2.1.1. Rolling Force Model. The cold rolling process has a
complex mechanism, with typical characteristics of multi-
variable, strong coupling, nonlinear, and time-varying, it is
very difficult to obtain an accurate rolling force model. For
decades, many scholars have conducted very detailed
research and analysis on the cold rolling force model and
obtained many cold rolling force models. Combined with
the real-time calculation and practical engineering applica-
tion experience, this paper chooses the Bland-Ford-Hill for-
mula to calculate the rolling force.

F = Bl′KTQPK ,

l′ =
ffiffiffiffiffiffiffiffiffiffiffi
R′Δh

p
,

R′ = R 1 + 2:11 × 10−5 F
BΔh

� �
,

QP = 1:08 + 1:79με
ffiffiffiffiffiffiffiffiffi
1 − ε

p ffiffiffiffiffiffiffiffiffiffiffi
R′/h1

q
− 1:02ε,

KT = 1 −
τb + τf
2K ,

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð1Þ

where F is the rolling force; B is the width of the steel strip; l′
is the contact arc length of the rolled piece in the deforma-
tion zone during rolling; R is the roll radius; R′ is the roll
flattening radius; QP is the external friction stress state coef-
ficient after flattening; KT is the tension influence coefficient;
K is the deformation resistance of steel strip; μ is friction
coefficient; Δh is absolute reduction; τf is front tensile stress;
τb is back tensile stress; ε is the reduction rate, i.e., the reduc-
tion rate ε = ðh0 − h1Þ/h0; h1 is outlet thickness per pass; and
h0 is inlet thickness per pass. Friction coefficient μ and
deformation resistance K are variables that cannot be mea-
sured by sensors, the calculation methods of these two
parameters will be introduced in subsequent chapters.

2.1.2. Friction Coefficient Model. Because of constantly
changing during the production process, the friction coeffi-
cient is very difficult to be calculated directly. In this paper,
a friction coefficient calculation formula is proposed by ana-
lyzing and regressing the actual production data.

μ = μbasic + μvl, ð2Þ

where μbasic is the basic friction coefficient model obtained
by inversion of the Stone rolling force formula; and μvl is
the correction factor related to the rolling speed and the roll-

ing length of the roll.

μbasic =
1/2

ffiffiffiffiffiffiffiffiffiffiffiffi
Δh/R′

p
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − εð Þ f /εð Þp , ð3Þ

where f is the forward slip, the calculation model of which is
as follows:

f = R
h1

γ2,

γ =
ffiffiffi
h
R

r
tan 1

2 arctan−1
ffiffiffiffiffiffiffiffiffi
ε

1 − ε

r
+ π

8 ln 1 − εð Þ
ffiffiffi
h
R

r" #
,

ð4Þ

where γ is the neutral angle of which is as follows:

μvl =
f vð Þ

1 + g · L/L0
,

f vð Þ = av + bv2 + cv3 + dv4 + ev,
ð5Þ

where L0 is the benchmark rolling lengthð1000mÞ; v is the
rolling speed; L is the cumulative rolling length after roll
change; f ðvÞ is a predicted value of the friction coefficient
depending on the speed, a, b, c, d, e are polynomial regres-
sion coefficients; and g is a coefficient related to rolling mile-
age, obtained by least squares fitting method.

This friction coefficient model considers the two factors
of rolling speed and rolling length, while reducing the sensi-
tivity of the model to the speed when the speed is too large.

2.1.3. Deformation Resistance Model. According to the char-
acteristics of the cold rolling production process, the defor-
mation resistance of the cold rolling process is mainly
related to the deformation speed, the deformation tempera-
ture, and the cumulative deformation degree. Among them,
the cumulative deformation degree is the main factor affect-
ing the deformation resistance of the material. Based on the
data analysis of a large number of practical productions, the
third-order polynomial model is chosen to predict the defor-
mation resistance.

K = 1:15σs, ð6Þ

σs = a + bε1〠 + cε2〠 + dε3〠, ð7Þ

ε〠 = 1
3
H − h0
H

+ 2
3
h1
H

, ð8Þ

where K is the deformation resistance; σs is the yield stress of
the strip; ε∑ is the cumulative degree of deformation of the
rolled piece; H is the thickness of the raw material; and a,
b, c, d are undetermined coefficients of the polynomial
model.
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2.1.4. Rolling Pass Model. The number of rolling passes can
be determined by

n = Int
ln hi/Hð Þ
ln 1 − εmð Þ , ð9Þ

where n is the number of rolling passes; εm is the maximum
reduction rate; and hi is the target thickness. For a single
stand reversing cold rolling mill, εm ≤ 40%.

2.1.5. Rolling Torque and Rolling Power. During normal roll-
ing, the rolling torque MF required by the roll is as follows:

MF = Fl′ + τb − τf
� �

R: ð10Þ

The rolling power of the motor is determined by the roll-
ing torque and the rotational speed of the roll, which can be
calculated by the following formula:

P =M〠ω, ð11Þ

M〠 =MF/i +Mf +Mx ±Md , ð12Þ
where P is the rolling power of the motor; M∑ is the main
motor total torque; ω is the angular velocity of the motor.
Mf is the additional friction torque; Mx is the idling torque;
Md is dynamic torque; and i is gear ratio.

2.2. Objective Functions. To increase the utilization rate of
machinery, equipment, and motors and improve the quality
of rolling products, the load distribution of rolling schedule
needs to be optimized according to different objectives.
The objectives of optimization under different conditions
are different, so it is necessary to establish objective func-
tions under various conditions from different viewpoints.

2.2.1. Energy Consumption Objective Function. Due to the
different reduction of each pass, the rolling energy consump-
tion of each pass is also different. After optimizing the
reduction of each pass, a set of load distribution schemes
can always be found, so that the total energy consumption
of each pass is the lowest. Therefore, the minimum energy
consumption objective function is established as follows:

min Pt = 〠
n

i=1
Pi εið Þ: ð13Þ

where Pt is the total energy consumption of rolling; Pi is the
rolling power of the ith pass; n is the number of rolling
passes; and εi is the reduction rate of the ith pass.

2.2.2. Equal Power Margin Objective Function. To give full
play to the performance of the rolling mill motor and
improve the production efficiency of the rolling mill as much
as possible, it is hoped that the rolling power of each pass has
the same relative power margins. It means that not only the
difference of rolling power between adjacent passes is
desired to be minimized but also the difference of rolling
power between a certain pass and other passes is desired to

be minimized. Therefore, the objective function of equal
power margin is constructed as follows:

Si =
Pr − Pi

Pr
, ð14Þ

min S = 〠
n

i=1
〠
n

j>i
Si − Sj
�� ��, ð15Þ

where Pr is the rated power of the main motor; and Si is the
power margin factor of the ith pass.

2.2.3. Good Flatness Objective Function. Good flatness means
that under the condition of a certain roll-shape system, it is
ensured that the section geometry of the rolling stock before
and after rolling is similar. Considering that the main influ-
ence of the exit crown is the rolling force, the objective func-
tion can be written as [7]:

min G = 〠
n

i=1
Fi − Foið Þ2, ð16Þ

where Fi is the rolling force of the ith pass; and Foi is the
rolling force to make the best plate shape of the ith pass.

2.3. Constraint Conditions. When optimizing the rolling
schedule, it is necessary to constrain the technological
parameters of each pass, so that the parameters of each pass
are less than the maximum allowed by the equipment capac-
ity and technological conditions. Constraint conditions
include technological constraints and equipment con-
straints. The major technological constraints are as follows:

εmin i ≤ εi ≤ εmax i,
hmin i ≤ hi ≤ hmax i,
vmin i ≤ vi ≤ vmax i,
tmin i ≤ ti ≤ tmax i,

ð17Þ

where εmin i, εmax i are, respectively, the minimum and max-
imum reduction rates allowed for the ith pass; hi is the outlet
thickness of the ith pass; hmin i, hmax i are, respectively, the
minimum and maximum outlet thickness allowed for the
ith pass; vi is the rolling speed of the ith pass; vmin i, vmax i
are, respectively, the minimum and maximum rolling speed
allowed for the ith pass; ti is the tensile stress of the ith pass;
and tmin i, tmax i are, respectively, the minimum and maxi-
mum tensile stress allowed for the ith pass.

The constraints of the rolling mill are as follows:

Fi ≤ Fmax,
Pi ≤ Pmax,
Mi ≤Mmax,

ð18Þ

where Fi, Pi, Mi are, respectively, the rolling force, the total
power and roll torque of the ith pass; and Fmax, Pmax, Mmax
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are, respectively, the maximum rolling force, the rated power
of the motor and the maximum roll torque.

2.4. Multiobjective Optimization Model of Rolling Schedule. It
can be seen from the above analysis that the process param-
eters related to the optimization of the rolling schedule can
be obtained from the mathematical model of the rolling pro-
cess through the reduction of each pass. Therefore, the
reduction rate of each pass is selected as the variable of the
optimization model. For the rolling production of single-
stand cold rolling mills, more attention is paid to reducing
production cost and improving production efficiency. For
this reason, a multiobjective optimization model of rolling
schedule for single-stand reversible cold rolling mill is con-
structed with minimum energy consumption and equal
power margin as objective functions. The optimization
model of rolling schedule based on two objective functions
is as follows:

min F Xð Þ = f1 Xð Þ, f2 Xð Þð Þ,
s:t: gi Xð Þ ∈Ω i = 1, 2⋯,n,

ð19Þ

where f1ðXÞ is the energy consumption objective function;
f2ðXÞ is the equal power margin objective function; X is
the set of reduction ratios of each pass. giðXÞ are the ith con-
straint conditions.

3. Multiobjective Artificial Fish
Swarm Algorithm

Aiming at the multiobjective optimization problem of roll-
ing schedule, a solution strategy based on multiobjective
artificial fish swarm algorithm (MOAFSA) is proposed.
The basic artificial fish swarm algorithm (AFSA) is a single
objective swarm intelligent optimization algorithm. The arti-
ficial fish swarm algorithm is improved into a multiobjective
optimization algorithm by designing a fast search Pareto
optimal solution method, constructing a Pareto optimal
solution set method, designing an artificial fish state update
method and a bulletin board maintenance strategy. In this
section, the basic artificial fish swarm algorithm is intro-
duced firstly. Next, the specific methods of each link of the
multiobjective artificial fish swarm algorithm and the appli-
cation steps in the optimization of the rolling schedule are
introduced.

3.1. Review of AFSA. The basic idea of AFSA is searching for
an optimal solution by simulating the preying behavior of
artificial fish [19]. The artificial fish corresponds to the opti-
mal solution of the optimization problem, the water area
corresponds to the solution space of the optimization prob-
lem, and the food concentration corresponds to the objective
function of the optimization problem. Some parameters of
AFSA are defined as follows [20]. There are N artificial fishes
in a D-dimensional space. The state vector of the ith artificial
fish is Xi = ½xi1, xi2,⋯, xiD�, i = 1,⋯,N , and Yi = f ðXiÞ is the
food concentration of artificial fish. The distance from the ith

artificial fish to the jth artificial fish is dij = kXi − Xjk. δ,
Visual, Step, L, Nf are, respectively, the congestion factor
of artificial fish swarm, the perceived range of artificial fish,
moving step of artificial fish, maximum preying time, and
the number of artificial fish within the perceived range.
The artificial fish mainly updates its state through four
behaviors [21, 22]: preying, following, swarming, and ran-
dom. The four behaviors are described as follows:

(1) Preying behavior: assuming that the current state of
the artificial fish is X, a new state Xnext is obtained
firstly according to Equation (20) and Equation
(21). Then, the food concentration functions Y and
Ynext for X and Xnext are calculated, respectively.
Determining whether Ynext is superior to Y . If Ynext
is superior to Y , X will be moved to Xnext according
to Equation (21). Otherwise, the new state of artifi-
cial fish will continue to be obtained according to
Equation (20) and Equation (21). If the artificial fish
acquires new states more than L times and Ynext is
still worse than Y , the artificial fish performs random
behavior

X ′ = X + Visual ⋅ rand ð Þ, ð20Þ

Xnext = X + X ′ − X

X ′ − X
⋅ step ⋅ rand ð Þ, ð21Þ

where rand ðÞ is the random number between 0-1; Xnext is
the next state of artificial fish

(2) Following behavior: assuming that the current state
of the artificial fish is X, the optimal state of the arti-
ficial fish within the perceived range is Xgbest . If the
food concentration Xgbest corresponding to Ygbest is
superior to Y , and Ygbest/Nf < δ∙Y , then, X moves
to Xgbest according to Equation (22), otherwise the
swarming behavior is performed as

Xnext = X +
Xgbest − X

Xgbest − X
�� �� ∙step∙rand ðÞ ð22Þ

(3) Swarming behavior: assuming that the current state
of the artificial fish is X, the central position of the
artificial fish within the perceived range is Xc. If the
food concentration Xc corresponding to Yc is supe-
rior to Y , and Yc/Nf < δ∙Y , then, X moves to Xc

according to Equation (23), otherwise the preying
behavior is performed as
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Xnext = X + Xc − X
Xc − Xk k ∙step∙rand ðÞ ð23Þ

(4) Random behavior: the artificial fish moves to a new
state randomly according to Equation (20) within
the perceived range

3.2. MOAFSA. According to the ideas of multiobjective evo-
lutionary algorithm and multiobjective particle swarm algo-
rithm [23–27], to improve the basic artificial fish swarm
algorithm to multiobjective artificial fish swarm algorithm,
the following three issues need to be addressed. (1) Fast
searching Pareto optimal solutions and constructing Pareto
optimal solution set; (2) determining the moving direction
of artificial fish under multiobjective conditions; and (3)
maintaining and updating the bulletin board (external
archives) of artificial fish swarm.

(1) Fast searching Pareto optimal solutions and con-
structing Pareto optimal solution set

Searching for the Pareto optimal solution quickly and
constructing the Pareto optimal solution set are the key
points in multiobjective optimization problems [28]. Kong
et al. proposed a method of fast searching for Pareto optimal
solutions and constructing Pareto optimal solution set [29].
This method greatly improves the speed of searching for
the Pareto optimal solution and the speed of constructing
the Pareto optimal solution set, but it does not consider
the situation of an existing multiple first objective functions
with the same value when searching for the Pareto optimal
solution. On the basis of this method, in this section, an
improved method of fast searching Pareto optimal solutions
and constructing Pareto optimal solution set is introduced
[30]. According to the optimization problem required in this
paper, the number of objective functions is defined as 2, and
the optimization objective is to minimize the objective func-
tion. There are M total artificial fishes as alternative solu-
tions. The steps of searching for Pareto optimal solutions
and constructing Pareto optimal solution set are as follows:

(2) Status update of MOAFSA

Step 1. M alternative solutions are sorted rapidly in ascend-
ing order according to the first objective function; the sorted
artificial fish are numbered 1 to M. At the same time, the
artificial fishes with the same first objective function value
are marked. The first alternative solution is selected tempo-
rarily as the Pareto optimal solution, and this alternative
solution is added to the Pareto optimal solution set tempo-
rarily. Then, the second objective function of this alternative
solution is set as the reference value, let i = 2.

Step 2. Determining whether the first objective function of
the ith artificial fish is the same as the first objective function

corresponding to the current reference value, if it is the
same, execute step 3, otherwise execute step 4.

Step 3. Compare the second function value of the ith artificial
fish with the reference value, if it is smaller than the refer-
ence value, remove this solution corresponding to the cur-
rent reference value from the Pareto optimal solution set,
and the ith artificial fish is added to the Pareto optimal solu-
tion set temporarily, the second objective function value of
this artificial fish is set as the reference value, and then, exe-
cute step 5, otherwise directly execute step 5.

Step 4. Compare the second function value of the ith artificial
fish with the reference value, if it is smaller than the refer-
ence value, and the ith artificial fish is added to the Pareto
optimal solution set temporarily, the second objective func-
tion value of this artificial fish is set as the reference value,
and then, execute step 5, otherwise directly execute step 5.

Step 5. Let i = i + 1, determining whether i is greater than M,
if i is greater than M, the comparison is stop, and the final,
Pareto optimal solution sets are outputted, otherwise go to
Step 2.

Since the Pareto optimal definition of the multiobjective
optimization algorithm is introduced, the congestion factor
δ of the AFSA is no longer applicable, and the congestion
factor δ is replaced by defining a congestion distance Dis
[31]. When determining the movement of the artificial fish,
the congestion distance and the Pareto dominance rule are
considered. After improvement, the status of artificial fish
of the MOAFSA can be updated by the three behaviors of
preying, following, and swarming.

Assuming that there are Nf artificial fish in the perceived
range of the artificial fish, the steps for calculating the con-
gestion distance Dis are as follows:

Step 1. The congestion distance of each artificial fish is ini-
tialized to 0, and the number of current objectives j is set
to 1.

Step 2. The jth objective is sorted in ascending order, and the
sorted artificial fishes are remarked. Assuming that the ith
artificial fish is remarked as i′, let the congestion distance
of the artificial fish with i′ = 1 and i′ =Nf be infinite, and
let i = 2.

Step 3. The congestion distance of the ith artificial fish is cal-
culated according to .

Dis ið Þ =Dis ið Þ +
f j i′ + 1
	 


− f j i′ − 1
	 


max f j
	 


−min f j
	 


������
������: ð24Þ

Step 4. Let i = i + 1, if i >Nf , go to step 5, otherwise go to
step 3.
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Step 5. Let j = j + 1, if j > 2, the final result is outputted and
the calculation is stopped, otherwise go to step 2.

After the introduction of the Pareto dominance rule and
the congestion distance, the three behaviors of preying, fol-
lowing, and swarming have also been improved accordingly.
The specific improvements are as follows:

(a) Preying behavior: assuming that the current state of
the artificial fish is X, a new state Xnext is obtained
firstly according to Equation (20) and Equation
(21). Since the food concentration function is no
longer a value, but a vector, the basis for determining
whether X moves to Xnext is whether FðXnextÞ dom-
inates FðXÞ. If FðXnextÞ dominates FðXÞ, then, X
moves to Xnext , otherwise continue generating a
new solution according to Equation (20) and Equa-
tion (21) until exceeding L times, and then, performs
random behavior

(b) Following behavior: assuming that the current state
of the artificial fish is X, the artificial fish searches
for nondominated solutions within its perceived
range according to the Pareto dominance rule, then,
calculate the congestion distance of each artificial

fish is calculated, and the solution Xgbest with the larg-
est congestion distance is obtained. If DisðXgbestÞ <D
isðXÞ, X moves to Xgbest according to Equation (22),
otherwise the swarming behavior is performed

(c) Swarming behavior: assuming that the current state
of the artificial fish is X, the central position of the
artificial fish within the perceived range is Xc. If
FðXcÞ dominates FðXÞ and DisðXcÞ <DisðXÞ, X
moves to Xc according to Equation (23), otherwise
the preying behavior is performed

(3) Maintenance strategy of bulletin board for MOAFSA

In the AFSA, the bulletin board is used to record the
position of the optimal artificial fish and the food concentra-
tion function in each iteration process. With the introduc-
tion of Pareto optimal definition in multiobjective
optimization, the bulletin board no longer only records the
position and food concentration function of an artificial fish,
but it is equivalent to the external file set of multiobjective
evolutionary algorithm and multiobjective particle swarm
optimization algorithm, and becomes Pareto optimal

MOAFSA

Start

Get PDI Data from L3 system

Set the parameters of rolling
speed, tension, etc.

Construct Pareto optimal solution
set and set bulletin board

Output rolling schedule

End

Initialize the parameters of the
MOAFSA

Calculate rolling parameters based
on each initial artificial fish (rolling

force, power, etc.)

Calculate objective functions for
each initial artificial fish (energy

consumption, equal power margin)

Nj < 2Yes

Preying
behavior

Following
behavior

i = 1

i = N?

Whether to
improve?

Calculate Nj in the perceived
range

Swarming
behavior

No

Whether to
improve?

Yes

No

No

Whether to
improve?

No

Max. preying times?
No

Yes

Random
behavior

Yes

Yes

No

Calculate objective
functions and construct

pareto optimal solution set

Updating
bulletin board

Adjust
perceived

range and step

Yes

Max. iteration?

Yes

Select reasonable solution

No

Figure 2: The flow chart of optimization of rolling schedule based on MOAFSA.
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solution set [32]. Therefore, the maintenance and update of
the bulletin board is a necessary link for the artificial fish to
obtain a Pareto front with better diversity and distribution
when moving. In this paper, the maintenance strategy based
on grid density commonly used in multiobjective evolution-
ary algorithm and multiobjective particle swarm algorithm is
adopted [29]. When the bulletin board is updating, the
Pareto optimal solution set obtained in this iteration process
is merged with the bulletin board firstly, and the dominated
artificial fish is eliminated according to the above method.
Then, determine whether the number of artificial fish in
the bulletin board is greater than the maximum number of
artificial fish Km in the bulletin board. If it is greater than
Km, the target space of each dimension of the bulletin board
is divided into 10 parts equally; then, the entire target space
is evenly divided into 100 blocks. The number of all artificial
fish in the area where each artificial fish is located is defined
as the grid density of this artificial fish, and finally, the arti-
ficial fish with the largest grid density is removed one by one
until the number of artificial fish is equal to Km.

Therefore, the implementation steps of the MOAFSA are
summarized as follows:

ϕ = exp −30∙ t

TÞ10
 ! 

, ð25Þ

Step = Step∙ϕ + Stepmin, ð26Þ

Visual = Visual∙ϕ + Visualmin: ð27Þ
Step 1. Initializing all parameters of the MOAFSA.

Step 2. Calculating the objective functions, searching for the
Pareto optimal solution, and constructing the Pareto optimal
solution set, and the Pareto optimal solution set is merged
with the bulletin board.

Step 3. Calculating the number of other artificial fish Nf in
the perceived range of each artificial fish, if Nf < 2, executing
preying behavior, otherwise execute the following behavior.

Step 4. Calculating the objective functions, searching for the
Pareto optimal solution, and constructing the Pareto optimal
solution set of this iteration process, and the Pareto optimal
solution set is merged with the bulletin board.

Step 5. To improve the convergence speed and convergence
accuracy, the perceived range and moving step of artificial
fish are updated according to, [33] and are as follows:

Step 6. Determining whether the number of iterations is
greater than the maximum number of iterations T , if it is
greater than T , outputting the bulletin board, and outputting
the artificial fish with the smallest grid density as the optimal
solution, otherwise go to Step 3.

3.3. MultiObjective Optimization Process of Rolling Schedule
Based on MOAFSA. MOAFSA will be applied to the optimi-

zation of rolling schedule to search a load distribution
scheme which considers two objectives. First, the product
specification to be optimized needs to be obtained, which
is usually obtained from the L3 production management sys-
tem. Second, according to finished product specifications,
the production constraints are set, such as tension limit
values, and rolling speed limits. Then, the parameters of
the MOAFSA are initialized, and the initial value of rolling
parameters and the initial value of the objective function
are calculated. After that, the iterative process of MOAFSA
is entered, and the result of load distribution is obtained
after reaching the maximum number of iterations. The
detailed optimization flow of the rolling schedule based on
MOAFSA is shown in Figure 2.

4. Engineering Implementation and Validation

In the practical cold rolling project, the optimization of the
rolling schedule is realized in the L2 process automation sys-
tem. After the L2 process automation system receives the
production plan and raw material information from the L3
production management system, the rolling technological
table consisting of a set of detailed basic automation settings
according to the rolling process mathematical model and the
rolling schedule optimization method is calculated. Accord-
ing to the control sequence, the rolling technological table of
the corresponding raw material is sent to the basic automa-
tion level for precise control. In this section, to verify the
validity and feasibility of the rolling schedule optimization
method based on MOAFSA in the practical system, the pro-
posed method was tested in the practical system and com-
pared with the rolling schedule based on experience.

4.1. Description of Plant. The platform of the verification
experiment adopts the self-developed 1380mm single-
stand six-high reversible cold rolling mill automation sys-
tem. The automation system adopts a two-level automation
control system structure, which consists of a process auto-
mation system (L2) and a basic automation system (L1).
And the system has a communication interface with produc-
tion management automation system (L3), which can com-
municate with the L3 in real time. The rolling mill
equipment uses two independent hydraulic cylinders to gen-
erate rolling force, and the rolls are driven by AC motors.
The mechanical and electrical parameters of the rolling mill

Table 1: Mechanical and electrical parameters of the rolling mill.

Parameters Value

Power [KW] 6000

Max. Rolling force [KN] 12000

Max. Rolling speed [m/min] 1300

Max. Diameter of work roll [mm] 397

Mill rigidity coefficient [KN/mm] 3500

Max. Tension [KN] 170
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are shown in Table 1. The practical rolling mill and automa-
tion system are shown in Figure 3.

4.2. Experimental Results and Analysis. To verify the rolling
schedule optimization method proposed in this paper, two
product specifications with the largest output selected from
the product outline of this cold rolling mill were tested,
respectively. The specific parameters and production
requirements of these two product specifications are shown
in Table 2. For No.1 SPEC., the optimal rolling schedule
and the empirical rolling schedule use the same tension coef-
ficient and rolling speed. For No.2 SPEC., the optimal rolling
schedule and the empirical rolling schedule use the same
tension coefficient, but the rolling speed is set according to
the limit of rolling power and the maximum speed of motor.
The rolling schedules obtained by both methods are sent to
the basic automation system for production, and the appli-
cation effects of the rolling schedules are compared through
the collected practical production data.

According to the rolling characteristics, the reduction
ratios of each pass were randomly generated within a rea-
sonable range to constitute the initial position of the artificial
fishes. The initial value of Step is 0.02. The initial state of the

bulletin board is empty. The other parameters of MOAFSA
are as follows:

(1) The number of artificial fishes N : 30

(2) The maximum preying time L: 10

(3) The perceived range of artificial fish Visual: 0.05
(4) The minimum perceived range of artificial fish

Visualmin: 0.01

(5) The minimum moving step of artificial fish Stepmin:
0.005

(6) The maximum number of iterations T : 100

(7) The maximum number of bulletin boards Km: 100

Taking the minimum energy consumption and equal
power margin as the objective function, the approximate
Pareto optimal solution set after the normalization of the
two specifications is obtained through the optimization cal-
culation, as shown in Figure 4.

The optimization method proposed in this paper is
repeated independently for 20 times, and the experimental
results are taken as the average value of the 20 experiments.
The artificial fish with the smallest lattice density was
selected as the optimal solution and sent to the basic auto-
mation system for production. Tables 3 and 4 show the com-
parison of the load distribution and practical production
data of the two specifications of strip with the optimized
rolling schedule and the empirical rolling schedule.

The power distribution of each pass of two specifications
based on empirical and optimized method is shown in
Figure 5.

Figure 5(a) shows the power distribution of No.1 SPEC.,
compared with the empirical rolling schedule, the total
energy consumption of the rolling schedule obtained by
the proposed method is almost the same as that of the

L3 system

L2 system

PDI Data

Basic automation system
6-high reversible cold

rolling mill

Rolling schedule
(1) Reduction
(2) Rolling force
(3) Tension
(4) Rolling speed

Realtime setting

(1) Gap
(2) Motors speed
(3) Motors torque
(4) Bend force

Figure 3: Single stand reversible cold rolling mill and automa1tion system.

Table 2: Parameters and production requirements of the tested
steel coils.

Parameters No.1 SPEC. No.2 SPEC.

Steel grade SPHC Q195

Width [mm] 1075 1225

Weight [T] 19.35 22.05

Initial thickness [mm] 2.75 3

Target thickness [mm] 0.16 0.25

Total pass 6 6
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empirical rolling schedule, but the proposed method can
obtain a more uniform power distribution. The power mar-
gins of the empirical rolling schedule and the optimized roll-
ing schedule are 1.1530 and 0.0053, respectively, which
means that the optimized rolling schedule still has the
potential to increase the rolling speed in the middle several
passes, which can further improve the production efficiency.
To verify the ability of the proposed algorithm in improving
productivity, during the production of the No.2 SPEC, the
rolling speed is only limited by the motor power and the
maximum rotate speed, regardless of the experience rolling
schedule or the optimized rolling schedule. Figure 5(b)
shows a comparison of the power distribution for the empir-
ical and optimized rolling schedules of the No.2 SPEC. The
power margins of the empirical rolling schedule and the
optimized rolling schedule are 0.9910 and 0.4884, respec-
tively. It can be seen from Figure 5(b) that the two design
methods of rolling schedule try to maximize the power capa-
bility of the motor, compared with the empirical rolling

schedule, the power distribution of each pass of the opti-
mized rolling schedule is more uniform, and the rolling
power of more passes can approach the limit value of the
rolling power. It means that the optimized rolling schedule
can better utilize capacity of the rolling mill. Figure 6 shows
the comparison of the rolling efficiency for the No.2 SPEC
between the optimized rolling schedule and the empirical
rolling schedule.

Figure 6(a) shows the comparison of rolling speed for
No.2 SPEC. It can be clearly seen from Figure 6(a) that the
rolling speed of the optimized rolling schedule has been sig-
nificantly improved in the middle three passes, and the pro-
duction efficiency has been significantly improved.
Figure 6(b) shows the comparison of rolling time, which also
confirms the advantages of the optimized rolling schedule in
improving the production efficiency in the middle three
passes. Using the optimized rolling schedule, the production
time of each coil can save 1.308min, which is also a very
meaningful improvement for mass production. As shown
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Figure 4: Pareto optimal set. (a) No.1 SPEC. (b) No.2 SPEC.

Table 3: Comparison of optimized schedule (Opt.) and empirical schedule (Emp.) for No.1 SPEC.

Pass Method Outlet thickness [mm] Reduction rate Rolling force [KN] Power [KW] Rolling speed [m/min] Rolling time [min]

1
Opt. 1.73 0.37091 8242 4449 500 2.932

Emp. 1.92 0.30 6550 3184 500 2.67

2
Opt. 1.07 0.38150 8521 4618 600 3.909

Emp. 1.16 0.395 8967 5169 600 3.632

3
Opt. 0.65 0.39252 8636 4609 700 5.433

Emp. 0.70 0.395 8807 4870 700 5.073

4
Opt. 0.390 0.40 8749 4566 800 7.799

Emp. 0.42 0.40 8717 4650 800 7.274

5
Opt. 0.235 0.39744 8396 4713 1000 10.32

Emp. 0.255 0.39 8177 4631 1000 9.554

6
Opt. 0.16 0.31915 8717 5150 1200 12.617

Emp. 0.16 0.37 9342 5856 1200 12.615
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in Figure 7, the total power consumption of the rolling
schedule obtained by the optimized method is almost the
same as that of the empirical rolling schedule, which is also
determined by the production characteristics of the single-
stand cold rolling mill.

However, the empirical rolling schedule design method
does not consider the influence of changes in production
parameters, and the results on production efficiency are
completely unknown. In applying the empirical rolling sched-
ule, the operator needs to modify the technological setting
parameters repeatedly, which is easy to cause unstable product
quality and affect production efficiency. The significance of
the optimization method of rolling schedule based on
MOAFSA is that the setting value of technological parameter
which takes into account some objectives can be automatically

calculated without relying on personal experience. In practical
application, compared with the empirical rolling schedule, the
operator does not need to modify the technological setting
parameters frequently, the product quality is more stable, and
the production efficiency is higher. When the production
parameters change, the results of the optimized rolling schedule
will change accordingly, i.e., the optimization method of rolling
schedule based on MOAFSA has better adaptability. As can be
seen from the above experimental results, the optimization
method of rolling schedule based on MOAFSA can obtain a
result that takes into account the total rolling power consump-
tion and rolling efficiency, and can effectively improve the pro-
duction efficiency without consuming too much power
consumption. The experimental results also show the feasibility
and effectiveness of the proposed algorithm.
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Figure 5: Power distribution of the two methods. (a) No.1 SPEC. (b) No.2 SPEC.

Table 4: Comparison of optimized schedule (Opt.) and empirical schedule (Emp.) for No.2 SPEC.

Pass Method Outlet thickness [mm] Reduction rate Rolling force [KN] Power [KW] Rolling speed [m/min] Rolling time [min]

1
Opt. 2.01 0.33 8493 4496 500 2.563

Emp. 2.10 0.30 7663 3866 500 2.465

2
Opt. 1.33 0.33831 8770 5876 740 2.764

Emp. 1.37 0.35 9284 5897 678 2.850

3
Opt. 0.87 0.34586 8738 5831 860 3.548

Emp. 0.87 0.36 9429 5868 770 3.856

4
Opt. 0.60 0.31034 7761 5876 1200 3.859

Emp. 0.56 0.36 8598 5894 1020 4.588

5
Opt. 0.39 0.35 8246 5829 1200 5.839

Emp. 0.37 0.34 8100 5540 1200 6.519

6
Opt. 0.25 0.35897 8779 5644 1200 8.220

Emp. 0.25 0.32 8279 5054 1200 8.318
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5. Conclusions

In this work, a rolling schedule optimization method based
on MOASFA was proposed for the single-stand reversible
cold rolling process. First, a multiobjective optimization
model composed of an energy consumption function and
equal power margin function was designed, and these objec-
tive functions were calculated based on the proposed math-
ematical model of the rolling process of single-stand cold
rolling mill suitable for practical engineering applications.
Then, the AFSA was improved into a multiobjective optimi-

zation method, and the method of quickly constructing
Pareto optimal solution set was improved. At the same time,
the four behaviors of artificial fish are improved under the
framework of multiobjective optimization, and the mainte-
nance strategy for the bulletin board of artificial fish swarm
algorithm in the multiobjective optimization algorithm is
added. The practical industrial verification of rolling sched-
uling optimization based on MOASFA proves the effective-
ness and feasibility of the proposed algorithm. On the basis
of roughly the same energy consumption, the rolling sched-
ule optimization method proposed in this paper can
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improve the production efficiency by 4.6% compared with
the experience rolling schedule. This study provides a useful
exploration for the application of optimized rolling sched-
ules in practical engineering. When there are many objective
functions, the method of constructing Pareto optimal solu-
tion set adopted in this paper still has high algorithm com-
plexity, which limits the introduction of more objective
functions. Therefore, it is necessary to further study the
method of rapidly constructing Pareto optimal solution set.
At the same time, more objective functions will be intro-
duced in the optimization of rolling schedule.
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