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Making effective use of scarce spectrum resources, along with efficient computational performance, is one of the key challenges for
future wireless networks. To tackle this issue, in this paper, we focus on the intelligent dynamic spectrum allocation (DSA) in a
mobile edge computing (MEC) enabled cognitive network. And our objective is to optimize the spectrum utilization and load
balance among idle channels. Since users can only acquire part of environment information in a decentralized way, we model
such a problem as decentralized partially observed Markov decision process (Dec-POMDP) and design the corresponding
evaluating metric to encourage users sense and access spectrum properly. Then, we propose a QMIX-based DSA method with
centralized training decentralized execution (CTDE) structure to tackle it. In the training phase, the users offload the
computational tasks to the MEC server to obtain the optimal distributed DSA strategies, through which the users select the
optimal channel locally in the execution phase. Simulation results show that, using the proposed algorithm, users can
independently capture spectrum holes, and hence improve the spectrum utilization while balancing the load on available channels.

1. Introduction

With the rapid development of the future beyond 5G/6G
wireless communication, more and more emerging applica-
tions like virtual reality (VR), augmented reality (AR), and
interactive game are springing up, requiring low-latency,
high-reliability and powerful computational capability [1].
Due to size, weight, and power (SWaP) constraints, devices
are recognized to have limited computational capability to
fully support these applications. Mobile edge computing
(MEC) has a great potential to overcome this issue, through
which the users can offload the computational tasks to MEC
servers [2–4]. By this way, many services can be provided,
like communication, caching, and computing [5]. Mean-
while, it can also potentially boost intelligence for users to
achieve efficient spectrum access with low coordination
overhead. Confronting the time-varying and complex wire-
less environment, it is challenging for users to access the
spectrum adaptively with robustness guarantee. The MEC-

enabled intelligent dynamic spectrum allocation (DSA) can
play a significant role in this case.

Many efforts have been devoted on the DSA in the tradi-
tional way, e.g., blind rendezvous in D2D [6] and cognitive
radio networks (CRNs) [7], cross-layer perspective [8, 9]
and randomized rounding algorithm [10] in CRNs, and
bipartite graph theory in wireless LANs [11]. Since these
works require lots of statistical knowledge, which is difficult
to obtain in a dynamic network, the intelligent approaches
have been adopted for DSA further. In [12], genetic algo-
rithm (GA) is adopted by the central node to complete
DSA for each secondary user (SU) in a CRN. Benefit from
the fitting properties of deep neural networks and the inter-
action with the environment, several works focus on the
deep reinforcement learning (DRL) structure [13]. Specially,
in [14, 15], the central controller is employed to evaluate and
allocate channels to multiuser through DRL, while the users
report the channel state after having an access. And the max-
imum channel utilization and minimum collision are
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expected to be optimized with no prior information for mul-
tiuser. However, there is still much room for improvement
compared with the optimal scheme, due to the heavy signal-
ling overhead and overdependence on the central node. To
tackle this problem, there are increasing works that focus
on intelligent DSA in a distributed way. In [16], the bioin-
spired solution is employed for users to adjust and optimize
the cluster size distributedly in cognitive internet of things
(IoT), which aims to achieve efficient spectrum allocation,
flexible connection, and minimum network access delay. In
[17], a heuristic method is applied for users to sense an
unoccupied spectrum and build an optimum route, so as
to complete dynamic spectrum allocation and power con-
trol. The authors in [18] have modeled the multiuser multi-
channel allocation as an undirected graph, and a greedy
algorithm is designed to form the load balanced cluster.
The authors in [19, 20] introduce the game theory for SUs
to allocate spectrum, and the SUs learn access strategies
competitively by maximizing their respective revenue. The
authors in [21] have investigated the problem of multiuser
enabled frequency division multiple access in radio network,
and a bargaining approach is used to allocate subcarrier and
power for multiuser by get a Nash equilibrium, so as to
achieve the tradeoff between throughput and power con-
sumption. Even though these works make a good break-
through in the intelligent DSA, there are still some
shortcomings. For one thing, these methods are just feasible
for the simple case with small strategy space, otherwise, the
long decision time would occur. Obviously, it is impractical
for the low-latency scenarios. For another, the interaction
should be addressed in the dynamic environment furtherly.

To tackle the dilemmas above, a powerful method, mutlia-
gent reinforcement learning (MARL), has gained increasing
interest recently. MARL is an extension of reinforcement
learning (RL) [22], which is suitable for distributed learning
and processing. With the aid of this method, users can interact
with environment and obtain their DSA strategies as agents.
Particularly, in [23, 24], the double deep Q-network (DQN)
algorithm and multiagent Q-learning are applied to active
users, who compete to access multichannel independently to
achieve minimum collisions. In [25], the SUs in CRN are aim-
ing to learn proper spectrum access strategies autonomously
and the DRL method, along with echo state network (ESN)
is adopted, through which interference can be alleviated. And
in [26], a competitive spectrum access scheme for multiuser
is proposed, and the performance of DSA and avoidance is
simply analyzed by Q-learning method. While in [27], multi-
user DSA is modeled as a multiarmed bandit problem, in
which the users are supposed to access proper spectrum distri-
butedly. However, since there is no negotiation that users ana-
lyze information locally and allocate the spectrum resources by
way of competition in these works, the spectrum access can be
regarded as an ALOHA-like process, which is still confronted
with great challenges in highly dynamic environments. More-
over, for constraints of computing and battery capacity, there
is still a huge gap to fill before deployment in real world.

Inspired by MEC technology, which could extend the com-
putational capacity and process the task for DSA at edge cloud
platform [28–30], the centralized training decentralized execu-

tion (CTDE) scheme of MARL is addressed to achieve efficient
DSA [31–33]. By this way, the distributed users offload the DSA
task to the cloud platform in the training phase, so as to learn
the action-taking strategies, and then work in a fully distributed
manner in the practical implementation phase. Specially, the
authors in [31] have investigated a noncooperative DSA in
CRN. In [32], users are expected to transmit on idle channel
and cooperate to maximize the sum rate, and the double
DQN algorithm is utilized, resulting in a certain gap with the
optimal performance. Considering the linear relationship
between the global and individual utility, the authors in [33]
propose a QMIX-based DSA algorithm, which brings the excel-
lent strategies for users, and the maximum successful transmis-
sion and minimum collision are realized. However, in order to
avoid collision, the users in [32, 33] are allowed to be silent. That
is, it is assumed that only part of users could participate in the
DSA at the same time, which is unfair to all users distributed
in the network.Moreover, the works in [18, 24, 27] take the per-
fect spectrum detection into consideration, where the selection
for idle spectrum is always guaranteed. In reality, influenced
by the dynamic environment and limited hardware condition,
the detection ability is usually partial [34] and imperfect [35].

In this paper, we investigate the intelligent DSA for mul-
tiuser MEC networks. We consider that the users can only
sense part of information, and the ability of detection is
assumed to be imperfect. Motivated by the monotonicity of
the considered problem, as well as the powerful computation
ability, the QMIX-based DSA algorithm with CTDE struc-
ture is employed. To the best of our knowledge, this work
has not been researched yet. And we highlight the main con-
tributions of our work as follows:

(1) We focus on a MEC-enabled cognitive network
deploying multiple SUs who attempt to access the
dynamic spectrum without perfect sensing capabili-
ties. In this scenario, SUs are supposed to be intelli-
gent to achieve their common task autonomously.
Meanwhile, in order to make up for the users’ lim-
ited computational capability and energy reserve,
the MEC server, which is computationally powerful
and long-lived, is employed at BS. This is practically
significant, since the traditional dependence on a
central controller is released. And the users can
adapt to the environment independently and timely
with lower overhead, so that it can be further
extended to the latency-sensitive applications

(2) We formulate a distributed DSA problem to improve
both the idle channel utilization and load balance.
And the problem is modeled as a decentralized par-
tial observation Markov decision process (Dec-
POMDP). Then we propose a CTDE enabled DSA
algorithm, whose characteristic is consistent with
that of the modeled problem. This algorithm can
handle the environment dynamics and users’ partial
observation with low-complexity for practical imple-
mentation. Specially, different from these online
searching methods, such as POMCP [36], DESPOT
[37], and HyP-DESPOT [38], there are two phases
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in our proposed algorithm, i.e., offline training and
online execution. In the offline phase, the task of
DSA is offloaded to the MEC. With the aid of
MEC, the SUs adaptively adjust their DSA strategies,
so that their network models can be well trained
finally. While in the online phase, each SU executes
action locally based on the trained model with no
central controller and the coordination among SUs

(3) We present simulations to demonstrate the effective-
ness and feasibility of our proposed DSA algorithm in
the different settings under dynamic environment. We
observed that the optimal network utility is always real-
ized after limited training, while the sensing accuracy is
also improved. The SUs can effectively overcome their
imperfect sensing characteristic and capture the idle
channels. Based on this, the expected optimal DSA task
could be completed in a fully distributed manner

The rest of this paper is structured as follows: the system
model is provided in Section 2. In Section 3, the problem is for-
mulated as a Dec-POMDP tomaximize the global utility. Then
in Section 4, QMIX-based algorithm is proposed to obtain the
optimal DSA policy. Numerical results are provided in Section
5, and the conclusion of the paper is presented in Section 6.

2. System Model

As shown in Figure 1, we consider a MEC-enabled cognitive
network consisting of one primary user (PU), N SUs, with
the set denote by SN = fSU1, SU2,⋯, SUNg, and one cogni-
tive BS with MEC server. There are M orthogonal authorized
channels, denoted as CH= fch1, ch2,⋯, chMg. The channels’
state switches between idle and occupied according to the
communication behavior of the PU. However, the channel
state and switching pattern is unknown for SUs. We assume
that there are Kð1 < K <MÞ idle channels, which are feasible
for SUs distributed in the network to utilize opportunistically.
In this paper, the SUs are supposed to capture the PUs occupa-
tion mode and learn to sense and access channels autono-
mously, so as to achieve the efficient DSA. Due to the limited
computational ability and battery life, SUs offload their DSA
tasks to the MEC server for computation and analysis. There-
after, theMEC server distributes the DSA strategies to each SU
for the online learning to realize the DSA. In the whole pro-
cess, no information interaction is required among SUs.

We assume that all the SUs are slot-synchronized, and
only part of primary channels can be sensed by each of them,
one of which should be accessed by each SU further. Here,
the energy detection mechanism is employed [39]. In prac-
tice, there are imperfect detections, which may cause the
wrong judgement inevitably. And also, since the environ-
ment is unstable and channel states are time-varying as
mentioned above, the SUs interact with environment to
learn how to sense and access a particular channel.

Specially, as depicted in Figure 2, the whole DSA proce-
dure for all SUs can be illustrated as follows: the PU occupies
one or more channels at each time slot, and the state of pri-
mary channels may change at each time slot. Firstly, each SU

senses channels independently to judge whether they are occu-
pied by the PU. Then, the SUs attempt to access one of the
sensed channels and send the request signals to the BS, where
the MEC server is employed to finish the computation and
analysis so that the distributed DSA strategies for each users
can be produced. In this way, SUs can learn the switching pat-
terns of the channel states and decide which channel should be
sensed in the next time, by analyzing their current DSA
scheme and the corresponding feedback received from the BS.

3. Problem Definition with Dec-POMDP

Note that all SUs aim to achieve DSA, in which the objective
including full idle channel utilization, and load balance is
considered. For each SU, it can only sense part of primary
channels, then judges the occupation state of the channel
that it accesses without prior coordination among SUs. That
is, the multiple SUs distributed in the network can only
obtain partial environment information. Therefore, the
problem can be modeled as Dec-POMDP, which can be for-
mulated as a tuple hN , S,O, A, P, ri. The definitions of the
tuple elements are listed as follows, and some of the key
symbols are summarized in Table 1.

N is the number of SUs who are regarded as multiple
agents in the interactive environment.

“S is the global channel state space, which reflects the
true state of M orthogonal authorized channels in the com-
munication environment.” At time slot t, the channel state
space is defined as St ≜ fst1,⋯, stMg, where the state of chm,
m ∈ ½1,M� is given by

stm =
−1, if chm, is busy at slot t,

1, if chm, is idle at slot t:

(
ð1Þ

O is the partial observation space, and it represents the
sensed channels for all agents. At each time slot t, agents

Cognitive BS

PU

SU

SU1 SU2 SU3 SU4 SU5 SUN

Wireless link

MEC server

Figure 1: System model of the MEC-enabled cognitive network.
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observe some representation of environment state Ot ≜ fot1
,⋯, otNg from the state St . Particularly, the agent may not
obtain full and perfect knowledge of the channel states, i.e.,
for agent n ∈ ½1,N�, otn ≠ St . And we define the observation
of the agent n ∈ ½1,N� for chmðm ∈ ½1,M�Þ as otn = fotn,mjm
∈ ½1,M�g, where

otn,m =
−1, if chm, is sensed busy at slot t,

1, if chm, is sensed idle at slot t:

(
ð2Þ

A is the action space for all agents. The action profile for
all agents at slot t is formulated as At ≜ fat1,⋯, atNg. For the
agent n ∈ ½1,N� who chooses the chm, m ∈ ½1,M�, we define
atn = fatn,mjm ∈ ½1,M�g, where

atn,m =
−1, if the chosen chm, is busy at slot t,

1, if the chosen chm, is idle at slot t:

(
ð3Þ

P is the state transition matrix, reflecting the transition
of channel occupation from state St to St+1.

r = fr1,⋯, rNg is the set of immediate reward for all
agents after accessing the sensed channels, which encourages
agents to learn an optimal DSA strategy. Here, the agents are
supposed to independently sense and access a truly vacant
and proper channel and obtain a reward according to the
feedback from the BS.

The key point of the reward for each agent is to make
perfect use of the idle channels in the space as fair as possi-
ble. Since the MEC server at BS will collect the channel state
and the number of agents who request for the same channel,
we design the immediate reward of the n-th agent at slot t as

rtn =
f

ctm
N

� �
, stm = 1, atn = chm, atn ∪ at�n

�� �� = ctm,

−1, stm = −1:

8><
>: ð4Þ

where the function f ððctmÞ/ðNÞÞ is defined in the case when
the channel available is chosen. With regard to the ratio of
the number of agents allocated on the same channel chm,
m ∈ ½1,M� to the total number of agents, ððctmÞ/ðNÞÞ, it
guides the agent to access idle channel properly. And �n
denotes the agents except for agent n, j·j measures the num-
ber of agents on chm. On the contrary, when a busy channel
is wrongly chosen by agent n, a negative reward −1 is
occurred and an error identification is informed.

Specifically, f ð·Þ denotes a piecewise function bounded
on 1/K , which is set to guarantee that all the available chan-
nels can be utilized fairly. The function is formulated as

f
ctm
N

� �
=

K − 1ð Þ c
t
m

N
, 0 <

ctm
N

<
1
K
,

1
K

N
ctm

− 1
� �

,
1
K

<
ctm
N

< 1:

8>>><
>>>:

ð5Þ

When ððctmÞ/ðNÞÞ increases, the reward increases at first
and achieves the maximum value at the boundary 1/K , then
decreases rapidly. It signifies that the agent n will get a small
reward whether there are too many or too few agents on the
selected chm. Whereas a balance scheme is explored for all
agents in the cognitive network under the limited channels.

Based on the immediate rewards from all agents, the
total reward in one slot can be written as

rttot = 〠
N

n=1
rtn τn, anð Þ, ð6Þ

where τn denotes the observation-action history of agent n.
Actually, each agent in the network is supposed to action
toward the whole optimal DSA. We call it a cooperative
game, which is a special type of exact potential game

Channel1 Channel2PU :

SU1 :

SU2 :

Sense

Sense Sense

SenseAccess

Access Access

AccessLearn

Learn Learn

Learn

t0 t1 Slot

Figure 2: The time-block structure for the DSA procedure.

Table 1: Glossary of key symbols.

Symbol Description

N Number of agent

M Number of orthogonal authorized channel

S Global channel state space

St Channel state space at slot t

stm State of channel m at slot t

O Observation space

Ot Observation space at slot t for all agents

otn Observation for agent n at slot t

otn,m Observation of channel m for agent n at slot t

A Action space for all agents

At Action profile for all agents at slot t

atn Actions for agent n at slot t

atn,m Action for agent n who chooses channel m at slot t

r The set of immediate reward for all agents

rtn Immediate reward for agent n at slot t

ctm
Number of agents allocated on the same

channel m at slot t

rttot Total reward for all agents at slot t

τn Observation-action history of agent n

Rtot Global reward of all agents in the finite time slots

γ Discount factor
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(EPG). Based on this theory, the monotonicity of rttot con-
forms to that of rtn [40]. Thus we have

argmax
a

rttot S
t , a

À Á
=

argmax
a1

rt1 τ1, a1ð Þ

argmax
a2

rt2 τ2, a2ð Þ

⋮

argmax
aN

rtN τN , aNð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð7Þ

In the finite time slots, the global reward of all agents can
be obtained as

Rtot = 〠
T

t=1
〠
N

n=1
γt−1rtn τn, anð Þ, ð8Þ

where γ is the discount factor, reflecting the influence of the
agents’ action at the current time slot on the long-term
return. And equation (8) can be simply transformed into

Rtot = 〠
T

t=1
γt−1 〠

N

n=1
rtn τn, anð Þ, ð9Þ

which can be furtherly integrated as

Rtot = 〠
T

t=1
γt−1rttot: ð10Þ

The ultimate goal of each agent is to obtain their own opti-
mal spectrum sense and DSA strategies π∗ ≜ ðπ∗

1 ,⋯, π∗
NÞ, so

as to maximize the expected cumulative reward of the whole
network. The corresponding problem can be formulated as

P1 : π∗ = argmax
π: a1,⋯,aNf g

E Rtotð Þ, ð11Þ

where Eð·Þ denotes the expectation.
From the above defined problem, the agents are expected to

possess their excellent abilities of independent perception and
decision to maximize a global cumulative reward in a coopera-
tive manner. It is challenging since there is not even a central
node to control the whole allocation in practical scenario and
no direct information exchange beforehand among agents.

4. QMIX Algorithm for DSA

4.1. Algorithm Description.We consider the QMIX algorithm
[41] with the CTDE structure to solve the DSA problem.
There are two phases for the DSA of all the agents, i.e., offline
training and online execution, respectively. For one thing, in
the offline phase, agents perceive environmental information
and offload the DSA task to the MEC server, who is responsi-
ble to train and issue the distributed DSA strategies by com-
puting and analyzing the received data. For another, in the
online phase, the MEC server keeps silence, and each agent
executes action autonomously by the learnt strategy.

As shown in Figure 3, there are N local agent networks for
SUs and one mixing network deployed at the central control-
ler. And the agent networks are constructed by deep recurrent
Q-network (DRQN), catering for the agents’ partial observa-
tion. Here, as the agents considered in the network are homo-
geneous and also for the system stability, all the DRQNs are
equipped with the same network structure and parameters.
For any agent n ∈ ½1,N�, with the current observation otn and
the previous action at−1n , the local action value function Qn is
obtained, which enables the agent to choose action atn. Then
all the agents’ value functions fQnðτn, atn ; πnÞjn = 1, 2,⋯,Ng
are injected into the mixing network. Note that a hypernet-
work is embedded in the mixing network, which makes full
use of the global channel state St to improve the convergence
speed and output the parameters, e.g., bias and nonnegative
weight ðb,wÞ for the mixing network. Finally, by the nonlinear
map model of the mixing network, the joint action value func-
tion Qtotðτ, at ; πÞ is produced.

The advantage of this method is that the monotonicity of
Qtot and Qn can remain the same, i.e.,

∂Qtot
∂Qn

≥ 0,∀n ∈ 1,N½ �, ð12Þ

which well coincides with the property of the problem.
Therefore, the relationship between Qtot and Qn can be
furtherly written as

argmax
a

Qtot τ, at ; π
À Á

=

argmax
at1

Q1 τ1, at1 ; π1
À Á

argmax
at2

Q2 τ2, at2 ; π2
À Á
⋮

argmax
atN

QN τN , atN ; πN

À Á

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð13Þ

b, w St

Mixing network

Hypernetwork

Agent 1
Network
(DRQN)

Agent 2
Network
(DRQN)

Agent N
Network
(DRQN)

Online execution

Offline training Qtot (𝜏, 𝛼t ; 𝜋)

Q1 (𝜏1, 𝛼1
t ; 𝜋1) Q2 (𝜏2, 𝛼2

t ; 𝜋2) QN (𝜏N, 𝛼N
t ; 𝜋N)

(o1
t , 𝛼1

t–1) (o2
t , 𝛼2

t–1) (oN
t , 𝛼N

t–1)𝛼1
t 𝛼2

t 𝛼N
t

Figure 3: The structure of QMIX algorithm.
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By learning the optimal joint value function Qtot, we can
obtain the agents’ local distributed strategies indirectly. And
the update criteria for Qtot is to minimize the loss function
LðπÞ, which is given by

L πð Þ = 〠
l

i=1
yitot −Qtot τ, a, St ; π

À ÁÂ Ã2, ð14Þ

where yitot is expressed as

yitot = Ri
tot + γ max

a′
�Q τ′, a′, St ′ ; �π
� �

, ð15Þ

where �Qðτ′, a′, St ′ ; �πÞ denotes the target network, supply-
ing for the stable training.

Specifically, the process of the proposed QMIX-based
DSA algorithm is listed as Algorithm 1.

4.2. Computational Complexity Analysis. In the proposed
QMIX-based DSA algorithm, DRQN is adopted for each
agent, which can well handle the Dec-POMDP problem.
Besides, some simple activation function, e.g., ReLU and
ELU are employed in the algorithm. The operation mainly
involves matrix multiplication and addition. In particular,
for the DRQN, let us assume that there are V layers, and

the number of neural units is uvðv ∈ ½1, V �Þ in v-th layer,
and Z is the size of input layer. Then, the number of multi-
plications through DRQN can be presented as W = Z · v1 +
∑V−1

v=1 uv · uv+1. For each agent, the computational complexity
of one sample is OðWÞ. Note that the offline training is

1: Initialization:
The network environment and experience replay buffer R; the parameters for hypernetwork and all of the agent networks π;

2: Setting:
The target-network parameters �π = π, the learning rate α, the discount factor γ, the batch size l, maximum training epoch, epi-

sode, slot: Epo, Epi, T, maximum train step L;
3: [Centralized Training Phase]:
4: whileepoch ≤ Epodo
5: forepisode = 1,⋯, Epido
6: fort = 1,⋯, Tdo
7: for each agent ndo
8: Get observation otn, action atn, reward rtn;
9: end for
10: Get the next observation ot+1;
11: Store the ot , at , rt , ot+1 to the observation-action history;
12: end for
13: Store the episode data to the replay buffer R;
14: end for
15: fortrain ≤ L in each epoch do
16: Sample a batch of l episodes’ experience from R;
17: for each slot in each sampled episode do
18: Get Qt and Qt+1 from the evaluate-network and the target-network, respectively;
19: end for
20: Calculate the loss function by (14), and update the evaluate-network parameters π = π − α∇πLðπÞ;
21: Update the target-network parameters �π = π;
22: end for
23: Save DRQN and QMIX network models;
24: end while
25: [Decentralized Executing Phase]:
26: Setting: loadmodel = TRUE;
27: Input: The channel state;
28: Output: The agents’ observations and actions.

Algorithm 1: The proposed QMIX-based DSA algorithm.

Table 2: Simulation parameters.

Parameters Values

Number of PUs 1

Number of SUs 9

Number of MEC servers 1

Number of authorized channels 4

Discount factor γ 0.99

Learning rate α 5 ∗ 10−4

Replay buffer capacity 100 episodes of experience data

Batch size l 16 episodes of experience data

Updating step 40 steps

Training epoch Epo 2000 epochs

Training episode Epi 100 episodes

Training slot T 20 slots

Exploration probability ε 0.4 to 0.02
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parallelly worked at the edge server in the training phase.
The training complexity of one batch of l episodes under T
training slots is OðlTWÞ. And the whole computational
complexity is OðIlTWÞ until the algorithm converges over
I iterations. Further, the computational complexity of the
execution phase is OðWÞ, since each SU acts locally at each
time step. Due to its monotonicity, the complexity increases
linearly with the increase of input scale, which greatly
improves the efficiency of the algorithm. Therefore, less
computational resource is required in practice.

5. Simulation Results

In this section, we provide the simulation parameter setting,
and then evaluate the performance of the proposed QMIX-
based DSA scheme and the rationality of the defined prob-
lem via simulation.

Since there is a mixing network, a hypernetwork and N
agent networks in the proposed algorithm, the corresponding
network parameters setting are illustrated as follows: the mix-
ing network, which brings the global action value from local
action values, has one hidden layer of 32 neurons, and the
nonlinear function ELU is employed as the activation func-
tion. For the hypernetwork, it consists of one hidden layer
which has 64 neurons with ReLU as the activation function.
Each agent network is with one recurrent layer employing a
GRU with 64-dimension hidden state. Unless otherwise spec-
ified, other simulation parameters are summarized in Table 2.

In particularly, for hyperparameters, the replay buffer is
capacity-limited which can store 100 sets of data, and the old-
est data will be removed when the buffer is full. The batch size l
for sampling is 16 episodes. The target networks of the DRQN
are updated every 40 training steps. In the whole process, it is
considered that there are 2000 training epochs, each epoch has

100 episodes, in which 20 time slots are regarded as one epi-
sode. In the training phase, to encourage the agent to explore
the environment, the “explore and exploit” mechanism is
employed by agents to choose actions [42]. The exploration
probability ε decays from 0.4 to 0.02 over 400 steps. Then, in
order to timely evaluate the quality of the training perfor-
mance, the distributed execution is conducted every four
training epochs, where we set ε = 0, and the agents make deci-
sions only by the local models. For the environment setting,
we assume that the channels change in periodic mode and
each SU can only sense one channel.

To verify the advantages of the proposed scheme, in
Figure 4, we compared our proposed scheme with two other
schemes: (1) the IQL-based DSA scheme [43] and (2) the
VDN-based DSA scheme [44]. We take nine SUs and four
channels with one channel unavailable to compare the perfor-
mance of these schemes. The abscissa is the training epoch,
and the ordinate is the normalized reward. The simulation
results show that, the performance curves of IQL and VDN
based schemes show relatively large fluctuation, which are far
from the best effect. It can be seen that the maximum value
under IQL is only 0.17, while VDN is better than IQL reaching
just 0.32. The reasons for this result can be explained as follows:
for IQL-based scheme, each agent operates independently in
the whole learning process, which is not conducive to the stabil-
ity and convergence. And for VDN-based scheme, it does not
use global state information during central training, and a sim-
ple weighted summation method is used to decompose the
joint value function to update the agents’ strategies, causing a
bad training effect. In addition, due to the powerful fitting abil-
ity and the integration of global environment information, an
excellent DSA effect is achieved in our proposed QMIX-based
scheme. Therefore, the DSA performance of our proposed
QMIX-based DSA scheme outperform other two schemes.
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Figure 5 displays the sum of rewards obtained by all users
in an episode versus training epoch in the case of different
number of SUs. There are four channels considered in the net-
work, where there are always three channels available for SUs
that changes periodically over time. It can be seen intuitively
that under three different settings, as the number of training
epoch increases, the total episode reward increases gradually,
and finally reaches to themaximum value within limited train-
ing. Note that the negative reward happens at the beginning of
the training, which can be explained that some SUs select the

nonidle channels, since the agents’ network models are still
rough at that moment, although four epochs’ training is done.
Specially, when there are 15 SUs, the initial episode reward is
about -30, and then a longest time is experienced for conver-
gence. This is because the more number of SUs means the
larger calculation dimension and the slower learning speed,
which makes it more difficult for SUs to learn and analyze
the environment. That is, through the proposed method,
firstly, the SUs have learned to capture the spectrum holes.
On this basis, the load balance is realized, so as to obtain the
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Figure 5: Episode reward versus training epoch under different number of SUs.
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optimal DSA. Besides, we can observe that, when the networks
are well trained, more episode reward value of the system can
be achieved with more users. It is related to the definition of
global reward in cooperative MARL environment, which inte-
grates all SUs’ rewards.

In Figure 6, the behavior of the episode rewards under
different number of idle channels is plotted. To facilitate
the comparison, we set the idle channels K = 2, 3 for M = 4
, and 12 SUs are participating in the DSA. Likewise, we
can observe that the curves fluctuate but overall increase
and then converge to the maximum value as the training
epoch increases. As for the situation of the fewer channels
available, it can be seen that a slower convergence speed is
acquired, which means the fewer optional channels requires
more time for multiple SUs to make a “trial and error” until
the model is well-done, so as to achieve the optimal DSA.
We can also observe that at the beginning of the training, a
quite low negative value, about -100, is caused when K = 2,
i.e., there are two unavailable channels. It can be explained
that the more number of unavailable channels, the greater
probability that the SUs make a wrong decision to choose
unavailable channels. It also reflects the huge influence of
the number of unavailable channels on network learning
effect. What is more, it is also shown that the more available
channels, the larger total episode reward is obtained, which

reveals that the more available channels brings the better
balance among these channels.

Figure 7 evaluates the performance with respect to number
of authorized channels, which are set as four, five, and six, and
the PU occupies one, two, or three channels correspondingly
to ensure the same channels available for SUs. Considering
that the SUs’ sense accuracy is also an important indicator
for the DSA, the miss detection ratio is evaluated as well. From
the presented reward curves, we can observe that in three dif-
ferent cases, the episode rewards are increasing gradually.
Since there is little difference among the set of available chan-
nels and SUs, the curves are entangled with each other, and the
values are relatively close in the whole process. Finally, they all
converge at the same value, which is also the optimal value
after the network model is fully trained.

Meanwhile, the miss detection ratio behaves an opposite
trend. This intuitively shows that the agents’ detection ability
is indeed weak as they experience little learning, which makes
it easy for them to make the error decision. And we find that,
when more channels are occupied by the PU, the initial miss
detection ratio is greater, which is consistent with the reward
at the starting stage. Then, with the increase of training time,
the SUs achieve a perfect detection (miss detection ratio = 0).
At this time, compared with reward curves, it can be seen that
the reward value has not reached the optimal value, but
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Figure 9: The distributed execution after the final training.
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converges after more training. This shows that after overcom-
ing the imperfect detection, it takes some time to further real-
ize load balance for SUs on the available channels.

To be more intuitive, Figures 8 and 9 present the effects
of the distributed execution in four consecutive channel
states under the initial and final training phases, respectively.
Here, the initial phase is the first four training epochs, while
the final phase is the last epoch when the models are fully
trained. We assume that nine SUs independently make a
choice from four authorized channels in different channel
states for instance.

We can see from Figure 8 that there are many wrong
channel detections and selections in the fourth tested states.
Due to the fact that the SUs have no more knowledge of the
channel variation characteristics in the initial training phase,
they access channels almost randomly. Specially, in the
state2, although there are three idle channels, the SUs gather
in the fourth channel. This reduces the channel utilization
and also causes congestion of other idle channels. Whereas,
we can see from Figure 9 that the result of DSA is well done
after the final training. Not only no one selects the occupied
channel but also the SUs on each available channels are bal-
anced. The goal of the DSA in the considered scenario is
achieved, and the effectiveness of proposed algorithm is
demonstrated. Besides, we have counted the real execution
time under one of the channel states, and we find that it
takes only about 26.59ms for all SUs’ DSA. It highlights
the low computational complexity of the proposed algo-
rithm furtherly. Then, since all SUs’ collected spectrum data
has no error after training, the availability, accuracy, and
timeliness of the acquired spectrum data can be guaranteed.

6. Conclusion

In this paper, we have studied the distributed DSA strategies
for multiple cognitive users in MEC-enabled network, where
the spectrum environment is time-varying, and the users make
decisions with imperfect spectrum sensing. The DSA task,
including capturing the spectrum hole and achieving the load
balance on channels available, is investigated. We modeled
the problem as Dec-POMDP, and a QMIX-based DSA algo-
rithm is proposed, which allows users offload their task to
the MEC server to train the network models. We evaluated
the system reward and the miss detection ratio of the DSA
by the proposed algorithm. The results showed the rationality
of the model and the effectiveness of the proposed algorithm.
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