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In this paper, we propose a multiagent collaboration decision-making method for adaptive intersection complexity based on
hierarchical reinforcement learning—H-CommNet, which uses a two-level structure for collaboration: the upper-level policy
network fuses information from all agents and learns how to set a subtask for each agent, and the lower-level policy network
relies on the local observation of the agent to control the action targets of the agents from each subtask in the upper layer. H-
CommNet allows multiagents to complete collaboration on different time scales, and the scale is controllable. It also uses the
computational intelligence of invehicle intelligence and edge nodes to achieve joint optimization of computing resources and
communication resources. Through the simulation experiments in the intersection environment without traffic lights, the
experimental results show that H-CommNet can achieve better results than baseline in different complexity scenarios when
using as few resources as possible, and the scalability, flexibility, and control effects have been improved.

1. Introduction

The scheduling of traffic intersections is a crucial bottleneck
to improve the efficiency of the whole road network, and the
use of AI methods to study the scheduling of intersections is
also a research focus in the field of vehicle networking. In
current intersection control methods, some of them try to
control vehicle traffic by learning traffic light strategies [1,
2], but such control methods are coarse-grained control with
relatively limited strategy representation and no individual-
ized traffic targets for each vehicle, so the traffic efficiency
of the intersection cannot be maximized. In the vehicle
self-organization control method that does not rely on traffic
signals, each vehicle needs to be modeled as an agent and
form a digital twin of the vehicle in the agent transportation
system, which uses multiagent reinforcement learning
methods to learn and make collaborative decisions of vehi-
cles in the information space to obtain the optimal collabo-
rative actions, and then, the actual actions are performed
by the vehicle entities in the physical space [3, 4]. However,

the current multiagent reinforcement learning synergy
methods only focus on the action-level synergy, ignoring
the continuity of the intent of the agent and the structured
information of the synergistic task, which makes the synergy
happen only at the finest granularity, and such a synergy
approach lacks flexibility, and still maintains the synergy at
the action level when facing a simple structured task, result-
ing in an enormous waste of computational resources. In
addition, deploying the digitally twinned agent agents on
different devices also yields two scheduling approaches: cen-
tralized scheduling and distributed scheduling. Among
them, the former has a great delay, while the latter has a high
demand for communication bandwidth. Therefore, these
scheduling methods can not well meet the requirements of
vehicle decision-making and ensure safe, efficient, and reli-
able driving.

In order to combine the advantages of distributed and
centralized scheduling while addressing the lack of flexibility
in collaborative granularity, we propose a multiagent collab-
oration decision-making method for adaptive intersection
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complexity based on hierarchical RL (reinforcement learn-
ing (RL))—H-CommNet. H-CommNet divides the collabo-
rative decision-making task into two levels for
implementation. The upper level of the policy network is
required to achieve multiagent collaboration, but instead of
directly generating actions of the agent, it generates subtasks
that the agent needs to complete in the following period. We
can achieve a different granularity of collaboration by con-
trolling the time step of subtasks for the underlying policy
to be guided. The lower layer policy network makes deci-
sions based on the agent’s own observations and is responsi-
ble for controlling the underlying actions of the agent to
achieve the subtasks set by the upper layer. The task of the
upper layer strategy is a collaborative task of multiple agents,
and its goal is to maximize the cumulative reward of all the
agents, so the strategy is updated using the cumulative
reward of all the agents as the reward of the upper layer
strategy. The lower layer strategy, on the other hand, is
entirely a single-agent reinforcement learning task whose
goal is to achieve the subtasks set by the upper layer and
therefore uses an internal reward for subtask completion to
update the lower layer strategy.

In order to realize the load balancing of computation, we
place the upper policy network on the edge computing
nodes for implementation and place the bottom policy net-
work on each vehicle for implementation by onboard intelli-
gence, so as to build a semicentralized and semidistributed
vehicle-road cooperative scheduling system. In this system,
the edge devices collect information from all vehicles in the
region and make collaborative decisions before making deci-
sions. After that, the decision results, i.e., the passage sub-
tasks for each vehicle, are distributed to the respective
vehicles. After receiving the set subtasks, the vehicles make
decisions based on the single-vehicle agent for the next
period of time until the subtasks are achieved. In this collab-
orative decision-making framework, both the decision-
maker and the executor of vehicle actions are the vehicles
themselves, and the vehicles can make decisions alone most
of the time, thus significantly alleviating the hazards caused
by decision latency. And each vehicle only needs to commu-
nicate with the edge device once in a period of time, which
greatly reduces the requirement of communication band-
width. Through a layered approach, we decompose the col-
laborative decision-making tasks and implement them on
the edge computing nodes and invehicle agents, respectively,
which also achieves the full utilization of computing
resources.

In summary, a hierarchical collaborative approach is
proposed in this paper, named as H-CommNet, and its main
contributions can be summarized:

(I) A hierarchical multiagent reinforcement learning
synergy method is proposed, which enables the
synergy to occur at different granularity, thus
improving the flexibility of the synergy and adapt-
ability to different complexity scenarios

(II) A semicentralized and semidecentralized vehicle-
road cooperative scheduling system is designed to

achieve load balance between vehicle-mounted
intelligence and edge intelligence in vehicle cooper-
ative planning calculation, which reduces the delay
of decision-making and improves the reliability of
decision-making

(III) An asynchronous collaborative method based on
request response is designed to solve the problem
of inconsistent decision-making between upper
and lower levels in the hierarchical collaborative
decision-making framework of multiple vehicles.
The hierarchical framework can work properly
with the least communication and computing
resources

The remainder of this paper is organized as follows: We
give a review of related works in Section 2. In Section 3, we
introduce the proposed method, H-CommNet. Section 4
describes our experimental setup, performance metrics,
and experimental results. Finally, the conclusions are laid
out in Section 5.

2. Related Works

With the development and extension of the Internet applica-
tions, Internet of Things (IoT) [5] gets great development;
especially with the help of a new generation of computing
models represented by fog computing [6], a large number
of new models and new businesses have sprung up repre-
sented by smart transportation [7–9], smart medical care
[10–14], smart education [15], smart agriculture [16], and
industrial Internet [17–19]. ‘Smart +’ opens the door to us,
and our lives have changed.

With the development of connected vehicles, it has
become more important to use artificial intelligence tech-
niques to study agent transportation. Among these works,
the study of efficient scheduling of multiple vehicles at inter-
sections is the focus of research. Some studies on intersec-
tion scheduling, such as [1, 2], improve the intersection
efficiency by optimizing the traffic light intersection strategy.
However, the traffic light-dependent scheduling strategy
cannot achieve the characteristic scheduling of each vehicle
and thus cannot maximize traffic efficiency. With the devel-
opment of deep learning, especially, deep reinforcement
learning has achieved excellent results in some scenarios that
require multiagent collaboration, such as StarcraftII [20].
MARL method is also a suitable method for agent transpor-
tation systems, which can achieve self-organized collabora-
tion of multiple vehicles by viewing each vehicle as an
agent, thus improving the traffic system’s efficiency. Among
the current MARL methods, there are methods based on
architectures with centralized training and distributed exe-
cution, such as QMIX [21], QTRAN [22], MADDPG [23],
and COMA [24]. Such methods use global observations as
a guide during centralized training and learn the optimal
policy for each agent by optimizing the joint value function.
There are also distributed decision methods that rely on
communication for collaboration, such as DIAL [25],
CommNet [26], and IC3Net [27]. Such approaches share
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information from the individual agent, such as observation,
intent, and policy information, in a communicative manner
among the agent to help each vehicle make globally collabo-
rative actions. These methods all directly generate actions
for each agent so that synergy occurs only at the action level.
However, there are some simpler scenarios in collaborative
tasks that allow the agent to collaborate well even if no or lit-
tle collaboration occurs, and the decision granularity of these
collaborative methods creates a significant waste of compu-
tational resources.

Hierarchical reinforcement learning was first proposed
by Sutton et al. in [28], which formalized the formulation
of hierarchical reinforcement learning through the introduc-
tion of a kind of temporal abstraction action OPTION and
the definition of a semi-Markovian decision process. In the
field of deep reinforcement learning, the combination of
hierarchical reinforcement learning methods with deep neu-
ral networks has given rise to option-based methods such as
option-critic methods [29, 30] and subtarget-based methods
[31–33]. Since subtargets have clearer semantics, we there-
fore choose subtarget-based methods to build our multia-
gent hierarchical collaborative framework.

3. H-CommNet

This section presents our multiagent hierarchical collabora-
tive algorithm, H-CommNet. As shown in Figure 1, our
algorithm is divided into two levels, where the upper-level
controller called “metacontroller” is responsible for making
collaborative decisions and setting personalized subtasks
for the lower-level agents. The lower-level controller called
“controller” is responsible for controlling the underlying
actions of the agent and implementing the subtargets set
by the upper level. Here, the CommNet [26] algorithm is
chosen to implement our upper layer collaborative network;
thus, our method is called H-CommNet (hierachical Comm-
Net). To make it easier for readers to understand, the symbol
usage in the left part of Figure 1 are the same as in paper [26].

With the help of the hierarchical structure, H-CommNet
decomposes the complex collaborative task horizontally and
vertically, splitting the collaborative task fo1,⋯, oJg into
multiple collaborative subtasks fg1,⋯, gJg at the upper
level in the horizontal relationship while splitting the collab-
orative subtasks fg1,⋯, gJg into multiple single-agent rein-
forcement learning tasks fa1,⋯, aJg at the lower level in the
vertical relationship. Such task decomposition makes the
computational task lighter at a single level so that the desired
strategies can be learned more easily. Also, since the upper
layer only makes decisions at the subtask level, it increases
the flexibility of decision granularity for collaborative deci-
sion-making, thus showing better flexibility in different sce-
narios. Next, we describe the upper-level controller and the
lower-level controller in detail.

3.1. Metacontroller. The metacontroller (as in Figure 1) is
implemented using the CommNet algorithm, which allows
the fusion of messages during the forward propagation of
the neural network, and through multiple rounds of fusion,

an approximate perception of the global situation can be
achieved and based on this perception, a collaborative deci-
sion is made to obtain the subtasks of each agent. Its strategy
can be expressed as

πθ ot1, ot2,⋯, otJ
� �

= gt
1, gt2,⋯, gtJ

� �
, ð1Þ

where o is the local observation of the agent and g is the sub-
target set by each agent. The superscript t indicates the
moment, and the subscript indicates the agent number. πθ
is the policy network of the metacontroller, and θ is the
parameter of the network. The process of forwarding propa-
gation at each layer can be expressed as

hi+1j = f i hij, cij
� �

, ð2Þ

ci+1j = 1
J − 1 〠

j′≠j
hi+1j′ , ð3Þ

where f is the multilayer neural network module, i is the
layer, j is agent, h is the hidden layer state of the network,
c is the perceptual information after fusion, hi+1j is the out
of layer i + 1, J is a regularization factor, and the fused infor-
mation is input to each node in the next layer, and the red
arrows in Figure 1 indicate the flow of information after
fusion.

The representation of subtasks relies on human experi-
ence, which often varies across tasks. The design of subtasks
needs to satisfy the need to be able to provide sufficient guid-
ance for the underlying actions and an adapted internal
reward to describe the completion of the underlying policy
for the subtasks. In the experimental scenario of Telematics,
the vehicle passage subtask is designed as the location that
the vehicle needs to reach in the next period.

The target of the upper layer is to learn the optimal pol-
icy network that maximizes the cumulative discounted
reward expectation, so it updates its own policy using the
sum of all rewards achieved by the agent over the duration
of each subtarget as follows:

rmetacontroller = 〠
n

i=1
〠
Ti

t=0
γtri,t , ð4Þ

where Ti is the time step for the duration of the ith agent
subtarget.

The upper layer strategy provides a temporal decompo-
sition for the overall task, decomposing the total task into
subtasks that last for several time steps. Since the decompo-
sition time scale is controllable, collaboration under a hierar-
chical structure can exhibit adaptiveness to tasks of different
complexities: the upper layer provides guidance on larger
time scales when the task is relatively simple and on smaller
time scales when the task is simpler.

3.2. Controller. The controller (as in Figure 1) needs to rely
on its own observations to complete the subtasks set by the
upper layer, and at each moment, the controller’s input has
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local observations and subtasks for the current moment, and
the output is the action of the agent. For the lower layer pol-
icy network, we choose the REINFORCE method for imple-
mentation. The controller can be represented formally as

πψ ot+k, gtð Þ = at , ð5Þ

where πψ is the controller’s policy network and ψ is the net-
work parameter. The subscript indicates the moment. Since
each vehicle is a mutually equivalent node and the vehicles
only need to complete the reinforcement learning task for
a single agent, the agent can be viewed as homogeneous,
and we use the technique of sharing parameters among the
policy networks of the agent.

The controller’s target is to complete the subtasks set by
the upper level, and in order to provide the lower-level pol-
icy with a reward for parameter updates, we need to design
an internal reward related to subtask completion:

rcontroller = d pt−1, gð Þ − d pt , gð Þ: ð6Þ

According to this reward, a positive reward is awarded
when the vehicle approaches the target location, and a pen-
alty is awarded when the vehicle moves away.

The underlying strategy provides a decomposition for
subtasks at the scale of the agent. The subtasks that require
collaboration are further decomposed into several single-
agent reinforcement learning tasks that do not require col-
laboration. Since the underlying task is relatively simple, it
is equivalent to adding only one underlying policy network
when we increase the number of the agent in the environ-
ment, thus also improving the scalability of the collaborative
task.

In multiagent collaborative tasks, the difficulty of the
task changes continuously with the collaborative scenario
and the number of the agent, and the adaptive and scalable
nature of the hierarchical structure for different scenarios
also makes it more adaptable to rapidly changing
environments.

3.3. Extended Design. Encoding of observations using RNN,
the input to the upper layer network is only the observation
at the current moment, but the upper layer network does not
make decisions at every moment, so there will be some
moments when the state is ignored. To capture the temporal
information of the observations, the observations of the
agent can be processed first using recurrent neural networks,
and then, the hidden state h of the agent is used as input to
the collaborative network instead of the local observation o:

hit = GRU oit , hit−1
� �

: ð7Þ

Adding supporting information for collaborative deci-
sion-making, in some environments, there may be some
auxiliary decision information in addition to the observation
of each smart body, for example, the sensory information of
the middle-side devices in the vehicle networking scenario
can also help the vehicle to make better decisions. In order
to add this auxiliary information to the collaborative deci-
sion network without affecting the structure of the network,
we increase the number of nodes in each layer by 1 when
fusing the information; however, when making action deci-
sions, we still use only the number of nodes of each agent
body.

3.4. Semicentralized and Semidistributed Vehicle-Road
Cooperation System. As mentioned above, we deploy the
upper-layer collaborative decision network to work in a cen-
tralized manner on the edge computing nodes and deploy
the lower-layer policies to work in a distributed manner on
the vehicle side, resulting in the system architecture shown
in Figure 2. The vehicle encodes its own sensory information
as a message vector to the edge device, and the edge device
fuses the vehicle’s messages to obtain an approximate global
perception through the perception fusion module. Based on
this perception, the decision node can develop a personal-
ized passage subtarget for each vehicle and then distribute
this subtarget to the vehicle through the communication
channel, and the vehicle will rely on its own onboard agent
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Figure 1: H-CommNet model: it is divided into two levels: metacontroller and controller.
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and onboard perception for a single-vehicle navigation task
after receiving this subtarget.

The hierarchical structure brings many advantages for
multiagent collaboration; however, such a hierarchical struc-
ture also brings great challenges: differences in the time
scales of upper and lower levels of decision-making can cre-
ate problems of synchronization. Although upper-level deci-
sions are required only when lower-level agent need
subtarget guidance, each agent is different for the specific
time step required to achieve the subtarget, which makes
upper-level decisions required once every time an agent
completes the current subtarget. How to design the corre-
sponding synchronization pattern is crucial for the hierar-
chical structure. The simplest way is to fix the upper-level
agent to also make decisions at each time step, generating
subtasks for n agent. However, subtasks are not valid for
every underlying agent, and we replace them with new sub-
tasks only when the subtask of the current agent happens to
be completed. If no agent completes its subtarget at the cur-

rent moment, then the result of the upper-level decision at
the current moment is nullified. Obviously, such an
approach is extremely wasteful for both computational and
communication resources, so we designed a request-
response-based synchronization approach: If the agent com-
pletes its subtask at the current moment, it sends its own
local observations to the agent as a scheduling request. After
receiving the request, the edge device then communicates to
collect the observation information of all the agents in the
region to make a collaborative decision. However, such a
request-response requires three rounds of communication.
To reduce the communication delay, we eliminate the sec-
ond round of communication and use historical observation
data as the basis for decision-making. Specifically, when the
edge device receives a request signal from a vehicle, it first
updates the state of that vehicle in the information space,
relying on the saved vehicle state rather than the
communication-acquired vehicle state when making deci-
sions. In order to avoid the vehicle’s status not being
updated for too long, we can set the minimum update time
step so that every time the vehicle sends a request or reaches
the maximum update time step it needs to communicate
with the edge node once to update the vehicle’s information.
The complexity of communication is reduced from oðnÞ to
oð1Þ, and the system can realize the collaborative scheduling
between vehicles with as few resources as possible.

4. Performance Evaluation

4.1. Experimental Scenario. Our experiments are conducted
in a simulation environment of a traffic network without
traffic signals containing several intersections, as shown in
Figure 3. Each vehicle in this environment is modeled as
an agent body that makes action decisions according to a
multiagent reinforcement learning algorithm. At each time

Perceptual
fusion module

Edge
perception

Communication module

Decision nodes

Vehicle intelligentVehicle perception

Vehicle X

Vehicle intelligentVehicle perception

Vehicle Y

Edge device

Figure 2: Vehicle-road cooperation system of H-CommNet: it consists of two layers, the upper-layer works on the edge device and the
lower-layer works on the vehicle side.

STOP
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Figure 3: Multijunction without traffic signal light network
environment.
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step, the simulation environment randomly generates an ini-
tial vehicle at the edge of the road with a certain probability,
after which the vehicle will pass along a given route to reach
its destination. The information of each vehicle is repre-
sented by a one-hot code ðn, l, rÞ, which indicates the vehicle
number, the current location of the vehicle, and the code of
its travel route, respectively. In addition to the information
about the vehicle itself, the observed information about the
vehicle at each moment includes the vehicle movements at
the previous moment and the map information in the obser-
vation domain. The vehicle’s action set consists of two
actions, forward and stay. The goal of each vehicle is to try
to avoid collision through the intersection to its destination,
and the environment specifies that two vehicles are consid-
ered to have collided when their positions overlap. The sim-
ulation environment, therefore, sets a penalty of 10 for each
collision of the vehicle, while to encourage the agent body to
pass the intersection faster to avoid stopping, the environ-
ment also designs a cumulative penalty of 0.01 for the
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Figure 4: (a) Easy map, vehicles can only go straight. (b) Medium map, vehicles can go straight and turn. (c) Hard map, includes multiple
intersections and the road is two-way.

Table 1: The average value of the reward after convergence.

Methods
H-

CommNet
CommNet IC3Net QMIX QTRAN

Easy -0.0028 -0.7839 -0.6026 -74.9135 -164.7118

Medium -0.1130 -1.9675 -0.7237 -134.8274 -210.2246

Hard -0.2903 -4.8989 -1.6031 -210.4081 -262.4223

Table 2: The average time of metacontroller provides guidance to
controller.

Difficulty Time

Easy 4.36

Medium 2.84

Hard 1.053
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vehicle’s stopping (0.01 for the first stopping, 0.02 for the
second stopping...). Thus at moment t, the vehicle achieves
a reward:

r tð Þ = Ctrcoll+tτrstay, ð8Þ

where C indicates whether a collision has occurred and τ
indicates the cumulative number of times the vehicle has
stayed at this moment. After reaching the end, the vehicle
is immediately removed from the environment, while colli-
sions have no effect on our experiments except for the corre-
sponding rewards, and the simulation continues after a
collision occurs. The goal of our algorithm is to maximize
the sum of the rewards for all vehicles.

In our evaluation metric, in addition to the cumulative
average reward, we also include the success rate of each
batch: if there is no collision between vehicles in an episode,
then we consider the episode to be a success; otherwise, it is a

failure. The percentage of successful episodes in a batch is
counted as the success rate of a batch. This index is used
as the basis for evaluating the method.

The hyperparameters related to the simulation environ-
ment in the experiment are as follows: ① the difficulty of
the task, the simulation environment provides different
shapes of maps, and the number of intersections contained
in the map varies, thus providing the experiment with the
different difficulty of the simulation map; ② the dimension
of the map, i.e., the length and width of the map; ③ the
probability of adding vehicles to the map at each moment,
through which we can control the rate of change of the num-
ber of vehicles in the environment; and ④ the maximum
number of vehicles, through which we can control the max-
imum number of vehicles in the environment and thus
determine the density of agent bodies in the environment.

4.2. Comparison Methods. We compared the layered
approach to some classic multiagent reinforcement learning
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Figure 5: (a) 0.1 increase rate of adding vehicles to the environment. (b) 0.3 increase rate of adding vehicles to the environment. (c) 0.5
increase rate of adding vehicles to the environment.
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methods, including CommNet, IC3Net, QMIX, and
QTRAN.

CommNet is a classic multiagent reinforcement learning
method that relies on communication for collaboration,
IC3Net adds a gating mechanism on the basis of CommNet,
and each agent will judge whether the observation is valuable
for other vehicle decisions according to its own observations
before communication so as to control whether the message
is broadcast. Both QMIX and QTRAN are methods of cen-
tralized training distributed execution, and in centralized
training, it is necessary to allow the algorithm to use the
global state to guide the strategy of the agent, so we need
to stitch the map information and vehicle information as a
global state.

In the comparison tests, we conducted different ablation
experiments for three aspects of performance:

(I) For the adaptation to scenarios of different com-
plexities, we compared by adjusting the maps of
different difficulties provided by the environment

(II) For the adaptation to different environmental
change rates, we compared by adjusting the vehicle
joining rate in the environment

(III) For the adaptation to different vehicle densities, we
compare by adjusting the maximum number of
vehicles in the environment

4.3. Experimental Results

4.3.1. Different Difficulty Scenarios. We compare the above
algorithms in map scenes of different difficulties,
Figures 4(a)–4(c) are the success rate curves of using differ-
ent algorithms under maps of different difficulties. In an easy
map, vehicles can only go straight, so you only need to avoid
collisions where the vehicle behind you is chasing the vehicle
in front of you. In medium map, the road becomes a two-
way street, and the vehicle can turn, and the difficulty of
the experiment increases significantly compared with the
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Figure 6: (a) The number of agents is 5. (b) The number of agents is 10. (c) The number of agents is 15.
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simple mode. Under the difficult road network environ-
ment, i.e., in hard map, the road is not only a two-way
street but also contains a number of red light-free intersec-
tions. As you can see from the figures, regardless of the
difficulty of the experiment, the layered method has
advantages over other methods, and the advantages of
stratification become more obvious as the difficulty
increases.

Table 1 shows the average of the 50 epoch rewards after
the algorithm converges for different difficulty environ-
ments. Judging from the situation of rewards, the layered
method, and CommNet, IC3Net can basically avoid colli-
sions, but H-CommNet has significantly improved its traffic
efficiency, and its stay penalty is much smaller than Comm-
Net and IC3Net. In contrast, the QMIX and QTRAN algo-
rithms perform relatively poorly in such tasks with only
local observations due to the need for centralized training,
and the performance degrades fastest as the difficulty
increases.

We also counted the average length of time that subtasks
set by the upper layer provide guidance to the bottom layer
under different experimental difficulties, as shown in
Table 2. In simpler task scenarios, the upper layer tended
to give longer step-by-step guidance, while when the task
became complex, the upper layer tended to give single-step
guidance. This shows that H-CommNet can adjust the gran-
ularity of its synergy for scenarios of different complexity
and achieve the ability of complexity-adaptive synergy.

4.3.2. Rate of Change in Different Environments. In this abla-
tion experiment, we vary the rate of adding a vehicle to the
environment, thereby affecting the rate of change in the
number of the agent in the environment. From
Figures 5(a)–5(c), we can see that although the convergence
process of the H-CommNet success rate curve is affected by
the rapid change in the environment, the final convergence
result can still achieve good results. The performance of
CommNet and IC3Net degrades rapidly in the process of
rapid environmental changes and gradually accelerates and
can only reach one-third of the layered method; The perfor-
mance of QMIX and QTRAN decreases to near 0. This
experiment shows that the layered approach shows excellent
adaptability to rapid changes in the environment compared
to other approaches.

4.3.3. Different Vehicle Densities. In this set of experiments,
we adjust the number of maximum agents in the environ-
ment and thus control the density of agents in the environ-
ment. From Figures 6(a)–6(c), it can be seen that the effect of
increasing vehicle density on CommNet and IC3Net is
small, with the success rate decreasing by less than 0.1; the
effect on QMIX and QTRAN also exists, but the effect of
vehicle density is not significant compared to the rate of
environmental change. For the hierarchical method H-
CommNet, the increase in vehicle density has no effect at
all. This reflects the good scalability of the layered approach
to the number of agents in collaboration, resulting in good
adaptability to the density of agents.

5. Summary

Aiming at the problem that the same collaboration mode
and granularity can not be applied to the intersection deci-
sion with different road attributes and it will cause the waste
of computing resources, this paper proposes a multiagent
collaboration decision-making method for adaptive intersec-
tion complexity based on hierarchical RL—H-CommNet.

H-CommNet is implemented in a hierarchical way. By
using edge devices and onboard intelligence, the adaptive
collaborative decision-making of multiple vehicles in differ-
ent intersection scenarios is accomplished through task seg-
mentation and task assignment. The experimental results
show that the proposed method can not only improve the
utilization of computing resources but also improve the col-
laborative granularity of decision-making. In the future
research plan, we will dig deeply into the behavioral inten-
tion of vehicles to realize collaborative decision-making for
the whole traffic network.
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