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Intelligent computing provides efficient, real-time, and secure data analysis services for the Internet of Things (IoT). As the
number of IoT devices increases, IoT generates massive, diverse, and multisourcing datasets that can be used to improve IoT
services further. Models trained by intelligent computing from a single system or sensor are often not global, and sending all
data directly to the computing platform wastes network bandwidth and may cause network congestion and even privacy
leakage. To ensure IoT applications’ quality of service and privacy, we propose a framework that integrates edge computing
and blockchain to provide lightweight data fusion and secure data analysis for IoT. We propose a lightweight data fusion
method that can reduce the amount of data at the node level and prevent network congestion and bandwidth waste.
Furthermore, we propose a hierarchical fuzzy hashing method to check and locate anomalies of IoT machine learning models
to ensure the validity of IoT intelligent computing and the security of sensitive data. Finally, we demonstrate the effectiveness
of the method proposed in this paper through experiments.

1. Introduction

The Internet of Things (IoT) refers to the interconnection
and integration of things in the physical world and cyber-
space through the Internet or other communication net-
works [1]. With the increasing number of inexpensive
information sensing embedded devices, and sensors, such
as smartphones, mobile devices, wireless sensor network
devices, and ubiquitous communication devices, IoT has
played an essential role in various practical systems. At pres-
ent, IoT has penetrated many scenarios such as medicine,
industry, transportation, and agriculture, to provide intelli-
gent services and applications [2].

With the addition of a large number of sensor devices,
IoT generates massive, multisource, heterogeneous, and
sparse diverse datasets [2]. The collected datasets can help
improve IoT services and enhance smart services. However,

it is unwise to directly send massive and multisource hetero-
geneous IoT data to the cloud, which will waste network
bandwidth and even cause network congestion and packet
loss [3]. Therefore, the original data collected by the node
needs to be processed by data fusion before it can be trans-
mitted to prevent network congestion or packet loss. Data
fusion is performed locally by nodes to discard multiple cop-
ies of the same data, reduce the size and dimension of data,
and optimize data quality to facilitate the extraction of useful
information. Therefore, data fusion can promote a vital
technology to mine essential data from extensive and com-
plex data to improve quality and facilitate decision-making.

To provide efficient, real-time, and secure data analysis
services for the IoT, the intelligent computing platform for
the IoT has gradually entered the research field [4]. How-
ever, current intelligent computing platforms often suffer
from two flaws. (1) IoT data obtained from discrete
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embedded devices or a single sensor alone often does not
have global properties and even introduces abnormal model-
ing and training noise. (2) Centralized machine learning
models may cause risks to the privacy of training data
[5–7], and sensitive IoT data may cause disclosure of the
actual physical process of industrial manufacturing sites.

To solve the above problems, we propose a distributed
framework integrating blockchain and IoT to provide light-
weight data fusion and secure big data analysis services for
IoT. The edge nodes train the fused data to obtain a local
model and transmit it to the cloud server. The cloud server
obtains the global model by merging the local models. Our
approach to training machine learning models in a distrib-
uted fashion consisting of edge nodes reduces the risk of
data privacy breaches (as data does not leave the local train-
ing nodes). At the same time, we use the blockchain to
ensure the consistency of the local model and the global
model and propose a hierarchical fuzzy hashing method to
detect and locate the abnormal position of the model. The
main contributions of this paper are as follows:

(1) Propose a distributed structure combining edge
computing and blockchain to provide lightweight
data fusion and secure big data analysis for the IoT

(2) Propose a lightweight data fusion method, which
uses adaptive algorithms and maximum and mini-
mum functions to identify and delete redundant data
to achieve node-level data fusion

(3) Propose a hierarchical fuzzy hashing method to
check and locate the anomaly of the IoT machine
learning model and ensure security

The rest of this paper is organized as follows. In Section
2, we outline the work related to our proposed method. In
Section 3, we describe our proposed framework and algo-
rithm in detail. The experimental results and performance
evaluation are summarized in Section 4. Finally, we conclude
in Section 5.

2. Related Work

2.1. IoT and Data Fusion. Many mathematical theories are
used for data fusion in IoT. [8] introduced a method based
on probability distribution to express the dependence
between random variables. However, the method in [8] is
difficult to obtain the density function and prior probability,
and its performance is limited when processing complex
multivariable data simultaneously. Hong et al. [9] propose
an evidence-based reasoning method that introduces beliefs
to represent uncertainty in the world. Song et al. [10] pro-
posed a lightweight data analysis method. However, the
quality function problem [9] limits its practical application.
Chen et al. [11] proposed a multisensor data fusion method
for load monitoring. Pan et al. [12] used the fault diagnosis
method to fuse the data of the wind turbine gearbox. Lin
et al. [13] proposed a data fusion strategy based on transfer
learning for industrial networking. Dina et al. [14] used a
spatiotemporal fusion method for the real-time fusion of

IoT data. However, the methods of papers [11–14] often
require prior knowledge or prior modeling and cannot be
applied at the node level.

At present, some work has focused on the privacy pro-
tection of data fusion. Shang et al. [15] used probability den-
sity function values and distribution factors to fuse different
sensor data but lacked attention to robustness and verifiabil-
ity. Wang et al. [16] used differential privacy combined with
deep learning to achieve privacy protection but did not con-
sider robustness. Lin et al. [17] proposed a privacy-enhanced
data fusion strategy for medical data, but this method is less
versatile.

2.2. IoT with Blockchain and Edge Computing. As a para-
digm shift, blockchain transforms the IoT field by providing
a decentralized environment [18]. Yang et al. discussed the
impact of blockchain on IoT in terms of security, privacy,
scalability, etc. [19]. Lin et al. [20] pointed out the benefits
that blockchain provides to smart cities and provided a
research route for smart city computing resource transac-
tions. Li et al. [21] investigated the benefits of blockchain
decentralization for microgrid energy supply. Duan et al.
[22] proposed a communication network architecture for
the Internet of Vehicles with the introduction of edge com-
puting. [23] discussed the integration trend of IoT and
blockchain and introduced future research directions.

Asante et al. [24] pointed out that physical devices on
the blockchain are often unavailable storage and computing
resources, which requires edge computing to solve this
problem. Wang et al. [25] utilized edge computing and
blockchain to exchange medical IoT data efficiently. Guo
et al. [26] used blockchain technology to solve the problem
of information silos between IoT platforms. Jindal et al. [27]
leveraged blockchain and edge computing to secure vehicle-
to-grid energy transactions. Liu et al. [28] proposed a new
wireless blockchain framework supporting mobile edge
computing to offload intensive mining figures from edge
computing nodes. Sun et al. [29] proposed a system com-
bining federated learning, edge computing, and blockchain
to achieve this model sharings.

3. Data Fusion and Security Data
Analysis for IoT

Sensor nodes for various applications in IoT transmit their
data to cloud data centers through network gateways and
edge servers. Unstructured data and spatiotemporal stream
data collected by sensors can affect data center processing
speed and decision-making behavior, potentially causing
bandwidth bottlenecks, latency, and throughput degradation
for time-critical and latency-sensitive applications. Large
amounts of redundant data will lead to packet loss, longer
delays, and network congestion [30]. At the same time, a sin-
gle centralized database solution is often not suitable for
complex IoT systems, so we consider integrating the distrib-
uted structure of blockchain and IoT to provide secure big
data analysis services. This section discusses our proposed
data fusion method and security protection strategy to
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eliminate redundant data and provide secure and effective
data analysis services for IoT applications.

3.1. IoT Framework Integrating Edge Computing and
Blockchain. In IoT applications, if the data collected by the
IoT application layer is transmitted to the cloud layer
directly or through the edge, it may cause congestion and
significant delay at the cloud service layer. Therefore, we
add data fusion at the nodes for optimization. IoT often
involves private data, such as electricity consumption data
in smart grids, medical and health data, and other private
data that should not be leaked. At the same time, the IoT
network requires real-time monitoring, forecasting, and
other services, such as traffic forecasting, fire alarms, etc.,
and the data often needs to be processed locally. Given
the above, in our model, edge nodes will perform local
model training on the data locally to protect the privacy
of the data. After the edge node transmits the local model
parameters to the cloud server, it will train the global model
and pass it to the edge node. The edge node will use the
data analysis results or model parameters of the cloud
server to process the data in time to meet the timeliness
of the IoT network. At the same time, in the proposed
architecture, the consistency and validity of local data and
cloud data transmission verified by blockchain are used to
prevent poisoning attacks. Figure 1 shows the overall frame-
work of this paper.

3.2. Lightweight Data Fusion Method. To eliminate corre-
lated and redundant data in IoT, we use a lightweight data
fusion method at the node level. The proposed method uti-
lizes adaptive distance exponent and minimax functions at
the node level to identify and remove redundant data [31,
32]. Our method can be flexibly extended to any application.
Through our method, on the one hand, redundant data can
be identified and removed, and on the other hand, the
changing trend of the data can be keenly captured to ensure
the quality of the data. At the same time, due to the existence
of the adaptive distance index, our method can automati-
cally fuse the data even without prior knowledge.

The parameters of the fusion algorithm, including the
maximum and minimum values, the distance index, the
fusion index, and two lists, are stored in the node’s buffer.
The maximum value, minimum value, distance index, and
fusion index are denoted by max, min, γ, and α, respec-
tively. The fusion index α is a constant, and α > 0. The
larger the fusion index is, the lower the fusion rate is; the
smaller the fusion index is, the higher the fusion rate is.
The two lists are the distance interval list and the data
packet list, respectively, denoted by L and D. At time i,
the sensor value is denoted as Ni. In the beginning, when a
new sensor value N0 is sensed by a node, then max =min =
Ni, γ = ðmax −minÞ/α. The parameter changing method is
shown in

f tið Þ =
min =Ni, γ =

max −min
α

, if Ni <min,

max =Ni, γ =
max −min

α
, if Ni >max:
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The parameters max and min are used to capture the
magnitude of the data change and draw a fixed point on the
data change curve. It is assumed that the sampling rate of
each node is Sr packets per second, where Sr ≥ 1. The node
sends data to the gateway at intervals T . In our method, data
fusion is performed at each time interval T period. After the
sensor value is entered into the node, the value will first
update the min, max, and γ values. Ni and its distance from
the previous packet are added to the distance list. We use
the updated γ value to detect the distance list, delete the data
packets that do not meet the requirements of the data list,
and update the distance list. The data fusion steps are shown
in Algorithm 1.

Our method automatically adjusts the distance index to
fit the characteristics of the data according to the varying
range of the data. According to the distance index, the data
is fused while retaining the extreme points of the data. Our
method perfectly preserves the data features and reduces
the fusion loss. At the same time, the fusion rate is used to
flexibly adjust the sensitivity of the data to adapt to different
scenarios. The fused data significantly reduces data redun-
dancy, packet collision probability, and network delay and
reduces network congestion.

3.3. Secure and Privacy-Preserving Anomaly Detection and
Localization Algorithms. After data fusion, each node trans-
mits the fused data to the cloud data center through network
gateways and edge servers. The gateway acts as a relay node
to monitor IoT devices and offload data to edge servers. The
collaborative work of the edge service layer and the cloud
service layer provides efficient, accurate, and real-time data
processing and decision support for IoT applications [33].

The edge service consists of edge nodes, and the cloud
service layer consists of peer cloud servers. In our model,
the edge node is responsible for training the local model,
and the cloud server merges the local model to obtain the
global model. The edge node transmits the trained local
model parameters to the cloud server, and the cloud server
trains the global model according to all collected local
models. Our strategy addresses the defect that local data can-
not represent global attributes in IoT and guarantees local
data privacy. Machine learning scenarios in IoT, such as
smart medical care and smart grid, may attack machine
learning models [1]. Here, we consider the use of blockchain
technology to build defense mechanisms. That is to use the
blockchain to protect the consistency and immutability of
the local model and the global model. This method can
improve the scalability of the IoT network, eliminate single
points of failure, and ensure the model’s validity. Figure 2
shows the basic idea of the hierarchical fuzzy hashing algo-
rithm. The local models of edge nodes differ, as illustrated
in Figure 2, due to the diverse types of sensors used by edge
nodes.

We introduce the blockchain to record the parameters of
local and global models to process and check the erroneous
input of information. The variability of the data recorded
by the blockchain can prevent attackers from changing the
model parameters after training. That is, the blockchain con-
stitutes a defense tool to model attacks. Referring to [4, 34],
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we consider using a hierarchical fuzzy hash function to
replace the information record structure of the traditional
blockchain.

We propose the method of hierarchical fuzzy hashing,
mainly considering the contingency of IoT attacks. The
amount of data transmitted in the network through hierar-

chical fuzzy hashing is reduced, and data security is guaran-
teed. We divide the blockchain into two levels of
information, the local chain and the global chain. The
underlying information consists of a fuzzy hash function,
and the fuzzy hash value can detect abnormal changes in
model parameters. To improve the transmission efficiency,
we save the hash of the fuzzy hash value in the global infor-
mation. Figure 3 shows the basic idea of distributed anomaly
detection and location algorithm combined with blockchain.

We use a hierarchical fuzzy hashing algorithm to reduce
data transmission loss by preserving subinformation of
information. The global model is recorded in the global
chain using a hashed hash. The edge node hashes the record
information of the global chain and compares it with the
record information of the local chain. An abnormality is
detected using the fuzzy hash value detection of the global
chain and local chain records when there is an abnormality.
We use the fuzzy hash value to calculate the Hamming dis-
tance between the models, determining the degree of attack
on the model and locating the attacked position. Our hierar-
chical fuzzy hashing method and anomaly detection algo-
rithm improve the efficiency of the IoT network and
ensure the model’s security under the condition of
guaranteeing anomaly detection.

4. Experimental Results

In this section, we evaluate the efficiency of our proposed
lightweight data fusion and the effectiveness of the hierarchi-
cal fuzzy hashing security strategy based on experimental
metrics.

4.1. Data Fusion Algorithm Test. For data fusion, we perform
data fusion at the node level. We use the data collected by
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Figure 1: Overall framework.

Input:max, min, γ, L = ½ �, D = ½ �, Ni, T , α
Output:D = ½D1,D2,⋯�
1. for i in range (0, T):
2. if i = 0:
3. max = min = Ni
4. D.append (Ni)
5. else:
6. D.append (Ni)
7. L.append ðkDi −Di−1kÞ
8. if Ni >max: max =Ni
9. if Ni <min: min =Ni
10. γ = ðmax −minÞ/α
11. n = lengthðLÞ
12. for l in range ð0, nÞ:
13. if L½l� < γ:
14. if D½l + 1� ==max or D½l + 1� ==min:
15. D = del ðD½l�Þ
16. break
17. else:
18. D = del ðD½l + 1�Þ
19. break
20. end if
21. end for
22. end for
23. return D

Algorithm 1: Data fusion method.
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the Intel Berkeley Research Lab [35] to test the data fusion
algorithms’ performance and fusion rate.

We first measured the capture of data features by the
lightweight fusion algorithm. Taking the temperature sensor
data of a particular day as an example, we take one hour as
the fusion period, and the fusion result is shown in
Figure 4. Figure 4 shows the data packets transmitted by
our proposed lightweight data fusion algorithm under differ-
ent fusion indexes. As seen from the figure, our proposed
algorithm dramatically reduces the number of packets. At

the same time, we can find that our algorithm can reduce
the number of packets while ensuring the characteristics
and quality of the data. Experimental results demonstrate
that our method reduces data redundancy, packet collision
probability, and reduces network congestion.

We tested the fusion performance of the data fusion
algorithm. We compare existing data fusion methods,
including stratified sampling [3] and EECC [36]. Figure 5
shows the proportion of data transmitted to the gateway by
different data fusion methods. In Figure 5, the horizontal
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axis N represents the total number of data packets, the ver-
tical axis is the percentage of transmitted data packets n =
N ′/N , and N ′ is the number of compressed data packets.
In Figure 5, our method significantly outperforms other
algorithms in compression performance. During the fusion
process, stratified sampling takes the extreme value of each
layer after stratification. The stratification leads to a higher
percentage of fused data delivered by the gateway, while
EECC increases the number of datagrams due to the trans-

mission of multiple copies. This experiment proves that
our method has a better data fusion effect than existing
algorithms.

4.2. Anomaly Detection and Localization Algorithm Test.
We tested the model anomaly detection and anomaly local-
ization methods. We consider the case where an attacker
produces anomalous models by retraining the model with
additional data containing Trojan triggers. The main
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purpose of our method is to check whether the model is
poisoned by comparing it with a benign model and then
using the local fuzzy hash to locate the abnormal location
and give the poisoning ratio of the model.

We test the feasibility and effectiveness of our proposed
method on anomaly detection and localization of parame-
ters using a set of machine learning models. We focus on
how the model detects and locates anomalies. We consider
the global model to be benign. The experiments assume that
the attacker leads to the generation of abnormal models by
retraining the model with additional data containing Trojan
triggers. We first use the two-layer hash value comparison of
the local and global models to check whether the model is
poisoned. When the model poisoning is detected, we use
the fuzzy hash value to locate the abnormal location and give
the model poisoning ratio.

Figure 6 shows the hierarchical fuzzy hashing algo-
rithm’s anomaly detection and localization process after
model poisoning. As shown in Figure 6, after the global
hash and the local hash are entirely different, the fuzzy
hash value will be backtracked (when the global hash is
consistent with the local hash, this step is not performed).
It can be seen from Figure 6 that the poisoning model is
not completely inconsistent with the correct model.
According to the difference of fuzzy hash value, we can
locate the poisoning position and poisoning degree of the
model. This experiment demonstrates our proposed hier-
archical hashing, checking anomaly models and locating
anomalous locations.

This experiment mainly provides an extensive evaluation
of the various performances of our proposed hierarchical
hash function. To compare the performance of the hierar-
chical hash function on the blockchain system, we will first
take the method that does not use machine learning and
hierarchical fuzzy hashing as the basic method (the edge
nodes directly transmit all data to the cloud server for pro-
cessing). Meanwhile, we use the fuzzy hashing method used
in the paper [5] as another model for comparison. We use
data from the same sensor for performance testing.

We contrast the proposed layering with the paper’s base
method and the method [5]. At the same time, for simplic-
ity, we use the central node as the verification node to
improve the system’s efficiency. That is to say, after the cen-
tral node (cloud service) has passed the operation, it can be
written to the global chain, and each edge node maintains its
local chain and periodically transmits encrypted data to the
cloud service. In this experiment, there are five edge nodes
and one central server. Figure 7 shows the relationship
between the number of processing blocks of a node and the
required time.

We also tested end-to-end latency. We simulate the pro-
cess of storing and exception queries (as shown in Figure 8).
Compared with other methods, our proposed hierarchical
fuzzy hashing algorithm requires less time on average to
process packets. As shown in Figure 8, the hierarchical fuzzy
hashing proposed by us significantly improves the process-
ing power of the blockchain system.

Figure 6: An example of anomaly detection and localization based on hierarchical fuzzy hashing.
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4.3. Data Packet Overhead. We finally test a comparative
experiment of the overhead of data transfer packets for the
overall experiment. The purpose of the experiment is to
compare the impact of our proposed data fusion algorithm
and hierarchical hash function on the data transmission
overhead of IoT. We calculated the comparison of packet
sizes transmitted by edge nodes to cloud servers in the case
of 5, 10, and 15 nodes. As shown in Figure 9, the packet size
processed by our method is much smaller than the packet
size before processing. The above experiments demonstrate
that the use of data fusion, machine learning, and hierarchi-
cal fuzzy hashing can positively impact IoT data analysis ser-
vices, which can reduce time and transfer data volume while
improving data confidentiality and fault tolerance.

5. Conclusion

In this paper, given the current situation of the rapid
increase in the scale and quantity of IoT data, we propose

a method to integrate edge computing and blockchain to
provide data fusion and secure big data analysis for the
IoT. We propose a node-level lightweight data fusion
method and a hierarchical fuzzy hashing method, which
are used to reduce the amount of data transmitted by IoT
and ensure the security of IoT data. We reduce the amount
of data transfer at the node level using a lightweight data
fusion method. The edge node calculates the local model to
reduce the pressure on the cloud server, and the cloud node
is used to merge the local model to improve the representa-
tiveness of the model. We utilize blockchain and hierarchical
fuzzy hashing to ensure the consistency and validity of local
and global models while maintaining data privacy. Our
experimental results show that our method dramatically
reduces the amount of data transmitted by the IoT and
improves the system’s security. In the future, our goal is to
solve the load imbalance problem of edge nodes to enhance
the utilization of edge devices.
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