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Portraying the trajectories of certain vehicles effectively is of great significance for urban public safety. Specially, we aim to
determine the location of a vehicle at a specific past moment. In some situations, the waypoints of the vehicle’s trajectory are
not directly available, but the vehicle’s image may be contained in massive camera video records. Since these records are only
indexed by location and moment, rather than by contents such as license plate numbers, finding the vehicle from these records
is a time-consuming task. To minimize the cost of spatiotemporal search (a spatiotemporal search means the effort to check
whether the vehicle appears at a specified location at a specified moment), this paper proposes a reinforcement learning
algorithm called Quasi-Dynamic Programming (QDP), which is an improved Q-learning. QDP selects the searching moment
iteratively based on known past locations, considering both the cost efficiency of the current action and its potential impact on
subsequent actions. Unlike traditional Q-learning, QDP has probabilistic states during training. To address the problem of
probabilistic states, we make the following contributions: 1) replaces the next state by multiple states of a probability
distribution; 2) estimates the expected cost of subsequent actions to calculate the value function; 3) creates a state and an
action randomly in each loop to train the value function progressively. Finally, experiments are conducted using real-world
vehicle trajectories, and the results show that the proposed QDP is superior to the previous greedy-based algorithms and other
baselines.

1. Introduction

Portraying the trajectories of some vehicles in a city is
important to foresee potential safety issues, for example, to
infer the intention of a suspicious vehicle. We only get the
locations of the vehicle at some key moments, instead of at
all moments for economic efficiency. Figure 1 shows a typi-
cal application scenario. The sequential numbers indicate
the waypoints of the vehicle trajectory from 8 : 00 to 9 : 00
on a certain day, of which the yellow ones are the locations
of some key moments. By locating a suspicious vehicle at
certain times (such as target time, etc.) and marking them
on a map until we can get a rough idea of its trajectory.

To track vehicles in a city, vehicle Re-Identification (Re-
Id) [1–4] focuses on how to identify the target vehicle in cam-
era video records as accurately as possible. However, Re-Id
does not consider how to select records, which are massive
and only indexed by location and moment. As a result, Re-
Id needs to be performed on all records exhaustively. With
the rapid urbanization, there are a large number of cameras
in the city. By searching within the video records of these cam-
eras, it is possible but time-consuming to find the target vehi-
cle at the target moment, because these records are massive
and only indexed by location and moment, rather than by
the contents such as the license plate number. Besides the
straightforward strategy that all searches are performed at
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the target moment, another strategy worth exploring is to
spend some searches at intermediate moments to determine
the vehicle’s likely subsequent path, thus significantly narrow-
ing the search area at the target moment. We call the effort to
check whether the vehicle appears at a specified location at a
specified moment as a spatiotemporal search.

How to determine the location of a vehicle at the target
moment with the minimumcost of spatiotemporal searches
in massive camera video records? The cost of a spatiotempo-
ral search can be considered as a constant for simplicity,
regarding either human or artificial intelligence. In previous
work [5], we proposed two greedy algorithms named Inter-
mediate Searching at Heuristic Spatiotemporal Units (IHUs)
and Intermediate Searching at Heuristic Moments (IHMs),
and some other simple but uncompetitive baselines. Com-
pared with the algorithm IHUs that considers both moments
and location, IHMs can fully utilize the information gained
from previous failed searches, performing location-by-
location searches at the same time. Since IHMs is based on
the greedy heuristic, it may result a locally optimal solutions.
The most common way to go beyond the locally optimal
solution is dynamic programming. Dynamic programming
is essentially an exhaustive idea. By comparing all solutions,
it can guarantee that the solution is globally optimal. How-
ever, there are too many spatiotemporal points to be consid-
ered, making the solution space too large to list all solutions.
Reinforcement learning can alleviate the problem through
quasi-dynamic programming process. The spatiotemporal
search strategy based on reinforcement learning selects an
intermediate moment according to known vehicle spatio-
temporal points, taking into account the cost efficiency of
the current action and its potential impact on subsequent
actions. The strategy of spatiotemporal search is a standard
finite Markov decision process [6]. Q-learning, a reinforce-
ment learning algorithm, has been proved to eventually con-
verge to the optimum action values with probability 1 so
long as all actions are repeatedly sampled in all states and
the action values are represented discretely [7, 8]. However,
if adopting Q-learning directly to address our problem, since
the next state (known spatiotemporal point of the vehicle
trajectory) cannot be determined after the action (i.e., select-

ing an intermediate moment and performing the corre-
sponding spatiotemporal searches), it is difficult to update
the next state and the value function when training. To over-
come this challenge, this paper proposes Quasi-Dynamic
Programming (QDP) algorithm to improve the training
phase of Q-learning. The contributions of this paper include:

(1) We propose a reinforcement learning algorithm
called QDP that can result the near optimal solution
to the problem of minimizing spatiotemporal search
cost

(2) To address the challenge of probabilistic state in the
training phase, we propose a novel training method
for QDP, which replaces the next state by multiple
states with a probability distribution, estimates the
expected search cost of subsequent selections to cal-
culate the value function, and creates a state and an
action randomly in each loop to train the value func-
tion progressively

(3) We evaluate the proposed QDP on real-world vehi-
cle trajectories, and the results show that it is supe-
rior to the previous greedy-based algorithms
(IHMs) and other baselines

The contents of this paper are arranged as following:
Section 2 discusses some related work; Section 3 proposes
the overall process of QDP, and explains the training
method for QDP; then the experiments are conducted in
Section 4; finally, the conclusions and future work are sum-
marized in Section 5.

2. Related Work

Since this paper addresses the search problem based on rein-
forcement learning, we will introduce the related work from
the two aspects of search theory and reinforcement learning.

2.1. Search Theory. The core issue of search theory is design-
ing a search strategy to find a missing target, under con-
straints such as time limit, forces required, and task
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Figure 1: Vehicle location at specific moments.
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budget. Related work mainly comes from the field of opera-
tions research or cybernetics.Koopman [9–11] used the basic
probability theory to optimize the conFigureuration of bud-
geted search forces to find stationary targets. Stone [12, 13]
presented detailed mathematical assumptions and theoreti-
cal proofs for specific problems of moving target searching
and found the necessary conditions for the optimal search
strategy. Besides the above theoretical analysis, some other
works adopted the search theory in practical application sce-
narios. Researchers [14–17] established a management
framework of task planning and feedback controlling based
on the classical search theory. For the task planning of satel-
lite SPOT-5, Bensana [18, 19] and Agnese [20] compared the
computational performance of complete searching algo-
rithms (i.e., Depth-first Search, Dynamic Programming,
Russian Doll Search) and incomplete searching algorithms
(i.e., Greedy Search, Tabu Search) under different problem
scales. To locate the target to be observed in a region by sat-
ellite scanning, Lemaitre et al. [21] discussed Greedy Search,
Dynamic Programming, Constrained Programming, and
Genetic Algorithms to solve the problem. Different from
the existing work, we study a more realistic problem with
high rate of knowledge update in the application scenario
of vehicle tracking.

2.2. Reinforcement Learning. Reinforcement learning [22,
23] is used to describe and solve the problem that the agent
learns to obtain the maximum reward or achieve a specific
goal in the process of interacting with the environment.
Reinforcement learning is widely used in areas such as pro-
cess control, task scheduling, robotics, and smart games
[24–26]. Some complex reinforcement learning algorithms
can reach or even surpass the human level in certain tasks
[27, 28]. Q-learning is one reinforcement learning algorithm
we pay attention to in this paper. Watkins [29] proposed Q-
learning first, which utilizes the reward of state-action pair
for value function updating. Rummery and Niranjan [30]
proposed SARSA, a reinforcement learning algorithm with
online policy based on Q-learning. Harm van Seijen et al.
[31] presents a theoretical and empirical analysis of
Expected Sarsa, a variation on Sarsa, the classic on-policy
temporal difference method for model-free reinforcement
learning. DeepMind [32] proposed DQN (Deep Q-Net-
works) by combining convolutional neural networks and
Q-learning. Different from traditional Q-learning that the
next state is uniquely determined, in this paper, the next
state is multiple states of a probability distribution, i.e., prob-
abilistic states. We propose a novel training method to over-
come the difficulty brought by probabilistic states.

3. Overall Process of Quasi-Dynamic
Programming (QDP)

Symbols used in this paper are shown in Notations. Let
O = fo1, o2,⋯, ojOjg be vehicles, L = fl1, l2,⋯, ljLjg be loca-
tions of a city, D = fd1, d2,⋯, djDjg be days, Tr = ftr1, tr2,
⋯, trjTrjg be trajectories. In this paper, a trajectory is defined

as a sequence of spatiotemporal points, i.e., trðox, djÞ =
hðt1, lt1Þ, ðt2, lt2Þ,⋯ijox, dj.

Definition 1 (a spatiotemporal search). The effort to check
whether the target vehicle ox appears at a specified location
li at a specified moment topt in the camera records of that
spatiotemporal point ðtopt , liÞ. If vehicle ox is found at loca-
tion li at moment topt , ie ðtopt , liÞ ∈ trðox, djÞ, it will returns
1, otherwise it returns 0. Formally,

s ox, topt , li
� �

=
1, topt , li

� �
∈ tr ox, dj

� �
0, else

(
ð1Þ

Problem 2 (tracking an object by spatiotemporal search).
Give an object ox, a day dx, a past moment tp of that day,
ox‘s location ltp at that moment, a current moment tx, cam-

era records that make the spatiotemporal search sðox, tk, liÞ
available in dx before/at tx , as well as history trajectories T
R′, in which arbitrary dj < dx . When and where to execute

a spatiotemporal search can base on TR′ and the outputs
of previous searches. The problem is how to utilize a mini-
mal number of searchs to find the object at current moment
tx. Formally,

give ox, dx, tx , tp, ltp
� �

, TR′ before s ox, tk, lið Þ in dx

return lx, s:t: min
s ox ,tx ,lxð Þ

sðÞ,sðÞ,⋯ , s ox , tx, lxð Þh ij j

ð2Þ

The difficulty of a spatiotemporal search is affected by
many factors in the spatiotemporal point (e.g., traffic flow,
road network, and building density). It needs to be quanti-

fied by professionals or artificial intelligence. Let C = fc1l1 ,
c1l2 ,⋯, c1ljLj ,⋯, cjdx jl1

, cjdx jl2
,⋯, cjdx jljLj

g contains the search cost

per spatiotemporal point on day dx . It can be seen from
the problem definition that we have to find the vehicle
finally, so we use the cost of spatiotemporal search as the
only indicator to measure the performance of different
algorithms.

The overall process of QDP is shown in Figure 2. The
process includes two phases: the training phase and execut-
ing phase. The training phase outputs the location decision
model and the moment decision model. The location deci-
sion model is trained with the help of mobility prediction
and basic optimal searching. This model will return the opti-
mal searching location sequence at a given moment. The
moment decision model is trained based on Monte-Carlo
method and probabilistic states. This model will return the
optimal moment that will be searched in the next action.
The executing phase describes the online spatiotemporal
search utilizing the trained moment decision model and
location decision model.
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3.1. Training the Location Decision Model. The location deci-
sion model is responsible to output the location deci-
sionhtopt , ξopti (the optimal searching location sequence at
moment topt given by the moment decision model). It is
trained with the help of mobility prediction and basic opti-
mal searching. The mobility prediction algorithm is not the
focus of this paper. In the previous work [5], we have ana-
lyzed the advantages of choosing the first-order Markov
model for mobility prediction. Suppose that the transition

probability matrix TPMjLj×jLj
Δt represents the probabilities of

a vehicle moving from one location to another after a period
of time Δt = topt − ts, of which an element is poptli

, i.e., the

probability of vehicle ox moves from location ls at moment
ts to location li at moment topt .

TPM Lj j× Lj j
Δt = poptli

n o
ð3Þ

poptli
=
#trðÞwith ts, lsð Þ& topt , li

� �
#trðÞwith ts, lsð Þ , ts = t1, t2,⋯, trðÞ ∈ TR′

ð4Þ

where the meaning of “#” is “the number of”, trðÞ is a
trajectory. Equation Equation (4) represents the ratio of
“the number of trajectories that pass both ðts, lsÞ and ðtopt ,
liÞ” to “the number of trajectories of only the pass ðts, lsÞ”.
TPMjLj×jLj

Δt can be trained from historical vehicle trajectories.
When given an original location, a row of probabilities is
output as the predicted result of the destination location.

The basic optimal searching theory can assign the priority
of locations to search at. Suppose the searching location

sequence at moment topt is htopt , ξopti = hðtopt , l
ξopt
1 Þ, ðtopt , l

ξopt
2 Þ

,⋯, ðtopt , l
ξopt
i Þ,⋯i, lξopti ∈ L.

Definition 3 (probability-cost ratio). The ratio of the proba-
bility popt

lξi
of finding the target vehicle to the cost copt

lξi
of the

i − th spatiotemporal search in the sequence htopt , ξopti,
formally,

η topt , l
ξopt
i

� �
=
popt
lξi

copt
lξi

ð5Þ

Theorem 4. [33]: The necessary and sufficient condition for
the sequence htopt , ξopti to be the searching location sequence
with the lowest search cost at moment topt is that the
probability-cost ratios are in descending order.

Consequently, the location decision can be made accord-
ing to Theorem 4.

We need to estimate the search cost which will be used
during training the moment decision model. The optimal
sequence htopt , ξopti has a expected search cost:

Cost topt , ξopt
� �

= 〠
Lj j

i=1
popt
lξi

× 〠
i

j=1
copt
lξj

ð6Þ

To demonstrate how to calculate the expected search
cost using Equation (6), we assume the spatiotemporal
search costs c3l1 = c3l2 = c3l3 = c3l4 = 1, the location transition

probabilities p3l1 = 1/3, p3l2 = 0, p3l3 = 2/3, p3l4 = 0. Then, the des-
cendingly sorted location sequence is ht3, ξ3i = hðt3, l3Þ, ðt3,
l1Þ, ðt3, l2Þ, ðt3, l4Þi at moment t3. Then the expected search
cost is:

Cost t3, ξ3ð Þ = p3l3 × c3l3 + p3l1 × c3l3 + c3l1

� �
+ p3l2 × c3l3 + c3l1 + c3l2

� �
+ p3l4 × c3l3 + c3l1 + c3l2 + c3l4

� �
=
2
3
× 1 +

1
3

× 1 + 1ð Þ + 0 × 1 + 1 + 1ð Þ + 0 × 1 + 1 + 1 + 1ð Þ
=
4
3

ð7Þ

3.2. Training the Moment Decision Model. Perform spatio-
temporal searches at moment topt should consider both the
cost-efficiency of the current action and its potential impact
on subsequent actions. So, how to select the next searching
moment topt when knowing a spatiotemporal point ðts, lsÞ
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Figure 2: Overall Process of Quasi-Dynamic Programming (QDP).
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of target vehicle ox? The moment decision model is respon-
sible to answer this question.

Following reinforcement learning, the moment decision
model is represented as ðS, A, C, Γ,QÞ, in which Ssls ∈ S
denotes the current state ðts, lsÞ; As

ls
∈ A denotes the current

action htopt , ξopti; C : S × A⟶ C denotes the search cost
function Copt = Costðtopt , ξoptÞ; Γ : S × A⟶ ΔS denotes the
state transition function; Q denotes the value function. The
next state Ssls ′ is obtained by performing action As

ls
at the

state Ssls , and the value function is updated using Equation
(8), where α is the learning rate between (0, 1], and γ is
the discount rate.

Q Ssls , A
s
ls

� �
=Q Ssls , A

s
ls

� �
+ α: Copt + γ:min

As
ls
′
Q Ssls ′, A

s
ls
′

� �
‐Q Ssls , A

s
ls

� � !

ð8Þ

The learning rate α can control the update rate of the
value function. The discount rate γ can balance the impor-
tance between the immediate and potential reward. We use
QðSsls ′, As

ls
′Þto estimate the long-term impact of performing

action As
ls
at state Ssls .

Figure 3 shows how to train the moment decision model.
First of all, the moment decision model is initialized. In each
loop, the moment decision model decides a searching
moment based on the current state, and the location deci-
sion model decides the corresponding searching location
sequence. Then the value function is adjusted according to
the potential impact on subsequent actions and the sensed
environmental information (e.g., traffic flow, road network,
and building density, which will be quantified as search cost
Copt). The moment decision model will continually repeat
the above loop until the determined searching moment topt
at the current state Ssls is optimal.

To train the moment decision model in QDP, this paper
proposes a training method based on Monte-Carlo method
and probabilistic states to solve the problem, as shown in
Figure 4.

In the training of QDP, performing the action As
ls
=

htopt , ξopti at the state Ssls = ðts, lsÞ will result in a probabil-

ity distribution fpopt
lξ1
, popt

lξ2
,⋯, popt

lξjLj
g at different locations

flξopt1 , lξopt2 ,⋯, lξoptjLj g at moment topt . We use Equation (9)

to estimate the long-term impact of performing action
As
ls

at state Ssls , i.e., the minimum cost of subsequent

searches. As shown in Figure 5, fSopt
lξi
g are the next states

that can be generated by performing action As
ls
(i.e., spa-

tiotemporal searches) at state Ssls , and fAopt

lξ1
g, fAopt

lξ2
g, ...

are actions that can be performed at state Sopt
lξ1
, Sopt

lξ2
, ...,

respectively. Especially, when the agent finds the vehicle’s
location at the target moment tt arg et , it no longer needs
to perform any action or update the state.

min
As
ls
′
Q Ssls ′, A

s
ls
′

� �
= 〠

Lj j

i=1
popt
lξi

×min
Aopt

lξ
i

Q Sopt
lξi
, Aopt

lξi

� �
ð9Þ

To solve the problem that QDP is difficult to update
the state during training, we adopt the idea of Monte-
Carlo method. In each loop, we randomize the current
state and action, calculate the expected cost of the subse-
quent searches by Equation (9) for the value function
updated by Equation (8), and iterate the loop until the

Moment decision model

Agent
Environment information

(the traffic flow, the road network,
and the building density)

State
(Sensing environment

information) 

Action
(Performing

spatiotemporal search) 

ControlAdjust

Figure 3: Training of the moment decision model.
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{rti+1} {pti+1}

rt+1

Action at

Figure 4: Training of QDP. stdenotes the current state, at denotes
the action performed at state st , rt+1 denotes the reward (reward is
the inverse of cost) of the action at at state st , fpit+1g denotes the
probability distribution of next states, and rit+1 denotes the reward
of the optimal action at each possible state.
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value function converges. The pseudo code of QDP’s
training method is shown as Algorithm 1.

3.3. Spatiotemporal Searches at Executing Phase. The basic
idea of QDP’s executing phase is greedy. At each step, the
moment decision model decides the optimal searching
moment topt based on known spatiotemporal point ðts, lsÞ
of the vehicle ox, and the location decision model decides
the corresponding searching location sequence htopt , ξopti.
We perform spatiotemporal searches in camera records to

find the vehicle ox‘s location l
ξopt
i at the moment topt , and

update the known spatiotemporal point ðts, lsÞ = ðtopt , l
ξopt
i Þ.

The above steps are iterated until the vehicle ox‘s location
lt arg et at the target moment tt arg et is found. Finally, QDP
outputs the accumulative search cost, i.e., the cost of spatio-
temporal search. The complete steps of spatiotemporal
search at QDP’s executing phase are as follows:

(1) Quantify the search cost C = fc1l1 , c1l2 ,⋯, c1ljLj ,⋯, cjdx jl1
,

cjdx jl2
,⋯, cjdx jljLj

g at different moments and at different

locations of the day dx

(2) Initialize the known spatiotemporal point ðts, lsÞ of
the target vehicle ox and the target moment tt arg et

in the testing day dx

(3) Decide the optimal searching moment topt , topt ∈ ðts
, tt arg et�, according to the moment decision model

(4) Decide the searching location sequence htopt , ξopti
according to the location decision model

(5) Perform spatiotemporal searches hðsðox, topt , l
ξopt
1 ÞÞ,

ðsðox, topt , l
ξopt
2 ÞÞ,⋯i until sðox , topt , l

ξopt
i Þ = 1, then

return the vehicle ox‘s location l
ξopt
i at moment

topt

(6) Update known spatiotemporal point ðts, lsÞ = ðtopt ,
l
ξopt
i Þ

Repeat steps (3), (4), (5), and (6) until ts = tt arg et , output
the vehicle ox‘s location lt arg et at the target moment tt arg et

and the accumulative cost.

4. Evaluation

4.1. Dataset. The experimental dataset (The experimental
dataset of this article is provided on demand, please contact
the author if necessary) is derived from the trajectories of
19,000 taxis in Chengdu, China, in August 2014. The data
acquisition area is about 30KM × 30KM, and the duration
of each trajectory is from 7 : 00 am to 21 : 59 pm.

The GPS waypoints of different vehicles in the original
dataset are unordered. In addition, some vehicles contain
various numbers of waypoints within 1 minute while some
contain no waypoints. Therefore, it is firstly necessary to
preprocess the dataset. In this experiment, we generate a
GPS waypoint sequence of a taxi by filtering the vehicle ID
and sorting the timestamps. The time is discretized into
moments, each with 1 minute, and only the waypoint with
the earliest timestamp per minute indicates the location of
the vehicle at that moment. Trajectories with seriously miss-
ing data are discarded. The raw data details and a complete
trajectory are shown in Table 1.

The data acquisition area is divided into grids each of
size 1KM × 1KM, and the GPS waypoints are projected into
the grids, and each grid represents a location. The gird size
of 1:2KM × 1:2KM and 1:5KM × 1:5KMare also tested in
our experiments. Smaller grids are not appropriate since
there is enough historical data in a smaller grid. The
99,265 trajectories of the first 14 days are used for training,
and randomly selected 1000 trajectories from 21,963 trajec-
tories in the last 3 days are used for testing, i.e., 1000 tests.
In this experiment, it is assumed that the search cost C at a
spatiotemporal point is 1. Finally, under different grid sizes,
we perform 1000 tests and average the results.

4.2. Parameters. Two parameters of QDP need to be tuned:
the learning rate α and the discount rate γ in Equation (8).
We choose them from practical experiences.

The learning rate can control the update rate of the value
function. Small learning rate will reduce the convergence
speed of the value function, and a large learning rate may fail
to converge to the optimal solution. To find a proper learn-
ing rate, we compare the test results (i.e., the accumulative
search cost) of QDP with different learning rates (α = 1,
0.5, 0.3, 0.1, respectively) under the same other settings (i.
e., grid size = 1KM × 1KM, tt arg et − ts = 30 min, discount
rate γ = 1, and start moment ts =8 : 00/10 : 00/12 : 00/14 : 00/
16 : 00/18 : 00/20 : 00).

The test results verify that the value function is con-
verged with all different learning rates. As shown in
Table 2, QDP with different α output the same accumulative
cost, which implies their value functions are converged to
the same solution. Only the training time is different. The
training is performed on a computer with a memory of
16GB and a processor of Inter(R) Core(TM) i7-6700HQ.
To speed up the training, we choose α = 1.

Discount rate γ can balance the importance between the
immediate and potential reward. γ > 1 indicates that the
immediate reward is more important than the potential
reward, and vice versa. To find a proper discount rate, we
compare the test results of QDP with different discount rates

Figure 5: Estimating the subsequent search cost with probabilistic
states.
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(γ=0.97, 0.99, 1, 1.01, 1.03, 1.05, respectively) under the
same other settings (i.e., grid size = 1KM × 1KM, tt arg et −
ts = 30 min, learning rate α = 1, and start moment ts tra-
verses every moment from 7 : 00 to 21 : 29 of a day).

As shown in Table 3, when the discount rate γ = 1, the
search cost of QDP is the smallest, so we set the discount
rate γ to 1.

4.3. Baselines. In this section, we will describe three spatio-
temporal searching algorithms as baselines: ALT, IEM, and
IHMs [5]. Given the location ls of the vehicle ox at moment
ts of dj, the process of the three algorithms are as follows:

4.3.1. All Searching at the Last Time (ALT). Calculate the
probability ðpt arg et

l1
, pt arg et

l2
,⋯Þ that the vehicle ox moves

to different locations at moment tt arg et according to the spa-

tiotemporal point ðts, lsÞ and the historical trajectories TR′;
Determine the searching location sequence htt arg et , ξt arg eti

according to the location decision model; Perform spatio-

temporal searches hðsðox, tt arg et , l
ξt arg et

1 ÞÞ, ðsðox , tt arg et ,

l
ξt arg et

2 ÞÞ,⋯i until sðox, tt arg et , l
ξt arg et

i Þ = 1, then return the

location lt arg et = l
ξt arg et

i of vehicle ox at moment tt arg et .

4.3.2. Intermediate Searching at an Estimated Moment
(IEM). Calculate probability ðpoptl1

, poptl2
,⋯Þ that the vehicle

ox moves to different locations at moment topt , topt ∈ ðts,
tt arg etÞ according to the spatiotemporal point ðts, lsÞ and

the historical trajectories TR′; Determine the searching
location sequence htopt , ξopti according to the location deci-

sion model; Calculate probability fðpt arg et
l1

, pt arg et
l2

,⋯Þg that
the vehicle ox moves to different locations at moment tt arg et

according to the spatiotemporal point fðtopt , l
ξopt
i Þg and

TR′; Determine the searching location sequence fhtt arg et ,
ξt arg etig. The above two steps are only used for cost esti-
mation of different topt , but no need to perform the
searches actually. Determine an intermediate search
moment topt according to Equation (10); Perform spatio-

temporal searches hðsðox , topt , l
ξopt
1 ÞÞ, ðsðox, topt , l

ξopt
2 ÞÞ,⋯i,

until sðox, topt , l
ξopt
i Þ = 1, update to spatiotemporal point ð

topt , l
ξopt
i Þ; Perform spatiotemporal searches hðsðox, tt arg et ,

l
ξt arg et

1 ÞÞ, ðsðox, tt arg et , l
ξt arg et

2 ÞÞ,⋯i which correspond to

the spatiotemporal point ðtopt , l
ξopt
i Þ, until sðox, tt arg et ,

l
ξt arg et

i Þ = 1, then return the location lt arg et = l
ξt arg et

i of the
vehicle ox at the moment tt arg et .

topt = arg min
topt∈ ts ,tt arg etð Þ

Cost topt , ξopt
� �

+ 〠
Lj j

i=1
poptli

× Cost tt arg et , ξt arg et

� � !

ð10Þ

4.3.3. Intermediate Searching at Heuristic Moments (IHMs).
Calculate the probability fðpoptl1

, poptl2
,⋯Þg of ox moving to

Input:tt arg et , C, α, γ, TR′ bef ore dx
Output:value function Q
1 Calculate the vehicle transition probability fPðts, ls, topt , :Þg at fðts, lsÞg and at the moment ftoptg, topt ∈ ðts, tt arg et � according to

TR′; //Pðts, ls, topt , :Þ = fptoptl1
, ptoptl2

,⋯, ptoptljLj
g = TPM

2 Calculate the expected cost fCðts, ls, toptÞg of spatiotemporal searches according to Equation (6);

//Cðts, ls, toptÞ = Copt = Costðtopt , ξoptÞ
3 Initialization value functionQ;
4 while Q does not converge:
5 Randomize spatiotemporal point ðts, lsÞ and the moment decision topt , topt ∈ ðts, tt arg et �;
6 Calculate min

As
ls
′
QðSsls ′, As

ls
′Þ according to Equation (9);

7 Update the value function Qððts, lsÞ, toptÞ according to Equation (8);
8 end.

Algorithm 1: QDP’s training method

Table 1: Detailed description of the dataset.

(a) Raw data details

Field name Example Remarks

Vehicle ID 1 \

Passenger or not 0/1 \

Timestamp 1501584540 Unix timestamp, in seconds

Longitude 104.042833 GCJ-02

Latitude 30.599851 GCJ-02

(b) Complete trajectory of a vehicle in a day

Vehicle Day Longitude Latitude Moment

ox 2014/8/4

104.039163 30.597572 7 : 00

104.126565 30.599733 7 : 01

... ... ...

104.042833 30.599851 21 : 58

104.127154 30.600009 21 : 59

7Wireless Communications and Mobile Computing



different locations at moment ftoptg, topt ∈ ðts, tt arg et� accord-
ing to the spatiotemporal point ðts, lsÞ and the historical trajec-
tories TR′; Determine the searching location sequence
fhtopt , ξoptig according to the location decision model; Deter-
mine the intermediate search moment topt according to Equa-
tion (11); Perform spatiotemporal searches

hðsðox, topt , l
ξopt
1 ÞÞ, ðsðox, topt , l

ξopt
2 ÞÞ,⋯i, until sðox, topt , l

ξopt
i Þ =

1; Update spatiotemporal point ðts, lsÞ = ðtopt , l
ξopt
i Þ; Iterate

the above steps until ts = tt arg et , and return the location

lt arg et = l
ξopt
i of the vehicle ox at the target time tt arg et.

topt = arg min
topt∈ ts ,tt arg etð �

Cost topt , ξopt
� �
topt − ts

ð11Þ

In summary, ALT searches only at the target moment, IEM
searches at an intermediate moment and the target moment,
while IHMs andQDP search at multiple intermediatemoments
as well as the target moment. The baselines and QDP use the
same location decision model as described in Section 3.1, which
is not the focus of this paper. The main difference among them
is how to decide the searching moment.

4.4. Comparison of Different Algorithms. This experiment
compares four spatiotemporal searching algorithms: ALT,
IEM, IHMs and QDP. When testing, instead of real camera
records, we use the testing trajectories as the source of
ground truth, which also can enable the functionality of
Equation (1). The performance metric is the average search
cost of the 1000 tests. As shown in Figure 6, QDP is better
than the other three spatiotemporal searching algorithms
in general. The four spatiotemporal searching algorithms
have different performance under different grid sizes
(1KM × 1KM, 1:2KM × 1:2KM, and 1:5KM × 1:5KM,
respectively) and time intervals (i.e., tt arg et − ts= 30min,
40min, 50min, respectively). The start moment ts traverses

every moment from 7 : 00 to “21:59 - time_span” of the cor-
responding testing day.

(1) When the grid size is 1KM × 1KM, IHMs and QDP
are better than ALT and IEM at different time inter-
vals. As the time interval becomes bigger, the advan-
tage of QDP is increasing compared with IHMs

(2) When the grid size is 1:2KM × 1:2KM, IHMs and
QDP are better than ALT when the time interval is
30min or 40min. There is no significant difference
among ALT, IHMs, and QDP when the time interval
is 50min, but they are better than IEM

(3) When the grid size is 1:5KM × 1:5KM, IHMs and
QDP are better than ALT when the time interval is
30min. There is no significant difference among
ALT, IHMs, and QDP when the time interval is
40min or 50min, but they are better than IEM

No matter what the grid size and time interval is, QDP is
always better than or equal to IHMs.

4.5. Analysis and Discussion. We perform more analysis to
disclose the reason of the above results. Remind that the
main difference among ALT, IEM, IHMs, and QDP is how
to decide the searching moment topt , i.e., ALT searches only
at the target moment, IEM searches at an intermediate
moment and the target moment, while IHMs and QDP
search at multiple intermediate moments as well as the tar-
get moment. We intend to demonstrate the efficiency of dif-
ferent moment decisions. Because the search cost will
increase as the timespan Δt = topt − ts becomes larger, the
cost-timespan ratio (also the heuristic indicator of IHMs)
is defined as the ratio of the estimated search cost to the
timespan:

CostTimespanRatio topt − ts
� �

=
Cost topt , ξopt

� �
topt − ts

ð12Þ

Table 2: Accumulative search cost of QDP with different learning rates.

Start moment Training time 8 : 00 10 : 00 12 : 00 14 : 00 16 : 00 18 : 00 20 : 00

α=1.0,γ= 1 11.50 h 32.81 32.90 34.85 32.72 34.06 30.15 34.97

α= 0.5,γ= 1 30.36 h 32.81 32.90 34.85 32.72 34.06 30.15 34.97

α= 0.3,γ= 1 54.12 h 32.81 32.90 34.85 32.72 34.06 30.15 34.97

α= 0.1,γ= 1 98.34 h 32.81 32.90 34.85 32.72 34.06 30.15 34.97

Table 3: Accumulative search cost of QDP with different discount rates.

Start moment 8 : 00 10 : 00 12 : 00 14 : 00 16 : 00 18 : 00 20 : 00

α= 1,γ= 0.97 34.38 35.05 36.51 34.86 35.57 32.44 36.61

α= 1,γ= 0.99 33.25 33.42 35.01 33.27 34.31 30.46 35.11

α= 1,γ=1.00 32.81 32.90 34.85 32.72 34.06 30.15 34.97

α= 1,γ=1.01 33.59 32.95 34.91 33.08 33.72 30.18 35.14

α= 1,γ=1.03 33.15 33.19 35.79 33.24 34.10 30.36 35.13

α= 1,γ=1.05 33.68 33.64 36.17 33.92 34.96 31.21 35.79
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(c) grid size = 1KM× 1KM, target moment - start moment = 50min

7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 22:00

Start moment

25

30

35

40

45

Se
ar

ch
 co

st

ALT
IEM
IHMs
QDP

(d) grid size = 1:2KM× 1:2KM, target moment - start moment = 30min

Figure 6: Continued.
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(h) grid size = 1:5KM× 1:5KM, target moment - start moment = 40min

Figure 6: Continued.
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(i) grid size = 1:5KM× 1:5KM, target moment - start moment = 50min

Figure 6: Comparison of four spatiotemporal searching algorithms.
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Figure 7: Cost-timespan ratio of different timespans.
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Figure 7 shows the cost-timespan ratio under different
grid sizes (1KM × 1KM, 1:2KM × 1:2KM, 1:5KM × 1:5KM
). All three ratio’s curves first decrease, then increase, and
then decrease along with the timespan. Let preferred time-
span Δtmid be the timespan of the first locally minimum ratio
CostTimespanRatio(Δtmid). A contour timespan Δtlimit is the
timespan whose cost-timespan ratio is equal to CostTime-
spanRatio(Δtmid).

If Δt < Δtmid or Δt> Δtlimit , the larger timespan is more
efficient, thus the searching moment should be as later as pos-
sible, i.e., searching at intermediate moments cannot help to
reduce the total search cost, and ALT will be better than
IEM. In this situation, IHMs and QDP will also only perform
searches at the target moment, which are equivalent with ALT.

If Δt is between (Δtmid , Δtlimit), since CostTimespanRa-
tio(Δtmid) is the minimum ratio when timespan is from 0
to Δt. As a result, Δtmid is the most efficient timespan which
can decide the corresponding intermediate moment, i.e.,
searching at intermediate moments can reduce the total
search cost, and IEM, IHMs and QDP may be better than
ALT. Whether the right intermediate moments are detected
is up to specific algorithms.

The different grid sizes will cause Δtlimit to be
different.Δtlimit corresponding to grid sizes 1KM × 1KM,
1:2KM × 1:2KM, and 1:5KM × 1:5KM are calculated to be
58min, 46min and 36min, respectively. Therefore, the rea-
son of the results in Section 4.4 can be explained as:

(1) When the grid size = 1KM × 1KM, In Figures 6(a), 6
(b), 6(c), since the timespans Δt = 30min/40min/
50min do not exceed Δtlimit (58min), IHMs and
QDP are better than ALT

(2) When the grid size = 1:2KM × 1:2KM, Since the
timespans Δt = 30min/40min (Figures 6(d), 6(e))
do not exceed Δtlimit (46min), IHMs and QDP are
better than ALT. While when the timespan Δt =
50min (Figure 6(f)) exceeds Δtlimit (46min), there
is no significant difference among ALT, IHMs, and
QDP

(3) When the grid size = 1:5KM × 1:5KM, Since the
timespan Δt = 30min (Figure 6(g)) does not exceed
Δtlimit (36min), IHMs and QDP are better than
ALT. While when the timespans Δt = 40min/
50min exceed Δtlimit (36min), there is no significant
difference among ALT, IHMs, and QDP

IEM is bound to search at an intermediate moment and
cannot make a decision dynamically to adapt environment
information. Therefore, IEM is almost the worst in all situa-
tions. QDP can surmount the shortage that IHMs may out-
put a locally optimal solution. As Q-learning does, it finds
the near global optimal solution in the sense that it mini-
mizes the total cost of any and all successive searches.

5. Conclusions

To minimize the cost of spatiotemporal search, this paper
proposes a reinforcement learning algorithm called QDP.

QDP selects the next searching moment based on known
vehicle’s spatiotemporal point. The outcome of these
searches is a new known vehicle’s spatiotemporal point,
which guides the next selection iteratively. To address the
challenge of probabilistic state in the training phase, we pro-
pose a novel training method for QDP, which is based on
Monte-Carlo method and probabilistic states. QDP replaces
the next state by multiple states of a probability distribution
and estimates the expected cost of subsequent actions to cal-
culate the value function. Finally QDP creates a state and an
action randomly in each loop to train the value function
progressively.

We evaluate QDP on a real-world vehicle trajectory data
and compare it with baseline algorithms ALT, IEM, IHMs
under different grid sizes (1KM × 1KM, 1:2KM × 1:2KM,
1:5KM × 1:5KM) and different time intervals (30min,
40min, 50min). The experimental results show that QDP
is better than the baseline. In addition, with the grid size
decreasing, the preferred timespan Δtmid is also decreasing,
but the contour timespan Δtlimit is increasing. Compared
with ALT, algorithms with adaptive intermediate moment
selection (i.e., IHMs and QDP) can effectively reduce the
total search cost when the timespan is between Δtmid and
Δtlimit . Compared with IHMs, QDP takes into account both
the cost efficiency of the current selection (as well as per-
forming search at that moment) and its potential impact
on subsequent selections, and gives an approximate lower
bound of the cost of spatiotemporal search to a certain
extent.

In the future, we will test QDP with other datasets, e.g.,
trajectories of pedestrians, bicycles, or ride sharing cars
[34, 35]. We also wish to build new models that can take
consideration of both the location decision model and the
moment decision model simultaneously, or can output
directly a candidate spatiotemporal point to search for next.
And deep reinforcement learning algorithms are worth to
explore for this problem.

Notations

dj: a day, dj ∈D; dx is the testing day
ox: the target vehicle, ox ∈O
li: a location
tk: a moment, dj = ht1, t2,⋯, tjdjji
ðts, lsÞ: a known spatiotemporal point
topt : the intermediate search moment
tt arg et : the target moment
lt arg et : ox‘s location at tt arg et

trðox, djÞ: the trajectory of ox in dj, trðox, djÞ∈TR
TR′: the training trajectories

coptli
: the cost of searching at (topt ,li)

htopt , ξopti: the searching location sequence at moment
topt , i.e., the location decision

l
ξopt
i : ox‘s location at topt , assume it is the i‐th

location of htopt , ξopti
poptli

: the probability that ox will be at li at topt
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TPMjLj×jLj
Δt : the transfer probability matrix; an element

is poptli
Costðtopt , ξoptÞ: the expected search cost of htopt , ξopti
Ssls : a state, also denoted as ðts, lsÞ
As
ls
: an action performed under Ssls , i.e., htopt ,

ξopti
Sopt
lξi
: a probabilistic state after As

ls
, also denoted as

ðtopt , l
ξopt
i Þ

Aopt

lξi
: an action performed under Sopt

lξi
.
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