Hindawi

Wireless Communications and Mobile Computing
Volume 2022, Article ID 9261537, 18 pages
https://doi.org/10.1155/2022/9261537

Review Article

WILEY | Q@) Hindawi

Survey of Graph Neural Networks and Applications

Fan Liang,1 Cheng Qian,2 Wei Yu(,? David Griffith,’> and Nada Golmie®

'Sam Huston State University, USA
2Towson University, USA
*National Institute of Standards and Technology (NIST), USA

Correspondence should be addressed to Wei Yu; wyu@towson.edu
Received 13 April 2022; Accepted 27 June 2022; Published 28 July 2022
Academic Editor: Wei Li

Copyright © 2022 Fan Liang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The advance of deep learning has shown great potential in applications (speech, image, and video classification). In these
applications, deep learning models are trained by datasets in Euclidean space with fixed dimensions and sequences.
Nonetheless, the rapidly increasing demands on analyzing datasets in non-Euclidean space require additional research.
Generally speaking, finding the relationships of elements in datasets and representing such relationships as weighted graphs
consisting of vertices and edges is a viable way of analyzing datasets in non-Euclidean space. However, analyzing the weighted
graph-based dataset is a challenging problem in existing deep learning models. To address this issue, graph neural networks
(GNNs) leverage spectral and spatial strategies to extend and implement convolution operations in non-Euclidean space. Based
on graph theory, a number of enhanced GNNs are proposed to deal with non-Euclidean datasets. In this study, we first review
the artificial neural networks and GNNs. We then present ways to extend deep learning models to deal with datasets in non-
Euclidean space and introduce the GNN-based approaches based on spectral and spatial strategies. Furthermore, we discuss
some typical Internet of Things (IoT) applications that employ spectral and spatial convolution strategies, followed by the

limitations of GNNs in the current stage.

1. Introduction

The artificial neural network is a viable technique to carry
out the data-driven modeling and analysis of complex sys-
tems, which can be further used to improve their efficient
and intelligent monitoring, control, and management. The
existing neural networks (Convolutional Neural Networks
(CNNs) [1], Recurrent Neural Networks (RNNs) [2], etc.)
have been devoted to different problem domains (IoT,
etc.), supporting a variety of tasks (prediction, classification,
identification, tracking, codesign, and data generation,
among others [3-9]). Neural networks can improve the effi-
ciency of data analytics and find the hidden relationships in
datasets collected from complex and dynamic systems by
carrying out feature extraction from the investigated data-
sets. Because of the rapid development of computing capac-
ity and optimized architectures and models, neural networks
have shown great ability to process large complex data
[10-12]. For example, CNNs deal with image classification,

video, text recognition, and audio identification by treating
all the training data as data in Euclidean space. For instance,
in image classification, CNNs represent an image as a matrix
with fixed dimensions, a typical way of processing datasets
in Euclidean space. Then, CNNs leverage a fixed filter to
extract the features in the image so that meaningful local fea-
tures can be identified and aggregated, which can be further
used to conduct image recognition and classification.
Although CNNs and RNNs have been successful on data
in Euclidean space, how to deal with data in non-Euclidean
space remains an unsolved problem. For instance, social
media and e-commerce applications are typical scenarios
that generate graph data as typical examples of data in
non-Euclidean space. Social media and e-commerce applica-
tions enable individuals to provide recommendation and
rating information. Those applications analyze multiple data
sources (e.g., user data, market data) to provide precise
information to meet individual needs. As the data from dif-
ferent users and markets is dynamic and associated with

https://orcid.org/0000-0003-4522-7340
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9261537

different dimensions, it is hard to formalize such data in
Euclidean space. Instead, such data can easily be represented
by a graph structure, but existing CNNs and RNNs cannot
handle data with graph structure. Thus, the complexity, high
diversity, and irregularity of graph data pose significant chal-
lenges to existing neural networks. Note that the data in
non-Euclidean space has no fixed structure, and the relation-
ship between unordered nodes changes rapidly over time.
Thus, the convolution operation of existing neural networks
cannot extract features from data in non-Euclidean space.
For example, a CNN uses fixed convolutional kernel “filters”
to extract features from 2D or 3D datasets with static struc-
tures. Nonetheless, it is impossible to use fixed filters to
extract features from non-Euclidean space datasets since
the data in non-Euclidean space has dynamic structures.
Thus, it is necessary to design a new type of neural network
to process the non-Euclidean space data.

The graph neural network (GNN), as a new type of neu-
ral network, has been proposed to extract features from non-
Euclidean space data. Motivated by CNN, a GNN enables
the use of a scalable kernel to perform convolutions on
non-Euclidean space data. To achieve the convolution oper-
ation in non-Euclidean space, Sener and Savarese [13] pro-
posed an active learning scheme, which enables the
convolutional kernel to select the appropriate shape by itself
so that the dynamic shape of non-Euclidean space data can
be fit. Based on the active learning scheme, Bronstein et al.
[14] leveraged a variable convolutional kernel to extract fea-
tures from non-Euclidean space data, which is data-driven
convolution. Some existing studies survey different variants
of GNN [15-17]. There are a number of new GNN models
and approaches that have been investigated in the past few
years, such as spatial convolution approaches [18, 19], which
were not covered by the existing surveys on GNN. The study
[20] investigated the existing efforts on optimizing hardware
and software to improve the GNN performance. In contrast,
our study focuses on introducing the development of GNN
that extends the convolutional approaches from Euclidean
space to Non-Euclidean space. We detail the existing
GNN-based approaches using spectral and spatial strategies.
Furthermore, we review and discuss the efforts on applying
GNN to some typical IoT systems in energy, transportation,
and industrial domains.

To summarize, our contributions are as follows:

(i) We introduce the background of artificial neural
networks in detail and review the development his-
tory. Based on the limitation of traditional artificial
neural network models (RNN, CNN, etc.) in non-
Euclidean space data, we discuss the issues of using
RNNs and CNNs to analyze non-Euclidean space
data in detail. We also clarify the motivations for
expanding the neural networks from Euclidean
space to non-Euclidean space data

(ii) We survey the existing strategies to analyze non-
Euclidean space data. We present a comprehensive
review of GNN models that can deal with non-
Euclidean space data. We introduce the strategies

Wireless Communications and Mobile Computing

from the spectral and spatial domains and discuss
their pros and cons. We also summarize the existing
studies and research efforts on GNN and discuss
representative techniques

(iii) As IoT is one potential application for GNN, we
review some existing studies and present some
examples of leveraging GNN in different IoT sys-
tems such as carrying out traffic prediction in the
smart transportation system, electricity prediction
in the smart grid (e.g., power outage, solar irradi-
ance), and resource management in industrial IoT
(IIoT) systems. We also discuss some limitations
of GNNs from the universality and learning com-
plexity aspects

Note that there are some existing GNN survey papers
[16, 17, 20-22]. For example, Zhang et al. [21] focused on
the generalization ability of graph-based models. Wu et al.
[22] conducted a comprehensive review of existing GNN
models and proposed a model structure-based taxonomy.
Likewise, Abadal et al. [20] reviewed the existing efforts on
optimizing hardware and software from the computing
aspect to improve the performance of GNNs. In contrast,
our study focuses on introducing the development of GNN
that extends the convolutional approaches from Euclidean
space to non-Euclidean space. We detail the existing GNN-
based approaches and categorize the existing GNN model
into spectral and spatial strategies that depend on training
data transformation. Furthermore, we review and discuss
the efforts on applying GNN to some typical IoT systems
in energy, transportation, and industrial domains, as well
as the limitations of GNNs.

The remainder of this paper is organized as follows: in
Section 2, we discuss the background and basic concepts of
artificial neural networks and GNNss. In Section 3, we focus
on the spectral strategy for convolution operations in
graphs. Specifically, we introduce the spectral graph theory
and introduce the detail of spectral convolution operations.
We then review and summarize the existing efforts on spec-
tral GNN. In Section 4, we focus on the spatial strategy for
convolution operations in graphs. Specially, we begin with
the introduction of spatial graph convolution and review
spatial GNNs. In Section 5, we introduce some typical
GNN applications in IoT, including transportation traffic
prediction, electrical energy prediction, and resource alloca-
tion in IIoT. In Section 6, we discuss the limitations of the
GNN model with respect to universality and learning com-
plexity. Finally, we conclude the paper in Section 7.

2. Background

In this section, we first review the basic concepts of artificial
neural networks and present the fundamentals of GNNs.

2.1. Artificial Neural Networks. Artificial neural networks
leverage the concept of biological neurons so that complex
computing tasks (recognition, classification, etc.) can be car-
ried out. Artificial neural networks are based on weighted
and directed graphs, whose vertices can be considered as

Wireless Communications and Mobile Computing

neurons and whose edges can be considered as synapses that
connect neurons. In each neuron, transcendental functions
are applied to compute and aggregate the weighted sum of
outputs from the previous neurons, which pass the results
(or experience) to nearby connected neurons. By doing this,
the results from different neurons can be aggregated and
synthesized to produce complex outputs such as image
classifications.

Since the 1940s, artificial neural networks have experi-
enced several cycles of failures and revivals. For instance,
in 1961, Rosenblatt [23] proposed the fundamental concept
of perceptrons, which are the foundation of artificial neural
networks. Because of limited computing ability, it was hard
to implement complex neural networks at that time. Then,
in the 1980s, Hopfield [24] first implemented a neural net-
work on emergent collective physical computing nodes.
Motivated by Hopfield’s work, Sejnowski [25] proposed the
Boltzmann machine, which leverages stochastic binary pro-
cessing units to solve interactions of different neurons in
nonlinear networks. This effort significantly reduces the time
complexity for training a neural network and introduces the
slow-incremental learning to overcome forgetting. Further-
more, Werbos [26] proposed the backpropagation algo-
rithm, which iteratively optimizes the weights and biases
for recurrent systems and improves the performance of neu-
ral networks.

Increases in computing power resulted in new efforts to
implement neural networks in the 1990s. As an example,
Pineda [27] generalized the backpropagation algorithm to
RNNs and leveraged the optimized backpropagation algo-
rithm to improve the computational ability on nonlinear
functions. McEliece developed [28] the theory of informa-
tion and coding, which provides the mathematical frame-
work to support simulating neural network by computer.
After that, more studies focused on creating complex regres-
sion and classification functions. Specifically in the statistics
area, Long [29] designed a functional nonlinear model that
involves hundreds of variables. Also, the Deep Neural Net-
work (DNN) and CNN extend the data from the time
domain to the spatial domain, which leverages the convolu-
tional kernel to extract features from two-dimension and
three-dimension datasets [30, 31].

2.2. Graph Neural Networks (GNNs). In the following, we
review GNNss. Specifically, we first introduce the graph data-
set, which is typical non-Euclidean space data. We then
introduce the motivations of processing the data in non-
Euclidean space. Finally, we overview the road map of GNN.

2.2.1. Graph Datasets. A graph is a data structure in non-
Euclidean space that consists of a set of objects (vertices)
and relationships between these objects (edges). Since the
graph can express complex and dynamic data, especially
the logical relationships between sets of time-varying data,
the graph structure can be used to represent datasets with
dynamic dimensions. Examples include social network data,
microscopic molecular structure data, and skeletal motion
data [32]. Those datasets cannot be modeled in Euclidean
space. Figure 1 illustrates the differences between Euclidean

and non-Euclidean data structures. In general, the Euclidean
data has fixed dimensions and input data must be in a spe-
cific order that is determined by those dimensions. In con-
trast, the non-Euclidean data has dynamic dimensions and
input data may not in a particular order.

2.2.2. Motivations. In some real-world scenarios, the data
cannot be mapped to Euclidean space, which is defined by
R”, meaning that Euclidean space data can be modeled
and represented as a set of points in a n-dimensional linear
space. For example, to present an image, we define x and y
coordinates to represent the location of each pixel and a z
coordinate to represent the intensity in grayscale images or
a set of z coordinates to represent the intensity of each of
the red-green-blue (RGB) or cyan-magenta-yellow-black
(CMYK) values in color images. Thus, the image or sets of
RGB or CMYK color image components can be considered
data in 3-dimensional Euclidean space. However, it is hard
to use n-dimensional linear space to encode some data such
as social network data because of the dynamic dimensions. If
we map the data to Euclidean space, important information
(e.g., the relationship between data entries) will be lost. Fur-
thermore, it is hard to keep the information by adding more
dimensions since the relationship between data entries is
dynamic. Thus, it is necessary to extend the set of data struc-
tures that we use for machine learning from Euclidean
spaces to non-Euclidean spaces.

The non-Euclidean space data has dynamic dimension,
but the typical neural network (e.g., CNN) can only define
a fixed convolution kernel to aggregate the features. Thus,
CNNs cannot handle non-Euclidean space data. To deal
with non-Euclidean space data, GNNs can extract and com-
bine features of multiscale local spatial data with high repre-
sentation capabilities, which extends the deep learning
models to present non-Euclidean space data. The key bene-
fits of CNNs (e.g., the local connection, shared weights, and
multilayer usage) are inherited by GNNs. These characteris-
tics are important for solving problems in graph-based
applications. As a unique non-Euclidean data structure,
graphs have drawn attention to node classification, link pre-
diction, and cluster analysis [25]. Due to high interpretabil-
ity, GNN has recently become a widely used graph analysis
method.

2.2.3. Road Map of GNN. Figure 2 presents the road map of
GNNs, which is inspired by CNNs. Similar to CNN, in order
to aggregate data features, GNN employs the convolution
process. The difference between GNNs and CNNss is that a
GNN processes convolution in the graph while a CNN pro-
cesses discrete convolution in Euclidean space data. The
computational complexity of ordinary convolution is
defined by the number and the size of convolutional kernels.
The non-Euclidean space data is high-dimensional data. As
the number of dimensions increases, the number of convo-
lutional kernels grows, which leads to the significant increase
of computation complexity. In addition, using a fixed-size
convolutional kernel could result in the loss of critical infor-
mation of non-Euclidean space data. Traditional discrete
convolution cannot maintain translation invariance on

\/

- —@ O
/

—)
N\

())))

J N\ N\ N\

Wireless Communications and Mobile Computing

F1GURE 1: Examples of Euclidean (left) and non-Euclidean (right) data structures, with subsets indicated by the colored regions.

Spectral approaches

Bruna et al. Bruna et al. Defferrardet
(2014) (2015) etal.
SCNN SommthSCNN (2016)
ChebNet
Masci et al. Atwood et al. Bocaini et al.
(2015) (2016) (2016)
GCNN DCNN ACNN

Spatial approaches

Kipf et al. R. Lietal.
(2016) (2018)
GCN AGCN
Chang et al.
Monti et al. (2018) Chang et al.

(2017) SACNN (2019)
GNN Graphsage LAGN
Monet GAT

FIGURE 2: Road map of GNN evolution.

non-Euclidean space data. Since the data structure is fixed in
Euclidean space data, the number of neighbors is the same
for each data element. Thus, discrete convolution can lever-
age a fixed-size convolution kernel to aggregate the features.
However, for non-Euclidean space data, as the number of
adjacent vertices of each vertex in the topological graph
could be different, it is hard to use a fixed-size convolution
kernel.

To deal with non-Euclidean space data, one possible way
is to leverage dynamic kernel size to adapt to the data. Chol-
let [33] proposed a depth separable convolution, which spe-
cifically focuses on solving the dynamic dimension problem
of non-Euclidean space data. Compared to the traditional
convolution, the depth separable convolution employs two
different sizes of convolutional kernels. It first leverages a
convolutional kernel in larger size to extract the features.
Then, it pushes the extracted features to pass a smaller size
convolutional kernel so that the features are aggregated.
The dynamic convolutional kernel size is capable of han-
dling the dynamic dimension of data.

Another possible way is to increase the size of convolu-
tional kernels, which can increase the receptive fields of con-

volutional kernels. By doing this, the features can be
aggregated as much as possible. In order to increase the
receptive fields of convolutional kernels, the dilated convolu-
tion is proposed in several studies [34-36]. The benefit of
dilated convolution is keeping the actual size of convolu-
tional kernels (for the sake of computation complexity) but
increasing the receptive fields. By setting different dilated
rates, the dilated convolution can significantly increase the
ability of high-dimensional data classification.

However, the aforementioned approaches have some
limitations. First, it needs to adjust either the kernel size or
dilated rate manually based on the characteristics of the data,
such as the level of connectivity in the graph. Thus, the user
is hard to create a generic network model to fit different
datasets. Second, it is still much difficult to handle the com-
plex graph data structure as it is hard to apply the weight
information to network models. Thus, GNNs were proposed
by combining graph theory and convolution so that graph
data can be processed effectively [23]. There are two main
strategies to implement a GNN. One strategy relies on spec-
tral graph theory that converts data from spatial domain to
spectral domain for further processing [33]. The other

Wireless Communications and Mobile Computing

TaBLE 1: Notations.

Symbols Descriptions
Ay The I™ eigenvalue of the Laplacian matrix
U Feature matrix
G Graph with V vectors and E edges
D Degree matrix of vertices (diagonal matrix)
A Adjacency matrix of the graph
Fy(w) Spectral input signal
F,(w) Spectral convolution kernel
9o Self-learning parameter
A Diagonal matrix
X N-dimensional vector
ag Graph convolution
A Adjustable eigenvector matrix
Ty(x) Chebyshev polynomial obeys
K Number of neighbors
Attention factors
h Aggregation result of GAT

strategy does not rely on graph theory and directly involves
the convolution process in the spatial domain [33]. We will
discuss both strategies in the following two sections.

3. Spectral Convolution Strategy

In this section, we describe the spectral convolution strategy.
Specifically, we first briefly describe the fundamentals of
spectral convolution. We then survey the existing GNN
models that leverage the spectral convolution strategy. Fur-
thermore, we categorize and compare the existing GNN
models. Table 1 lists the key notations in the paper.

3.1. Spectral Graph Theory. To address the issue that CNN
cannot process convolution on the graph, Shuman et al.
[37] proposed a graph signal processing- (GSP-) based
scheme using spectral graph theory. The GSP defines the
Fourier transform on the graph. Further, on the spectral
domain, GSP defines the convolution on the graph. Based
on the GSP, Bruna et al. [38] proposed the Spectral Convo-
lution Neural Network (SCNN) to aggregate the features
from graphs, which is the initial graph neural network. Thus,
the spectral graph theory is fundamental to the GNN.

The discrete Fourier transform is applied when convert-
ing graphs from spatial domain to spectral domain. This
process is denoted as the graph Fourier transform. Before
applying discrete Fourier transform, a set of orthogonal
bases for vertices is required. We first perform a spectral
decomposition of the Laplacian matrix, which is the differ-
ence of the degree matrix (whose nth diagonal element is
the degree of the nth vertex) and at adjacency matrix
(whose (i, j)th element is 1 if there is an edge between ver-
tices i and j). This results in # linear independent eigenvec-
tors that form an orthogonal basis. The graph Fourier

transform projects the orthogonal bases into the orthogonal
space, which is equivalent to expressing the arbitrary vector
defined on the graph as a linear combination of the eigen-
vectors of the graph’s Laplacian matrix.

The standard graph Fourier transform can be repre-
sented by

N

GFfA) =F(h) = Y f(Dym(i). (1)

i=1

Here, f is a function that maps the vertices of the graph
to a number on the real line. Also, A, represents the I eigen-
value of the Laplacian matrix, and u(i) represents the i ele-

ment of the [™ eigenvector. The graph Fourier transform
(discrete Fourier transform) is an inner product operation
for A; and u;. Then, apply matrix multiplication, on Equa-
tion (1), as the matrix expression of the graph Fourier trans-
forms. After simplification, the matrix multiplication can be
represented by Equation (2). The graph Fourier transform is
equivalent to the inner product of transpose matrix of fea-
ture matrix and N-dimensional vector as

F=U'y. (2)

Here, the feature matrix U can be computed by the
Laplace matrix, which is defined by L = D — A. Denote graph
as G=(V,E), L as Laplace matrix, D as the degree matrix of
vertices (diagonal matrix), and A as the adjacency matrix of
the graph. Figure 3 illustrates the example of those matrices
for a graph. Then, based on the Laplace matrix L, we can
solve the feature matrix U, which is the Eigen decomposite.

3.2. Spectral Graph Convolution. After reviewing the spectral
graph theory, we now introduce the spectral graph convolu-
tion. The standard convolution mechanism in spectral graph
theory can be implemented using the graph Fourier trans-
form, because of the duality between convolution and multi-
plication that is similar to what we observe with the standard
Fourier transform:

FH O] = Fi(w) - Fy(w), (3)

where we denote f, (¢) as the spatial input signal and f,(¢) as
the spatial convolution kernel. It also defines F;(w) as the
spectral input signal and F,(w) as the spectral convolution
kernel. Also, denote “x” as convolution operation and
as product operation. Equation (3) shows the implementa-
tions of spectral graph convolution. First, it converts the spa-
tial signal to spectral domain and obtains the product of
spectral signal and the spectral convolution kernel. Then,
we can take the inverse graph Fourier transform of the prod-
uct of spectral signal and convolution kernel to get the final
result in the spatial domain.

As aforementioned, the convolution operation in the
spatial domain has the requirements of sequence order and
fixed dimensions, which raises difficulties for processing
graph data. For example, given the convolution kernel size,
3 x3, we define the center of the kernel as the central

«»

Labeled graph

Adjacency matrix

01 0 0 0 O
1 0 1 0 1 0
01 0 1 0 O
00 1 0 1 1
01 0 1 0 1
00 0 1 1 0

o o o O

Wireless Communications and Mobile Computing

Degree matrix

1 0 0 0 0 O
0O 3 0 0 0 0
o 0 2 0 0 0
0o 0 0 3 0 0
0O 0 0 0 3 0
o 0 0 0 0 2

Laplacian matrix
-1 0 0 0 0

3 -1 0 -1 0
-1 2 -1 0 0
0 -1 3 -1 -1
-1 0 -1 3 -1
0 0 -1 -1 2

FiGURE 3: Example of degree, adjacency, and Laplacian matrices for an undirected graph.

element and the surrounding neighbors as the receptive field.
In the spatial domain, the kernel size is fixed. Thus, for each
central element of input data, a 3 x 3 kernel has eight neigh-
boring elements for convolution operation, indicating that
the size of the receptive field must be fixed. However, in
graphs, the number of neighbors is uncertain; thus, it is hard
to identify the fixed size of the receptive field. In addition,
elements are not homogeneously arranged in graphs. Thus,
it is difficult to assign a single value to the length of the step
of convolution kernel. However, in the spectral domain, we
can use the adjustable component of each frequency to deal
with the dynamic receptive field. The adjustable component
changes along with the receptive field changes so that a suit-
able receptive field for the spectral domain dynamic situa-
tion can be established.

3.3. Typical Spectral GNN. In the following, we introduce
some typical spectral GNN models and review the existing
studies that leverage the spectral convolution strategy.

3.3.1. Spectral CNN. Bruna et al. [38] proposed the spectral
graph convolution network. It uses the self-learning diagonal
matrix instead of the spectral domain convolution kernel.
They modified Equation (3) and proposed a self-learning
parameter set g,. The convolution kernel can be represented

by

Xxggy= UAUX, (4)
which is the discretization of the anisotropic convolution.
Here, X € RY is a N-dimensional vector. The 4 represents
graph convolution. Also, U is a matrix that includes eigen-
vectors and A is a diagonal matrix. In this study, the authors
leveraged the self-learning diagonal matrix to calculate the
eigenvalues of vertices.

There are some limitations of spectral CNN. The first is
the high time complexity. In a graph, the feature decompo-
sition of the Laplacian matrix needs to be performed on all
the elements. In addition, we have to compute to product
of U, A, and UT in each forward propagation. The time
complexity is high, especially for some large-scale graphs.

Furthermore, the number of parameters of the convolution
kernel depends on the number of vertices. Thus, this
approach is not suitable for a graph that consists of a large
number of vertices.

3.3.2. ChebNet. In order to reduce the computational (or
time) complexity, Defferrard et al. [39] proposed a Cheby-
shev polynomial as a filter so that the time complexity of
the convolution kernel can be reduced by leveraging polyno-
mial fitting. The key idea of this scheme is to define the Che-
byshev polynomial filter. As we discussed before, the time
complexity of Equation (4) is high. The time complexity of
the eigenvector matrix U is O(n?). To reduce the time com-
plexity, Hammond et al [40] proposed a polynomial
approximation for the self-learning parameter set, gy, which
is given by the truncated Chebyshev polynomial expansion:

go=90(A) = zein (4). (5)

Here, A is an adjustable eigenvector matrix, which is
adjusted to satisty the requirement of truncated Chebyshev
polynomial expansion. Also, 0; is the Chebyshev coeflicient
and the Chebyshev polynomial obeys the recursion relation
Tp(x) = 2xTj_y (x) = T (%)

Compared to spectral CNN, the ChebNet expression is
K-localized and has local connectivity as it is a K™-order
polynomial. In addition, the ChebNet expression identifies
the longest step of the convolution process, which is K
distance from the center element. The time complexity of

T (A) is O(|E|), which has is proportional to the number
of edges E. Thus, the overall time complexity of the expres-
sion is O(K|E|). When the input data is a sparse graph, it can
significantly reduce the time complexity, which is much
smaller than O(n?).

3.3.3. Graph Convolution Network. Based on the spectral
convolution and ChebNet model, Kipf and Welling [41]
proposed graph convolutional networks (GCNs), also
named as first-order ChebNet. The GCN is a basic GNN

Wireless Communications and Mobile Computing

Hidden Layer
)

“\

/
ﬁ‘\
™ I
[

T~ e~

=/
=~ \
! [
) 1
-
\

ReLU

Hidden Layer
R

“\

/
K\/,,_\
™ I
Lo
y \

N Output

_-=/

*:

AR
\

“\
\

’

2

T
N

-

~—

F1GURE 4: GCN model.

model, and a number of studies are based on GCNs to
develop new variations of GNN models. There are two key
contributions in [41]. First, compared to the schemes that
directly operate on graph structure data [38, 39], a simple
approximate layer based on the first-order approximation
was proposed so that the calculation could be simplified.
Second, the graph structure neural network model was vali-
dated for conducting quick and scalable processing of the
semisupervised classification in graph-related data. The effi-
ciency and accuracy of the proposed scheme were validated
on some existing public datasets.

Figure 4 illustrates the structure of GCN. As shown in
the figure, the input is an entire graph. In Convolution Layer
1, a convolution operation is performed on the neighbors of
each node, and the node is updated with the result of convo-
lution. Then, the GCN applies the activation function (e.g.,
ReLU) to the convolution results. Following the activation
layer, the output is pushed into another convolution layer
and activation layer, which is the second loop. After that,
the process is repeated until the output approaches the accu-
racy requirement. Thus, the GCN can increase the depth of
convolution layers so that the accuracy requirement for each
specific case can be satisfied. The GCN has a local output
function, which is used to convert the state of the node
(including the hidden state and the node feature) into the
task-related tags.

In general, there are two different tasks for a GCN. The
first is node level task, such as the classification of social
media accounts, which focuses on the classification of differ-
ent nodes. Each social media account can be a node in the
graph. Classifying the account is equivalent to classifying
nodes in the graph. Second is graph level task, such as the
classification of compounds, which focuses on the classifica-
tion of different graphs. The compound can be formalized as
a graph. Classifying the compound is equivalent to classify-
ing the graph. Convolution operations focus on updating
the hidden state of individual nodes, which extract the fea-
tures of nodes [42-44]. In order to aggregate the features
for the entire graph, the GCN employs differentiable pooling
after convolution layers [45, 46]. By doing this, the GCN can
extract node features and leverage soft clustering and node
features to compute the graph representation. Based on the
graph representation, the features for the entire graph can
be derived.

3.3.4. Summary of Existing Spectral Convolution Schemes. In
Table 2, we summarize some existing studies, which are
based upon the spectral convolution strategy. We compare
the task, input parameters, input data, number of convolu-
tional layers, performance, and time complexity for existing
studies. In the table, A represents the adjacency matrix, X
represents the eigenvalues of vertices, and X° represents
the eigenvalues of edges.

4. Spatial Convolution Strategy

In this section, we present spatial convolution strategy. In
particular, we first present the principle of spatial convolu-
tion. Then, we review the existing GNN models that leverage
spatial convolution. Finally, we summarize the existing stud-
ies that adopt the spatial convolution strategy.

4.1. Spatial Graph Convolution. There are some issues when
we use the spectral graph convolution strategy. First of all,
the spectral graph convolution strategy is not suitable for
directed graphs. Although most real-world data can be for-
malized as undirected graphs, some traffic data or routing
data can be formalized in directed graphs, which do not
allow use of the graph Fourier transform and cannot convert
spatial information to spectral domain. In addition, due to
the immutability of Laplacian’s feature matrix U, the struc-
ture of the graph cannot be changed during the training pro-
cess (e.g., the weight of edges, adding or deleting nodes).
Nonetheless, graphs are highly dynamic in real applications,
including social network data. Finally, the spectral CNN is
computationally intensive and time-consuming. Although
the ChebNet and GCN reduce the time complexity, they
only handle a small number of parameters, which is a limi-
tation of ChebNet and GCN. Thus, there are some studies
focused on the spatial convolution strategy, which tends to
transform the non-Euclidean space data to Euclidean space
data so that the convolution can be carried out directly.
We discuss some of these studies in the next subsection.

4.2. Typical Spatial Graph Neural Networks. We now intro-
duce four different neural networks that adopt the spatial
convolution. Table 3 lists the features of each neural
network.

Wireless Communications and Mobile Computing

TaBLE 2: Summary of existing spectral convolution approaches.

Convolution schemes Task parI:Ifllel':ers Input data Il\i;),;;:. PERF Time complexity
Spectral CNN [38] Classification A X MNIST — 98.7% o(n*)
SyncSpecCNN [47] Identification A X Annotations 10 84.74% O(ns)
SyncSpecCNN [48] Prediction A X, X° DBLQ network data — — —
SyncSpecCNN [49] Classification A X Yeast dataset — 56.0% —
SSF-CNN [50] Classification A X, X HS, CAVE 3 — O(n?)
Graph CNN [51] Identification AX MNIST — 9423% o(n’)
GCN [52] Prediction A X, X MINI 2 7% O(n?)
Semisupervised GCN [41] Classification A X, X° Cora, CiteSeer 2 70.3% O(K|E|)
GCN [53] Classification AX Protein data — 84.6% —
Multigraph GCN [54] Classification A X, X Bunny mesh — 93.58% —
Local SGCN [55] Classification A X MNIST 2 95.74% o(n?)
S-GCN [56] Classification A X, X* Reddit, Flickr — 96.8% O(nr)
S-GCN [57] Classification A X, X° Cora, CiteSeer 6 83.12% O(K|E|)
DSGCN [18] Classification A X ENZYMES 7 78.39% o(n?)
Semisupervised GCN [58] Classification A X Cora, CiteSeer 2 74.5% —
AGCN [59] Prediction A X, X Delaney 2004 7 79.4% o(d?)
Multiscale GCN [60] Classification A X, X¢ Cora, CiteSeer — 792% O(nz)
EGCN [61] Classification A X, X RF, Weave 2 82.0% o(n?)
F;;Cﬁonal brain network Classification A X, X ABIDE 10 90.0% o(n?)
Text level GCN [63] Classification A X R52 — 94.6% —
Edge-labeling GCN [64] Classification AX minilmageNet — 76.4% o(n*)
Graph WNN [65] Classification AX Cora, CiteSeer 16 82.8% O(npq)
A’GNN [66] Classification A X HDMO05, LSC 5 98.6% —
StemGNN [67] Identification A X, X COVID-19 — 91.74% O(n*d)
PA-GNN [68] Defe“iit:;fidous AX Reddit 2 7957% o(n?)
Quantum GNN [69] Classification A X Kolmogorov-Smirnoft — 95.3% O(nz)
Recurrent multi-GNN [70] Classification A X, X* Synthetic dataset — 99.3% O(mn)
Few-shot GNN [71] Classification A X ILSVRC-12 5 99.2% o(n?)
Transferability GNN [72] Classification A X Cora — 76.5% o (ﬁ
Line-GNN [73] Classification AX Stochastic block mode 30 93.7% O(n?)
Spectrum DNN [74] Classification AX UMD Wikipedia dataset ~ — 82.61% O(HZ)
Spectral marching [75] Identification A X Image — 96.1% O(Vlsz)
TGC-LSTM [76] Prediction A X, X° INRIX traffic 11 97.43% 0] (nz)
Graph-ARMA [77] Classification A X, X° MNIST, 20news 3 91.5% o(n?)
GCEF [78] Prediction A, X, X° ML-10M, Taobao 3 79.6% —
Spectral clustering [19] Classification A X, X° Cora, CiteSeer — 987% o(n*)
LB spectral filtering [79] Classification A X, X° ADNI 5 91.1% —

Wireless Communications and Mobile Computing

TaBLE 2: Continued.

Input

No. of

Convolution schemes Task parameters Input data layers PERF Time complexity
GSDN-F, GSDN-EF [80] Classification A X, X Cora, CiteSeer — 957% o(n*)
DAGN ([81] Classification A X, XE Cora, CiteSeer 24 85.4% O(|E|)
Graph hashing network [82] Classification A X, X¢ MNIST 6 84.2% O(dﬂz)
KM2A arrays [83] Classification AX Cosmic-ray data — 953% O(Kle|)
CayleyNets [84] Classification A X, X° MNIST 2 99.18% O((k+1)rn)
Median spectral graph [85] Identification AX Attributed graphs — 832% O(nz)
GINN [86] Classification A X Cora, CiteSeer 2 80.9% O(ﬂz)

GIN [87] Classification A X MUTAG — 91.6% —
LNPP/SBMF [88] Classification A X Social network — 96.8% —
Learning graph [89] Classification A X, X° Chemicclzlt;l:)tlecular 2 864% O(dm)
LNN with graph sparsity [90] Classification AX MNIST 5 96.1% —
GeniePath [91] Classification A X, X¢ MINI 18 96.5% O(le])
Heterogeneous GAN [92] Classification A X, X* DBLP, ACM — 84.76% O(V4F F,K+EgF K)

TaBLE 3: Example of spatial graph neural networks.

Convolution approach Neighbor node selection

Order of neighbors Kernel parameters

GNN Random walk
GraphSAGE Uniform sampling
GAT First-order neighbor node
PGC Sampling function

Determined by weight functions

Ordered Not shared
Disordered Shared
Disordered Shared

Determined by weight functions

1 l‘~‘l‘~~-0_‘ O~~-_

x1 %0 x1 Biniat- NSRRI S
0 1 1 1 0 n
x0 x1 x0

I ke] S | R

Image Convolution kernel

FiGure 5: Convolution operation on non-Euclidean space data.

4.2.1. Graph Neural Network. The GNN transforms the
graph to Euclidean space data and then applies the general
convolution to the data. There are three steps to successfully
complete convolution in GNN. First, it identifies the neigh-
bor field of each node. Since the neighbor nodes are dynamic
in non-Euclidean space data, it must identify the neighbor
field before defining the convolution kernel. Then, it defines
the field of the convolution kernel. Finally, the inner product
for corresponding elements in the field and convolution ker-
nel is performed, which is similar to convolution in Euclid-
ean space. Figure 5 illustrates an example of convolution in

Euclidean space which adopts a 3 by 3 filter to abstract fea-
tures from the original image. In addition, Figure 6 shows an
example of convolution by using GNN. It clearly shows that
the filter has no fixed structure in the convolutional process
of non-Euclidean datasets. The structure of the filter
depends on the neighbor field.

As we discussed before, determining the neighbor field is
one important step. To this end, Hechtlinger et al. [93]
adopted random walk to identify the neighbor field within
graphs. In their study, the following parameters are defined:
P matrix as the random walk transition matrix (i.e., P;; as the

transition probability from node i to node j), S matrix as the
similarity matrix whose elements indicate how similar the
graph nodes are, and D matrix as the degree matrix. Given
a graph G, P can be defined as P = D™'S. In addition, P* rep-
resents multistep transition matrix whose (i, j)th element is
the probability of the random walk moving from node i to
node j in k steps. Increasing the value of k will grow the size
of neighbor field.

4.2.2. Graph Sample and Aggregate. Another graph convolu-
tion neural network model is Graph Sample and Aggregate
(GraphSAGE), which was proposed by Hamilton et al.
[94]. In this study, the graph convolution can be realized

10

Wireless Communications and Mobile Computing

FiGurg 6: Convolution operation on Euclidean space data.

by sampling and aggregation. As a variation from GNN, the
input order of aggregation functions has no impact on the
result in GraphSAGE, meaning that GraphSAGE can handle
disordered neighbor nodes. There are the following three
key steps in GraphSAGE: (i) a fixed number of neighboring
nodes is obtained through sampling; (ii) the aggregation
function is used to obtain the aggregation information of
neighboring nodes so that the features of the center element
can be obtained; and (iii) the aggregation information of
neighboring nodes is used to classify or predict the content
or labels of the center element. In Hamilton et al.’s study,
the authors leveraged the uniform sampling strategy to select
a fixed number of neighbor nodes. Uniform sampling can be
repeated on the connected first-order nodes to obtain a
neighbor field with a fixed number of nodes. Furthermore,
they proposed three aggregators. The first one is the mean
aggregator, which is computed by weight matrices and a
nonlinear activation function. The second aggregator is
called the long short-term memory (LSTM) aggregator,
which is an updated version of the mean aggregator. In the
LSTM aggregator, the input data needs to be organized in
a sequential manner. Because of the extra operation, the
LSTM aggregator shows a stronger expressive ability than
the mean aggregator. The last aggregator is the pool aggrega-
tor. In the pooling approach, the vectors of each neighbor
are fully fed with forwarding propagation. After the forward
propagation, the max-pooling aggregates features across the
neighbor fields.

4.2.3. Graph Attention Network. Velickovi¢ et al. [95] pro-
posed a Graph Attention Network (GAT), which introduced
the attention mechanism into the graph convolution model,
and used the attention mechanism to model the correlation
among nodes. In this study, they summarized the weakness
of GNN and GraphSAGE, which shares the same convolu-

tion kernel parameters for all the nodes. This affects the final
results in some cases as the degree of association is different
between nodes in the neighbor field. It is necessary to adopt
different convolution kernel parameters to treat different
nodes. The aggregation process of the GAT is represented by

- 1 & -
h;:a<§z Zocf.‘jthJ.). (6)

k=1 jes;

The ocfj Wkh j represents the attention mechanism. Here,
W denotes a weight matrix, and a set of attention mecha-
nism coeflicients {ocf?j}j , is included in Equation (6), which

is a single forward propagation neural network. In addition,
the attention mechanism adopts the “LeakyReLU” nonlinear
activation function, which has a small negative linear slope
for negative input values [96]. After defining the aggregation
process of the GAT, Velickovi¢ et al. [95] leveraged Cora,
CiteSeer, and PubMed datasets to evaluate the efficacy of
GAT, and experimental results demonstrated the ability on
classifications.

4.2.4. Partition Graph Convolution. In Partition Graph Con-
volution (PGC), the convolution process is treated as sample
and weight function. Yan et al. [97] proposed a scheme to
obtain the sample function and weight function. In detail,
the sampling function selects sample nodes in the neighbor
field. The key is to identify the neighbor field, which is the
sampling area. For the weight function, it classifies different
nodes in the neighbor field to K groups. It shares the convo-
lution kernel parameters within the same group and does
not share parameters across different groups, which reduces
the shared field size and increases the final accuracy. In the
study, they defined three different classification schemes.

Wireless Communications and Mobile Computing

11

TaBLE 4: Summary of existing spatial convolution schemes.

Convolution scheme Task Input parameters Input data No. of layers ~ PERF Time complexity
GNN [98] Classification A X, X° SNAP social network 30 76.5% O(flz)
Enhanced GNN [99] Classification A X, X° Cora, CiteSeer — 92.5% —
graph-CNN [100] Classification A X, X° MCI/AD diagnosis 6 87.5% —
GGNN [101] Identification A X, X* Protein data 2 72.6% 0(112)
SPAGNN [102] Prediction AX Self-driving 4 83.9% —
STGNN [103] Prediction A X METR-LA — 93.45% o(n?)
ST-GCN [97] Identification AX Skeleton actions 3 88.3% —
SIA-GCN [104] Identification A X, X° Panoptic dataset 5 81.7% O(flz)
ST-ResNet [105] Prediction A X, X° Traffic data 15 93.7% —
AttConvLSTM [106] Prediction A X, X* TaxiNYC 12 86.7% —
DMVSTN [107] Prediction A X, X° Didi Taxi 5 90.7% o(n?)
Sequential GNN [108] Prediction A X, X¢ Traffic data 13 83.5% 0] (ﬂz)
STAGN [109] Classification AX Card transaction data 5 870.0% —
SDynamicGRCNN [110] Prediction A X, X° Traffic data — 89.7% —
Semisupervised GNN [111] Prediction A X, X° Parking dataset 12 93.1% 0] (flz)

The first classification scheme is called unilabeling, which is
the same as GNN since it classifies all the nodes as one group.
The second scheme is called distance classification, which
classifies nodes according to the order. The central element
is “0” order, adjacent elements are the first-order, etc. The last
scheme is called spatial configuration, which is specifically
for skeleton action identification. The spatial configuration
defines a reference distance. Based on the reference distance,
it classifies different nodes. After determining two functions,
the convolution function can be represented by f_ . (v;) =

ZVJEB(vi)(1/Zi<vj))fin(vj) . W(li(vj)). Here, v; € B(v;) denotes
the sampling function, which samples from B(v;), the set of
distance-1 neighbors of node v; in different orders. Also, Z;
(v;) is the normalization coefficient, and W) is the weight
function. Compared to GraphSAGE that adopts mean sam-
pling, PGC is more generic for different cases since it defines
a sampling function.

4.2.5. Summary of Existing Spatial Convolution Schemes. In
Table 4, we summarize the existing studies based on the spa-
tial convolution strategy. Similar to Subsection 3.3.4, we also
compare the task, input parameters, input data, number of
convolutional layers, performance, and time complexity for
the existing studies.

5. GNN Applications in Internet of Things (IoT)

5.1. Overview. Since GNN has the ability to analyze non-
Euclidean space data and the IoT data is highly dynamic
and dimensional, there are some potentials to leverage
GNN to assist data analysis in IoT systems. In IoT systems,
sensors collect data related to a variety of things, including

weather, location, and temperature. To obtain the accurate
results of data analysis, existing studies usually involve mul-
tiple data sources in deep learning models and the data
source is considered as a key factor in the training process
of learning models. Nonetheless, the diverse data source,
dynamics data, and complex relationship between different
data elements make it difficult to organize and process the
data as the one in Euclidean space. Traditional deep learning
models (CNN, RNN, etc.) cannot treat data analysis and
obtain accurate results in non-Euclidean space data. In addi-
tion, IoT data has become more complex since more IoT
devices are connected to IoT systems and systems are
dynamic. In order to handle the complex IoT data, GNN
models can be adopted in some IoT systems for analyzing
IoT data, since GNN models show great abilities in analyz-
ing non-Euclidean space data. There are some existing stud-
ies on applying GNN to IoT systems. In the following, we
review several typical IoT scenarios, which adopt GNN to
assist data analysis process.

5.2. GNN in Transportation Traffic Prediction. The goal of
traffic prediction in transportation systems is leveraging
the historical traffic data and road topology to predict the
traffic speed, traffic flow, and throughput so that the deci-
sions for mitigating the traffic congestion can be provided
[112-114]. Obviously, the precise prediction results can
assist drivers in selecting optimal paths and reducing the
occupation of transportation networks. For example, Du
et al. [115] proposed a GNN-based method to carry out
the prediction of traffic flows in the transportation system.
In their study, they focused on the temporal traffic data that
is time-series data. First, they defined the traffic data as V,
€ R™, where n is the number of nodes and ¢ is the number

12

of channels. Note that ¢ is a c-dimensional vector for each
node n, which represents the features at a specific time t.
The status can be the values of traffic flow, speed, and con-
gestion in this area. When c¢ is 1, the model only considers
one feature of the traffic. After that, they formalized the traf-
fic prediction process. In their study, they only consider the
scenario with one node. Also, the input is 1-dimensional
vectors, indicating that only time domain is considered.
Thus, no spatial information is involved in the model as
one node is considered. Then, they arranged all the nodes
to an array (1-dimensional vector) and leveraged full con-
nected layers to analyze the data. Some similar research
efforts consider different features of traffic, such as traffic
flow [116], traffic speed [117], and weather [118].

Likewise, Ma et al. [119] proposed a graph CNN for the
prediction of traffic congestion in transportation networks.
In their study, they proposed a spatial-temporal matrix, in
order to treat the time-series data at multiple locations in
the transportation network as an image. This scheme applies
two convolution operations on temporal and spatial
domains. Thus, the model involves multiple nodes and com-
plex situations, and their study converts graph data to images
and applies two convolution operations, which do not apply
the graph convolution directly on the graph datasets. Thus,
the impacts of the relationship between different nodes can-
not be manifested in prediction results. In order to overcome
the issue, Wang et al. [120] proposed a lattice-based data rep-
resentation and leveraged convolution operation in lattice-
based images directly. However, this approach inherits some
limitations. First, traffic data includes geographical informa-
tion; however, lattice-based images cannot embed the corre-
lation geographical information. Furthermore, as the lattice-
based scheme treats different nodes as pixels, only the impact
of connected neighbors is considered. In real-world scenar-
ios, the traffic conditions in one location could be affected
not only by neighboring traffic conditions but also by traffic
conditions that are far away from this location.

In order to overcome the aforementioned problem, Yu
et al. [121] proposed a GNN-based scheme, which creates
a graph to represent the traffic conditions. They leveraged
nodes to represent monitoring stations and weights to repre-
sent different features between stations. By doing this, they
created a comprehensive graph to represent irregular trans-
portation networks. When creating the graph, they used a
Gaussian kernel to construct the weighted adjacency matrix,
W. In detail, they adopted a Euclidean distance metric and
defined a threshold A. If the Euclidean distance is larger than
the threshold A, the relationship features can be represented
by “07; otherwise, leverage the relationship features as
parameter and Gaussian kernel function to obtain the result.

Furthermore, there are other studies that focus on
improving the performance of [121]. For example, Chai
et al. [122] studied a multigraph convolutional network to
optimize the computation of distances. Wu et al. [123]
investigated a Graph WaveNet that leverages an adaptable
adjacency matrix to deal with different traffic situations.
Likewise, Guo et al. [124] designed an attention-based
spatial-temporal graph convolutional networks, which can
adapt to different traffic situations.

Wireless Communications and Mobile Computing

5.3. GNN in Electrical Energy Prediction. The smart grid is a
typical energy-based IoT system, which adopts IoT devices
(sensors, actuators, etc.) to collect massive amounts of data
in electricity transmission and distribution systems. Based
on the data analysis, the smart grid system can be operated
efficiently and intelligently. The electric grid can be modeled
as graph structure where the collected data associated with
various nodes corresponds to different geographic locations.
In addition, the data in the grid is highly dynamic. There are
some studies on leveraging GNN to assist the data analysis
process.

For example, Owerko et al. [125] proposed a GNN-based
prediction scheme to prevent power outages. Since GNNs
can process highly dynamic data (e.g., graph data), they con-
sidered not only the historical data of the electrical grid but
also weather conditions, geographical location, and altitude.
Then, they formalized weather, geographical location, alti-
tude, and power usage data as an undirected graph. The best
evaluation results achieved 1.04% error rate in predictions
when using a GNN with no pooling. Likewise, Khodayar
and Wang [126] proposed a GNN-based short-term wind
level prediction scheme, in order to increase the output of
wind power. Wind speed prediction is still a challenging
problem due to stochastic and timely varying properties of
wind. In their study, the authors proposed a graph deep
learning model to capture the spatial-temporal features of
the wind near to wind turbines. Each node of the graph
corresponds to a wind site, and a localized first-order
approximation of spectral graph convolutions is used to
obtain the value of features. Their evaluation results show
their proposed scheme outperform other prediction schemes
that they considered, such as feed-forward neural networks
and nonlinear autoregressive neural networks with respect
to both Root Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE) performance metrics.

In addition, Khodayar et al. [127] adopted the GNN
model to predict solar irradiance, in order to increase the
power generation from photovoltaic systems. In their study,
they adopted the deep generative model to capture probabil-
ity densities for continuous neighboring nodes for a graph.
In order to reduce the complexity, their approach involves
a scalable generative optimization algorithm to assist the
capture process for probability densities. Further, the
authors leverage probability densities to generate the convo-
lutional graph autoencoder (CGAE), which is used to fore-
cast solar irradiance. By using real data in the northern
states of the U.S,, the evaluation results confirm that the
investigated scheme has the best performance with respect
to reliability, sharpness, and continuously ranked probability
score.

5.4. GNN in Industrial IoT. Industrial IoT (IIoT) which
encompasses multiple areas such as manufacturing, trans-
portation and distribution, and mining and refining of raw
materials connects massive numbers of IoT devices, which
generate massive amounts of data. Based on the data analy-
sis, IIoT will rely on data collection and analysis to achieve
automation and intelligence. From the cyberphysical system
perspective, a IIoT system consists of a network subsystem, a

Wireless Communications and Mobile Computing

control subsystem, and a computing subsystem. As IIoT sys-
tems could generate massive amounts of data and comput-
ing resources are generally limited, how to optimize the
performance of the network, control, and computing subsys-
tems is a critical issue [128].

There are a number of research efforts on leveraging
machine learning to optimize the resource allocation prob-
lem in IIoT systems [11, 129-132]. Most of the efforts only
focused on Euclidean space datasets, which did not consider
system topologies and other related features. Some studies
have been leveraging new developments in GNNs to assist
resource management. For example, Liu et al. [133] pro-
posed a Dyna-Q (DDQ) approach based on the discrete-
time Markov decision process (DTMDP). Since the service
requirements are highly dynamic in IIoT systems, the net-
work function virtualization technology receives growing
attention. Given limited computing resources in the virtual
environment, designing efficient scheduling algorithms is
necessary. To this end, the proposed DDQ leverages GNN
to predict resource requirements for the virtual network
function instance (VNFI) so that the service scheduling
can be dynamically reconfigured on the virtualized service
chain, leading to the improvement of resource utilization.

In addition, Kim et al. [134] proposed a GNN-based
autonomous operation control scheme for IIoT networks.
They leveraged GNNs to analyze the behaviors of different
devices, based on the relationship and security requirements,
and provided autonomous control to ensure both access and
security. From the system perspective, Zhang et al. [135]
proposed a Graph Neural Network Modeling for IoT
(GNNM-IoT) scheme that leverages GNNs to simulate IoT
network systems. By leveraging the GNN, the proposed sim-
ulator has salient ability to analyze the hidden logical rela-
tionships between different domains of massive embedded
sensors. Zhang et al. used the proposed GNNM-IoT to gen-
erate complex nonlinear datasets, achieving better results
than long short-term memory (LSTM) and Autoregressive
Integrated Moving Average (ARIMA) schemes. Likewise,
Protogerou et al. [136] proposed a multiagent system based
on GNNs to detect attacks against the network. To improve
the performance, they formalized active network nodes such
as IoT devices, software-defined network forwarders, and
fog nodes as a graph to generate the high-dimensional data
input. The proposed GNN model is capable of accurately
detecting anomalies. To evaluate the proposed GNNs’
response to malware attacks, they simulated network flows
of various normal and abnormal packet distributions.

6. Limitations of Graph Neural Networks

We now review the limitations of GNNs with respect to uni-
versality and computing overhead.

6.1. Universality of GNN. If a machine learning model can
adapt to any input and situation, we consider that the model
has Turing universality [137]. Nonetheless, there is no
machine learning model that has Turing universality. Simi-
lar to GNN, the universality of GNN is one of its limitations.
Satistying some sufficient conditions, GNN can operate on

13

any input function in the form of a Turing machine and is
not limited to the network structure [138]. By establishing
the Turing equivalence between GNN and the classic distrib-
uted computing model, we can summarize the sufficient
conditions [139]: the sufficient depth of layers, sufficient
breadth of convolution layers, independent nodes, and accu-
rate expressions for each layer. However, in some cases, it is
impossible to obtain accurate mathematical expressions for
the model. In addition, adding more layers to a model
increases the computing complexity as well. The computing
ability of physical devices limits the number of layers of a
model. Thus, a number of research efforts leverage matrix
approximation, instead of obtaining exact expressions
[137]. Thus, how to obtain accurate mathematical expres-
sions for the model while reducing the computing complex-
ity is an important and challenging issue. Furthermore,
GNN has low flexibility, transductive, and scalability [140].

6.2. Computing Overhead of GNN. As we discussed earlier,
because of limited depth and breadth, GNN cannot show
its Turing universality and has high computing complexity.
Thus, it cannot obtain accurate results when it is applied to
some specific datasets. In this case, optimizing the GNN
remains an unsolved problem. Related to this issue, Li
et al. [141] proposed a learning-based approach based on
approximation algorithms and heuristic solvers, in order to
reduce the computing complexity. In detail, they leveraged
a well-trained graph convolutional network to estimate the
likelihood of whether the specific vertex has an optimal solu-
tion. By doing so, the GNN significantly increases the search
speed for traversing all the vertex in the graph. Then, they
adopted a tree search to traverse all the vertex in the graph.
The proposed approach can increase search speed in large
graphs.

7. Final Remarks

Since the complexity of datasets is increasing, how to deal
with highly dynamic and dimensional data is a critical issue
for machine learning models. In this study, we reviewed the
principle of GNNs and existing research efforts. We first
introduced the motivation for extending the training data
from Euclidean space data to non-Euclidean space data.
After that, we introduced two different strategies used to
handle non-Euclidean space data: spectral and spatial con-
volution strategy. We surveyed the existing studies and cat-
egorized those studies according to their respective
convolution strategies. Next, we reviewed the existing stud-
ies on the application of GNNs to emergent IoT systems,
including vehicular traffic prediction, electrical energy pre-
diction, and resource management in IIoT systems. Finally,
we discussed some limitations of GNNs with respect to uni-
versality and computing overhead.

Data Availability

This article does not cover data research. No data were used
to support this study.

14

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

(1]

(7]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimen-
sionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504-507, 2006.

T. Mikolov, M. Karafidt, L. Burget, J. Cernocky, and
S. Khudanpur, “Recurrent neural network based language
model,” in Eleventh annual conference of the international
speech communication association, 2010.

W. G. Hatcher and W. Yu, “A survey of deep learning: plat-
forms, applications and emerging research trends,” IEEE
Access, vol. 6, pp. 24411-24432, 2018.

Z. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Gener-
ative adversarial networks: a survey toward private and secure
applications,” ACM Computing Surveys (CSUR), vol. 54,
no. 6, 2021.

H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on
industrial internet of things: a cyber-physical systems per-
spective,” IEEE Access, vol. 6, pp. 78238-78259, 2018.

F. Liang, W. G. Hatcher, W. Liao, W. Gao, and W. Yu,
“Machine learning for security and the internet of things:
the good, the bad, and the ugly,” IEEE Access, vol. 7,
pp. 158126-158147, 2019.

H. Xu, X. Liu, W. Yu, D. Griffith, and N. Golmie, “Reinforce-
ment learning-based control and networking co-design for
industrial internet of things,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 5, pp. 885-898, 2020.

K. Li, G. Luo, Y. Ye, W. Li, S. Ji, and Z. Cai, “Adversarial
privacy-preserving graph embedding against inference
attack,” IEEE Internet of Things Journal, vol. 8, no. 8,
Pp. 6904-6915, 2021.

C. Qian, W. Yu, C. Lu, D. Griffith, and N. Golmie, “Toward
generative adversarial networks for the industrial internet of
things,” IEEE Internet of Things Journal, p. 1, 2022.

Y. Liang, Z. Cai, J. Yu, Q. Han, and Y. Li, “Deep learning
based inference of private information using embedded sen-
sors in smart devices,” IEEE Network, vol. 32, no. 4, pp. 8-
14, 2018.

F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Toward
edge-based deep learning in industrial Internet of Things,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4329-
4341, 2020.

W. G. Hatcher, C. Qian, W. Gao, F. Liang, K. Hua, and
W. Yu, “Towards efficient and intelligent internet of things
search engine,” IEEE Access, vol. 9, pp. 15778-15795, 2021.
O. Sener and S. Savarese, “Active learning for convolutional
neural networks: a core-set approach,” 2017, https://arxiv
.org/abs/1708.00489.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and
P. Vandergheynst, “Geometric deep learning: going beyond
Euclidean data,” IEEE Signal Processing Magazine, vol. 34,
no. 4, pp. 18-42, 2017.

Z. Chen, F. Chen, L. Zhang et al., “Bridging the gap between
spatial and spectral domains: a survey on graph neural net-
works,” 2020, https://arxiv.org/abs/2002.11867.

R. Sato, “A survey on the expressive power of graph neural
networks,” 2020, https://arxiv.org/abs/2003.04078.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

[32

(33]

(34]

(35]

Wireless Communications and Mobile Computing

L. C. Lamb, A. Garcez, M. Gori, M. Prates, P. Avelar, and
M. Vardi, “Graph neural networks meet neural-symbolic
computing: A survey and perspective,” 2020, https://arxiv
.org/abs/2003.00330.

M. Balcilar, G. Renton, P. Héroux, B. Gauzere, S. Adam, and
P. Honeine, “Bridging the gap between spectral and spatial
domains in graph neural networks,” 2020, https://arxiv.org/
abs/2003.11702.

F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral cluster-
ing with graph neural networks for graph pooling,” in Inter-
national Conference on Machine Learning, pp. 874-883,
2020.

S. Abadal, A. Jain, R. Guirado, J. Ldpez-Alonso, and
E. Alarcon, “Computing graph neural networks: a survey
from algorithms to accelerators,” Computing surveys,
vol. 54, no. 9, pp. 1-38, 2022.

Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: a
survey,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 34, no. 1, pp. 249-270, 2022.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip,
“A comprehensive survey on graph neural networks,” IEEE
transactions on neural networks and learning systems,
vol. 32, no. 1, pp. 4-24, 2021.

F. Rosenblatt, Principles of Neurodynamics. Perceptrons and
the Theory of Brain Mechanisms, Cornell Aeronautical Lab
Inc, Buffalo NY, 1961.

J. J. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings of
the National Academy of Sciences, vol. 79, no. 8, pp. 2554
2558, 1982.

T. J. Sejnowski, “Higher-order Boltzmann machines,” in AIP
Conference Proceedings, vol. 151no. 1, pp. 398-403, 1986.
P.J. Werbos, “Generalization of backpropagation with appli-
cation to a recurrent gas market model,” Neural Networks,
vol. 1, no. 4, pp. 339-356, 1988.

F.J. Pineda, “Generalization of back-propagation to recurrent
neural networks,” Physical Review Letters, vol. 59, no. 19,
pp. 2229-2232, 1987.

R. McEliece, The Theory of Information and Coding, Cam-
bridge University Press, 2009.

J. S. Long, Regression Models for Categorical and Limited
Dependent Variables, 1997.

J. Bromley, I. Guyon, Y. Le Cun, E. Sickinger, and R. Shah,
“Signature verification using a" Siamese" time delay neural
network,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 7, no. 4, pp. 669-688, 1993.

S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face rec-
ognition: a convolutional neural-network approach,” IEEE
Transactions on Neural Networks, vol. 8, no. 1, pp. 98-113,
1997.

W. Jiang and J. Luo, “Graph neural network for traffic fore-
casting: a survey,” 2021, https://arxiv.org/abs/2101.11174.

F. Chollet, “Xception: deep learning with depthwise separable
convolutions,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1251-1258, 2017.
X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural
network with LeakyReLU for environmental sound classifica-
tion,” in 2017 22nd International Conference on Digital Signal
Processing (DSP), pp. 1-5, London, UK, 2017.

L. Zhou, C. Zhang, and M. Wu, “D-LinkNet: LinkNet with
pretrained encoder and dilated convolution for high

https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/1708.00489
https://arxiv.org/abs/2002.11867
https://arxiv.org/abs/2003.04078
https://arxiv.org/abs/2003.00330
https://arxiv.org/abs/2003.00330
https://arxiv.org/abs/2003.11702
https://arxiv.org/abs/2003.11702
https://arxiv.org/abs/2101.11174

Wireless Communications and Mobile Computing

(36]

(37]

(38]

(39]

(40]

(47]

(48]

(49]

(50]

(51]

resolution satellite imagery road extraction,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 182-186, 2018.

Y. Wei, H. Xiao, H. Shi, Z. Jie,]. Feng, and T. S. Huang, “Revi-
siting dilated convolution: a simple approach for weakly-and
semi-supervised semantic segmentation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 7268-7277, 2018.

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing
on graphs: extending high-dimensional data analysis to net-
works and other irregular domains,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 83-98, 2013.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” 2013,
https://arxiv.org/abs/1312.6203.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolu-
tional neural networks on graphs with fast localized spectral
filtering,” 2016, https://arxiv.org/abs/1606.09375.

D. K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Applied and
Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-
150, 2011.

T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” 2016, https://arxiv.org/
abs/1609.02907.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E.
Dahl, “Neural message passing for quantum chemistry,” in
International Conference on Machine Learning, pp. 1263
1272, 2017.

J. Atwood and D. Towsley, “Diffusion-convolutional neural
networks,” 2015, https://arxiv.org/abs/1511.02136.

M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolu-
tional neural networks for graphs,” in International confer-
ence on machine learning, pp. 2014-2023, 2016.

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond finger-
prints,” Journal of Computer-Aided Molecular Design,
vol. 30, no. 8, pp. 595-608, 2016.

R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and
J. Leskovec, “Hierarchical graph representation learning with
differentiable pooling,” 2018, https://arxiv.org/abs/1806
.08804.

L. Yi, H. Su, X. Guo, and L. J. Guibas, “SyncSpecCNN: syn-
chronized spectral CNN for 3D shape segmentation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2282-2290, 2017.

J. Kunegis and A. Lommatzsch, “Learning spectral graph
transformations for link prediction,” in Proceedings of the
26th Annual International Conference on Machine Learning,
pp. 561-568, 2009.

A. D. Perkins and M. A. Langston, “Threshold selection in
gene coexpression networks using spectral graph theory tech-
niques,” in BMC bioinformatics, vol. 10, no. 1lpp. 1-11,
BioMed Central, 2009.

X.-H. Han, B. Shi, and Y. Zheng, “SSF-CNN: spatial and spec-
tral fusion with CNN for hyperspectral image super-resolu-
tion,” in 2018 25th IEEE International Conference on Image
Processing (ICIP), pp. 2506-2510, Athens, Greece, 2018.

M. Edwards and X. Xie, “Graph based convolutional neural
network,” 2016, https://arxiv.org/abs/1609.08965.

(52]

(53]

(55]

(56]

(57

[60]

[61]

(62]

[65]

(66]

(68]

15

S. Parisot, S. I. Ktena, E. Ferrante et al., “Spectral graph con-
volutions for population-based disease prediction,” in Inter-
national conference on medical image computing and
computer-assisted intervention, pp. 177-185, Cham, 2017.

P. Tripathi and P. N. Pandey, “A novel alignment-free
method to classify protein folding types by combining spec-
tral graph clustering with Chou's pseudo amino acid compo-
sition,” Journal of Theoretical Biology, vol. 424, pp. 49-54,
2017.

R. Levie, W. Huang, L. Bucci, M. M. Bronstein, and
G. Kutyniok, “Transferability of spectral graph convolu-
tional neural networks,” 2019, https://arxiv.org/abs/1907
.12972.

C. Wang, B. Samari, and K. Siddiqi, “Local spectral graph
convolution for point set feature learning,” in Proceedings of
the European conference on computer vision (ECCV),
pp. 52-66, 2018.

E. Rossi, F. Frasca, B. Chamberlain, D. Eynard, M. Bronstein,
and F. Monti, “Sign: scalable inception graph neural net-
works,” 2020, https://arxiv.org/abs/2004.11198.

A. Salim, “Framework for designing filters of spectral graph
convolutional neural networks in the context of regulariza-
tion theory,” 2020, https://arxiv.org/abs/2009.13801.

O. Shchur, M. Mumme, A. Bojchevski, and S. Giinnemann,
“Pitfalls of graph neural network evaluation,” 2018, https://
arxiv.org/abs/1811.05868.

R.Li, S. Wang, F. Zhu, and J. Huang, “Adaptive graph convo-
lutional neural networks,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 32, 2018no. 1.

S. Luan, M. Zhao, X.-W. Chang, and D. Precup, “Break the
ceiling: stronger multi-scale deep graph convolutional net-
works,” 2019, https://arxiv.org/abs/1906.02174.

L. Gong and Q. Cheng, “Exploiting edge features for graph
neural networks,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9211-9219,
2019.

S. I. Ktena, S. Parisot, E. Ferrante et al., “Distance metric
learning using graph convolutional networks: application to
functional brain networks,” in International Conference on
Medical Image Computing and Computer-Assisted Interven-
tion, pp. 469-477, 2017.

L. Huang, D. Ma, S. Li, X. Zhang, and H. Wang, “Text level
graph neural network for text classification,” 2019, https://
arxiv.org/abs/1910.02356.

J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph
neural network for few-shot learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Rec-
ognition, pp. 11-20, 2019.

B. Xu, H. Shen, Q. Cao, Y. Qiu, and X. Cheng, “Graph wavelet
neural network,” 2019, https://arxiv.org/abs/1904.07785.

C. Li, Z. Cui, W. Zheng, C. Xu, R. Ji, and J. Yang, “Action-
attending graphic neural network,” IEEE Transactions on
Image Processing, vol. 27, no. 7, pp. 3657-3670, 2018.

D. Cao, Y. Wang, J. Duan et al., “Spectral temporal graph
neural network for multivariate time-series forecasting,”
2021, https://arxiv.org/abs/2103.07719.

X.Tang, Y. Li, Y. Sun, H. Yao, P. Mitra, and S. Wang, “Trans-
ferring robustness for graph neural network against poison-
ing attacks,” in Proceedings of the 13th International
Conference on Web Search and Data Mining, pp. 600-608,
2020.

https://arxiv.org/abs/1312.6203
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1511.02136
https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1806.08804
https://arxiv.org/abs/1609.08965
https://arxiv.org/abs/1907.12972
https://arxiv.org/abs/1907.12972
https://arxiv.org/abs/2004.11198
https://arxiv.org/abs/2009.13801
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1906.02174
https://arxiv.org/abs/1910.02356
https://arxiv.org/abs/1910.02356
https://arxiv.org/abs/1904.07785
https://arxiv.org/abs/2103.07719

16

[69] G. Verdon, T. McCourt, E. Luzhnica, V. Singh,

S. Leichenauer, and J. Hidary, “Quantum graph neural net-
works,” 2019, https://arxiv.org/abs/1909.12264.

[70] F. Monti, M. M. Bronstein, and X. Bresson, “Geometric

(71]

(72]

(73]

(74]

(75]

(76]

(77]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

matrix completion with recurrent multi-graph neural net-
works,” 2017, https://arxiv.org/abs/1704.06803.

V. Garcia and J. Bruna, “Few-shot learning with graph neural
networks,” 2017, https://arxiv.org/abs/1711.04043.

L. Ruiz, L. F. Chamon, and A. Ribeiro, “Graphon neural net-
works and the transferability of graph neural networks,”
2020, https://arxiv.org/abs/2006.03548.

Z. Chen, X. Li, and J. Bruna, “Supervised community detec-
tion with line graph neural networks,” 2017, https://arxiv
.org/abs/1705.08415.

S. Yuan, X. Wu, J. Li, and A. Lu, “Spectrum-based deep neural
networks for fraud detection,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Manage-
ment, pp. 2419-2422, 2017.

A. Egozi, Y. Keller, and H. Guterman, “A probabilistic
approach to spectral graph matching,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 18-27, 2013.

Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph
convolutional recurrent neural network: a deep learning
framework for network-scale traffic learning and forecast-
ing,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 21, no. 11, pp. 4883-4894, 2019.

F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Graph
neural networks with convolutional ARMA filters,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 7, pp. 1-3507, 2021.

R.Yin, K. Li, G. Zhang, and J. Lu, “A deeper graph neural net-
work for recommender systems,” Knowledge-Based Systems,
vol. 185, article 105020, 2019.

S.-G. Huang, M. K. Chung, A. Qiu, and A. D. N. Initiative,
“Revisiting convolutional neural network on graphs with
polynomial approximations of Laplace-Beltrami spectral fil-
tering,” 2020, https://arxiv.org/abs/2010.13269.

G. Fu, Y. Hou, J. Zhang, K. Ma, B. F. Kamhoua, and J. Cheng,
“Understanding graph neural networks from graph signal
denoising perspectives,” 2020, https://arxiv.org/abs/2006
.04386.

G. Wang, R. Ying, J. Huang, and J. Leskovec, “Direct multi-
hop attention based graph neural network,” 2020, https://
arxiv.org/abs/2009.14332.

X. Li, D. Hu, and F. Nie, “Large graph hashing with spectral
rotation,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 31, 2017no. 1.

C.Jin, S. Z. Chen, and H. H. He, “Classifying cosmic-ray pro-
ton and light groups in LHAASO-KM2A experiment with
graph neural network,” Chinese Physics C, vol. 44, no. 6, arti-
cle 065002, 2020.

R. Levie, F. Monti, X. Bresson, and M. M. Bronstein, “Cayley-
nets: graph convolutional neural networks with complex
rational spectral filters,” IEEE Transactions on Signal Process-
ing, vol. 67, no. 1, pp. 97-109, 2019.

M. Ferrer, F. Serratosa, and A. Sanfeliu, “Synthesis of
median spectral graph,” in Iberian Conference on Pattern
Recognition and Image Analysis, pp. 139-146, Berlin, Hei-
delberg, 2005.

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Wireless Communications and Mobile Computing

H. Nt and T. Maehara, “Revisiting graph neural networks: all
we have is low-pass filters,” 2019, https://arxiv.org/abs/1905
.09550.

T. Cai, S. Luo, K. Xu, D. He, T.-y. Liu, and L. Wang, “Graph-
norm: a principled approach to accelerating graph neural
network training,” 2020, https://arxiv.org/abs/2009.03294.

Y. Wang, X. Wu, and L. Wu, “Differential privacy preserving
spectral graph analysis,” in Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pp. 329-340, Berlin, Heidel-
berg, 2013.

R. Li and J. Huang, “Learning graph while training: an evolv-
ing graph convolutional neural network,” 2017, https://arxiv
.org/abs/1708.04675.

E. Tam and D. Dunson, “Fiedler regularization: learning neu-
ral networks with graph sparsity,” in International Confer-
ence on Machine Learning, pp. 9346-9355, 2020.

Z. Liu, C. Chen, L. Li et al., “GeniePath: graph neural net-
works with adaptive receptive paths,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 1,
pp. 4424-4431, 2019.

X. Wang, H. Ji, C. Shi et al., “Heterogeneous graph attention
network,” in The World Wide Web Conference, pp. 2022—
2032, 2019.

Y. Hechtlinger, P. Chakravarti, and J. Qin, “A generalization
of convolutional neural networks to graph-structured data,”
2017, https://arxiv.org/abs/1704.08165.

W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive repre-
sentation learning on large graphs,” 2017, https://arxiv.org/
abs/1706.02216.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” 2017, https://
arxiv.org/abs/1710.10903.

A.L.Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinear-
ities improve neural network acoustic models,” in Interna-
tional Conference on Machine Learning, vol. 30no. 1, p. 3,
2013.

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convo-
lutional networks for skeleton-based action recognition,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

J. Bruna and X. Li, “Community detection with graph neural
networks,” Stat, vol. 1050, p. 27, 2017.

Q. Zhao, Z. Ye, C. Chen, and Y. Wang, “Persistence enhanced
graph neural network,” in International Conference on Artifi-
cial Intelligence and Statistics, pp. 2896-2906, 2020.

R. Wang, D. D. Nguyen, and G.-W. Wei, “Persistent spectral
graph,” International journal for numerical methods in bio-
medical engineering, vol. 36, no. 9, article e3376, 2020.

J. Zhou, G. Cui, Z. Zhang et al., “Graph neural networks: a
review of methods and applications,” 2018, https://arxiv
.org/abs/1812.08434.

S. Casas, C. Gulino, R. Liao, and R. Urtasun, “Spatially-aware
graph neural networks for relational behavior forecasting
from sensor data,” 2019, https://arxiv.org/abs/1910.08233.
X. Wang, Y. Ma, Y. Wang et al., “Traffic flow prediction via
spatial temporal graph neural network,” in Proceedings of
The Web Conference 2020, pp. 1082-1092, 2020.

D. Kong, H. Ma, and X. Xie, SIA-GCN: a spatial information
aware graph neural network with 2d convolutions for hand
pose estimation, 2020.

https://arxiv.org/abs/1909.12264
https://arxiv.org/abs/1704.06803
https://arxiv.org/abs/1711.04043
https://arxiv.org/abs/2006.03548
https://arxiv.org/abs/1705.08415
https://arxiv.org/abs/1705.08415
https://arxiv.org/abs/2010.13269
https://arxiv.org/abs/2006.04386
https://arxiv.org/abs/2006.04386
https://arxiv.org/abs/2009.14332
https://arxiv.org/abs/2009.14332
https://arxiv.org/abs/1905.09550
https://arxiv.org/abs/1905.09550
https://arxiv.org/abs/2009.03294
https://arxiv.org/abs/1708.04675
https://arxiv.org/abs/1708.04675
https://arxiv.org/abs/1704.08165
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1910.08233

Wireless Communications and Mobile Computing

[105]

[106]

(107]

[108]

(109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

(117]

[118]

[119]

J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal
residual networks for citywide crowd flows prediction,”
in Thirty-first AAAI conference on artificial intelligence,
vol. 31, 2017, https://ojs.aaai.org/index.php/AAAl/article/
view/10735.

X. Zhou, Y. Shen, Y. Zhu, and L. Huang, “Predicting multi-
step citywide passenger demands using attention-based neu-
ral networks,” in Proceedings of the Eleventh ACM Interna-
tional Conference on Web Search and Data Mining,
pp. 736-744, 2018.

H. Yao, F. Wu, J. Ke et al., “Deep multi-view spatial-temporal
network for taxi demand prediction,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 32, 2018,
https://ojs.aaai.org/index.php/AAAl/article/view/11836.

Z.Xie, W.Lv, S. Huang, Z. Lu, B. Du, and R. Huang, “Sequen-
tial graph neural network for urban road traffic speed predic-
tion,” IEEE Access, vol. 8, pp. 63349-63358, 2020.

D. Cheng, X. Wang, Y. Zhang, and L. Zhang, “Graph neural
network for fraud detection via spatial-temporal attention,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 8, pp. 3800-3813, 2022.

H. Peng, H. Wang, B. Du et al., “Spatial temporal incidence
dynamic graph neural networks for traffic flow forecasting,”
Information Sciences, vol. 521, pp. 277-290, 2020.

W. Zhang, H. Liu, Y. Liu, J. Zhou, and H. Xiong, “Semi-
supervised hierarchical recurrent graph neural network for
city-wide parking availability prediction,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34no. 1,
pp. 1186-1193, 2020, https://ojs.aaai.org/index.php/AAAI/
article/view/5471.

F. Diehl, T. Brunner, M. T. Le, and A. Knoll, “Graph neural
networks for modelling traffic participant interaction,” in
2019 IEEE Intelligent Vehicles Symposium (IV), pp. 695-
701, Paris, France, 2019.

S.-Y. Chen, Q. Gao-Feng, X.-H. Wang, and H.-Z. Zhang,
“Traffic flow forecasting based on grey neural network
model,” in Proceedings of the 2003 International Conference
on Machine Learning and Cybernetics (IEEE Cat.
No.03EX693), vol. 2, pp. 1275-1278, Xi'an, China, 2003.

X. Hu, C. Zhao, and G. Wang, “A traffic light dynamic con-
trol algorithm with deep reinforcement learning based on
GNN prediction,” 2020, https://arxiv.org/abs/2009.14627.

S. Du, T. Li, X. Gong, and S.-J. Horng, “A hybrid method for
traffic flow forecasting using multimodal deep learning,”
2019, https://arxiv.org/abs/1803.02099.

Y. Lv, Y. Duan, W. Kang, Z. Li, and F. Wang, “Traffic flow
prediction with big data: a deep learning approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16,
no. 2, pp. 865-873, 2015.

Y. Jia, W. Jianping, and D. Yiman, “Traffic speed prediction
using deep learning method,” in 2016 IEEE 19th Interna-
tional Conference on Intelligent Transportation Systems
(ITSC), pp. 1217-1222, Rio de Janeiro, Brazil, 2016.

A. Koesdwiady, R. Soua, and F. Karray, “Improving traffic
flow prediction with weather information in connected cars:
a deep learning approach,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 12, pp. 9508-9517, 2016.

X.Ma, Z. Dai, Z. He,]. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for
large-scale transportation network speed prediction,” Sen-
sors, vol. 17, no. 4, p. 818, 2017.

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

(135]

[136]

17

B. Wang, X. Luo, F. Zhang, B. Yuan, A. L. Bertozzi, and P. J.
Brantingham, “Graph-based deep modeling and real time
forecasting of sparse spatio-temporal data,” 2018, https://
arxiv.org/abs/1804.00684.

B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolu-
tional networks: a deep learning framework for traffic fore-
casting,” in Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, 2018.

D. Chai, L. Wang, and Q. Yang, “Bike flow prediction with
multi-graph convolutional networks,” in Proceedings of the
26th ACM SIGSPATIAL international conference on advances
in geographic information systems, pp. 397-400, 2018.
Z.Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wave-
net for deep spatial-temporal graph modeling,” 2019, https://
arxiv.org/abs/1906.00121.

S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention
based spatial-temporal graph convolutional networks for
traffic flow forecasting,” in Proceedings of the AAAI confer-
ence on artificial intelligence, vol. 33, pp. 922-929, 2019.

D. Owerko, F. Gama, and A. Ribeiro, “Predicting power out-
ages using graph neural networks,” in 2018 IEEE Global Con-
ference on Signal and Information Processing (GlobalSIP),
pp. 743-747, Anaheim, CA, USA, 2018.

M. Khodayar and J. Wang, “Spatio-temporal graph deep neu-
ral network for short-term wind speed forecasting,” IEEE
Transactions on Sustainable Energy, vol. 10, no. 2, pp. 670-
681, 2019.

M. Khodayar, S. Mohammadi, M. E. Khodayar,]. Wang, and
G. Liu, “Convolutional graph autoencoder: a generative deep
neural network for probabilistic spatio-temporal solar irradi-
ance forecasting,” IEEE Transactions on Sustainable Energy,
vol. 11, no. 2, pp. 571-583, 2020.

W. Yu, F. Liang, X. He et al., “A survey on the edge comput-
ing for the Internet of Things,” IEEE Access, vol. 6, pp. 6900
6919, 2018.

F. Liang, C. Qian, W. G. Hatcher, and W. Yu, “Search engine
for the internet of things: lessons from web search, vision, and
opportunities,” IEEE Access, vol. 7, pp. 104673-104691, 2019.
F. Liang, W. G. Hatcher, G. Xu, J. Nguyen, W. Liao, and
W. Yu, “Towards online deep learning-based energy forecast-
ing,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN), pp. 1-9, Valencia,
Spain, 2019.

X. Liu, W. Yu, F. Liang, D. Griffith, and N. Golmie, “Deep
learning in security of Internet of Things,” IEEE Internet of
Things Journal, vol. 8, no. 15, pp. 12163-12175, 2021.

F. Liang, W. Yu, X. Liu, D. Griffith, and N. Golmie, “Towards
computing resource reservation scheduling in industrial
internet of things,” IEEE Internet of Things Journal, vol. 8,
no. 10, pp. 8210-8222, 2020.

Y. Liu, Y. Lu, X. Li, Z. Yao, and D. Zhao, “On dynamic service
function chain reconfiguration in IoT networks,” IEEE Inter-
net of Things Journal, vol. 7, no. 11, pp. 10969-10984, 2020.

J.-H. Kim, S. Lee, and S. Hong, “Autonomous operation con-
trol of IoT blockchain networks,” Electronics, vol. 10, no. 2,
p. 204, 2021.

W. Zhang, Y. Zhang, L. Xu et al., “Modeling IoT equipment
with graph neural networks,” IEEE Access, vol. 7,
pp. 32754-32764, 2019.

A. Protogerou, S. Papadopoulos, A. Drosou, D. Tzovaras, and
I. Refanidis, “A graph neural network method for distributed

https://ojs.aaai.org/index.php/AAAI/article/view/10735
https://ojs.aaai.org/index.php/AAAI/article/view/10735
https://ojs.aaai.org/index.php/AAAI/article/view/11836
https://ojs.aaai.org/index.php/AAAI/article/view/5471
https://ojs.aaai.org/index.php/AAAI/article/view/5471
https://arxiv.org/abs/2009.14627
https://arxiv.org/abs/1803.02099
https://arxiv.org/abs/1804.00684
https://arxiv.org/abs/1804.00684
https://arxiv.org/abs/1906.00121
https://arxiv.org/abs/1906.00121

18

[137]

[138]

[139]

[140]

[141]

anomaly detection in IoT,” Evolving Systems, vol. 12, pp. 19-
36, 2021.

P. Rendell, Turing Machine Universality of the Game of Life,
Springer, 2016.

C. Petzold, The Annotated Turing: a Guided Tour through
Alan Turing’s Historic Paper on Computability and the
Turing Machine, Wiley Publishing, 2008.

T. Landelius, Reinforcement Learning and Distributed Local
Model Synthesis, Ph.D. dissertation, Linkoping University
Electronic Press, 1997.

W. Song, Z. Xiao, Y. Wang, L. Charlin, M. Zhang, and
J. Tang, “Session-based social recommendation via dynamic
graph attention networks,” in Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining, pp. 555-563, 2019.

Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization
with graph convolutional networks and guided tree search,”
Advances in Neural Information Processing Systems, vol. 31,
2018.

Wireless Communications and Mobile Computing

	Survey of Graph Neural Networks and Applications
	1. Introduction
	2. Background
	2.1. Artificial Neural Networks
	2.2. Graph Neural Networks (GNNs)
	2.2.1. Graph Datasets
	2.2.2. Motivations
	2.2.3. Road Map of GNN

	3. Spectral Convolution Strategy
	3.1. Spectral Graph Theory
	3.2. Spectral Graph Convolution
	3.3. Typical Spectral GNN
	3.3.1. Spectral CNN
	3.3.2. ChebNet
	3.3.3. Graph Convolution Network
	3.3.4. Summary of Existing Spectral Convolution Schemes

	4. Spatial Convolution Strategy
	4.1. Spatial Graph Convolution
	4.2. Typical Spatial Graph Neural Networks
	4.2.1. Graph Neural Network
	4.2.2. Graph Sample and Aggregate
	4.2.3. Graph Attention Network
	4.2.4. Partition Graph Convolution
	4.2.5. Summary of Existing Spatial Convolution Schemes

	5. GNN Applications in Internet of Things (IoT)
	5.1. Overview
	5.2. GNN in Transportation Traffic Prediction
	5.3. GNN in Electrical Energy Prediction
	5.4. GNN in Industrial IoT

	6. Limitations of Graph Neural Networks
	6.1. Universality of GNN
	6.2. Computing Overhead of GNN

	7. Final Remarks
	Data Availability
	Conflicts of Interest

