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Deep foundation pit is a door with a long history, but it has new disciplines; in this paper, firstly, the modeling method and
process of LSTM (long short-term memory) network are discussed in detail, then the optimization algorithm used in the
model is described in detail, and the parameter selection methods such as initial learning rate, activation function, and
iteration number related to LSTM network training are introduced in detail. LSTM network is used to process the deformation
data of deep foundation pit, and random gradient descent, momentum, Nesterov, RMSProp, AdaGmd, and Adam algorithms
are selected in the same example for modeling prediction and comparison. Two examples of horizontal displacement
prediction of pile and vertical displacement prediction of column in deep foundation pit show that the LSTM network model
established by different optimization algorithms has different prediction accuracy, and the LSTM network model established by
Adam optimization algorithm has the highest accuracy, which proves that the selection of optimization algorithm plays an
important role in LSTM and also verifies the feasibility of LSTM network in the data processing and prediction of deep
foundation pit deformation.

1. Introduction

With the progress of human society and the rapid development
of national economy, the process of urbanization in China is
accelerating, and the land available in urban areas is sharply
reduced. Therefore, urban areas pay more attention to the
development and use of underground space. A large number
of underground projects have appeared, such as underground
foundations for high-rise buildings, subway stations, tunnels,
and underground warehouses. Most of these underground pro-
jects adopt the open excavation method with simple construc-
tion and low cost, and these underground projects are
generally excavated to more than 6 meters in the construction
process, somore andmore deep foundation pit projects emerge.
Deep foundation pit is a door with a long history but it has new
disciplines, it has a long history due to human exploration of
deep foundation pit has had for a long time, said novel because
it is itself very worthy of further research topic, and, at this stage

in the deepening of deep foundation pit excavation depth, will
still be presented many new problems in the process of excava-
tion. It is worth exploring and solving.

In recent years, the number of deep foundation pits is
increasing and getting deeper. In addition, most of the deep
foundation pits are located in downtown areas of the city,
and the influencing factors are complicated. As a result, the
difficulty of deep foundation pit construction is greatly
increased, and the problems caused by this are very promi-
nent. Deep foundation pit accidents happen from time to time,
which not only bring great threat to people’s property and life
safety but also increase construction time and cost [1].

There is usually a slow and long deformation stage before
the collapse of deep foundation pit, so corresponding moni-
toring points should be set according to the deformation char-
acteristics of different structures of deep foundation pit. Adopt
in deep foundation pit engineering design of a safe threshold,
under the set threshold, according to the historical data of
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monitoring, implementation of migration and settlement
deformation monitoring area point of real-time monitoring,
as well as to the monitoring data for subsequent processing,
structural deformation analysis of deep foundation pit, using
reasonable forecast model for deep foundation pit deforma-
tion rule. Based on these, the late deformation value and defor-
mation trend of deep foundation pit engineering can be
predicted accurately. When the shape variable of deep founda-
tion pit exceeds the allowable range of deformation, reason-
able protection schemes should be adopted, such as
strengthening protection and setting drainage facilities, so as
to minimize the casualties and economic losses caused by
the accident of deep foundation pit.

At present, the methods commonly used for deformation
prediction mainly include regression analysis, grey theory,
sequence analysis, and neural network [2]. As for these single
prediction models, there are certain limitations. For example,
regression analysis is a static data processing method, while
deep foundation pit monitoring data is dynamic data, so
regression analysis has great limitations. Grey theory has a
high requirement for data, which requires data to be exponen-
tially increasing or monotonic, but most of the deformation
data of deep foundation pit are complex nonlinear and do
not have monotone. Among the neural networks, BP neural
network is the most widely used, but BP neural network is
greatly affected by the initial value and is prone to local extre-
mum problems. Other methods also have low applicability
and are difficult to be used in deep foundation pit deformation
prediction.

In addition, the construction process of deep foundation
pit is a soil unloading process, which is affected by a variety
of external forces, which are fuzzy and complex, and the
deep foundation pit engineering is also affected by a variety
of other uncertain factors. Under this condition, it is very
difficult to build an appropriate model for deep foundation
pit deformation prediction, which has not been well solved.
Therefore, it is an effective method to build a dynamic pre-
diction model and predict the overall variation trend and
deformation characteristics of shape variants by exploring
the internal relationship between time series data of moni-
toring points.

In recent years, with the rapid development of deep
learning, it has created opportunities to construct high-
precision dynamic prediction model for deep foundation
pit and added effective means for deformation prediction
of deep foundation pit. Deep learning model [3] is a deep
neural network composed of a variety of nonlinear mapping
layers, which can obtain the characteristics of input data
layer by layer and obtain its deep internal characteristics.
Among many deep learning models, LSTM network [4]
has great advantages in sequential data processing and can
extract dynamic features from successively associated data.
It has been applied in many fields, such as machine transla-
tion [5], information retrieval [6], image processing [7], text
recognition [8], intelligent question answering [9], speech
recognition [10], and data prediction [11–13], and a large
number of research achievements have been obtained. How-
ever, through extensive literature review, it is found that
LSTM network is rarely studied in the field of deformation

prediction and has not been applied in the prediction of
deep foundation pit deformation. In this paper, through
study on characteristics of LSTM theory, it is found that
the LSTM network has the ability of self-learning, being
adaptive, and efficient memory, to the highly nonlinear time
series data have better fitting ability, and can make short-
and long-term prediction, can make a high precision predic-
tion of deep foundation pit deformation, so as to make sci-
entific and safe protection for deep foundation pit
engineering, which has theoretical and practical significance.
This paper mainly studied the deformation monitoring and
prediction in the construction process of deep foundation
pit. In this paper, by analyzing the deformation data
obtained from the construction site monitoring and refer-
ring to the final prediction results, we can effectively give
early warning of relevant risks and timely take the corre-
sponding measures to avoid risks, so as to ensure the stabil-
ity and order of the whole construction process.

1.1. Related Work of Deep Foundation Pit Deformation
Prediction. Foundation pit engineering started early in for-
eign countries. As early as the mid-18th century, large-
scale construction of railways, ports, and ports began
abroad, and the research of foundation pit engineering
began. In the 1940s, Terzaghi [14] proposed theoretical soil
mechanics and wrote a book to lay a foundation for the the-
ory of deep foundation pit engineering; Clough et al. [15]
applied the measured data of foundation pit to statistically
analyze its internal support wall; Ou [16] and Finno [17]
analyzed the impact of foundation pit construction on sur-
rounding buildings (structures) in different soils. In the
1960s, Peck [18] put forward the estimation rule of founda-
tion pit surface settlement through example verification,
which has been used so far; Bjerrum et al. [19] applied rele-
vant instruments to the monitoring of a soft soil foundation
pit in Mexico. Until the 1980s, foreign research on founda-
tion pit began to become more precise and detailed. Clough
and O’Rourke [20, 21] emphatically analyzed the relation-
ship between the wall offset of the foundation pit and the
depth of the foundation pit, ground settlement, and the stiff-
ness of the supporting structure; Mayoraz [22] and Goh [23]
used neural networks to predict the horizontal displacement
and deformation of foundation pit slope and retaining wall,
respectively; Mann [24] gives the relationship between the
maximum displacement of the inner wall of the foundation
pit and the antiuplift stability coefficient according to the
results of 11 foundation pit examples; Liu et al. [25] added
improved Mohr-Coulomb and Cam-Clay models into
FLAC-3D software to simulate the surface deformation
caused by foundation pit excavation and predicted the influ-
ence range of foundation pit; Sepehri et al. [26] established a
three-dimensional finite model to predict the surface defor-
mation data of foundation pit; Anthony [27] proposed a
simplified method to evaluate the basic uplift coefficient for
the safety of axially symmetrically supported foundation
pit in clay. The research on deep foundation pit abroad has
gone through more than 200 years, and the research results
are continuous.
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1.2. Research Status of LSTM. The standard feedforward neu-
ral network does not have the ability to analyze and predict
time series data. It is only used to process the current time
series data, and its historical information cannot be used for
subsequent processing. The emergence of recurrent neural
network (RNN) [28, 29] just makes up for this defect. The
framework of RNNwas proposed in the 1980s, and the biggest
difference between RNN and feedforward neural network is
that the hidden layer of RNN is connected in chronological
order; that is, sequence features can be stored through the hid-
den layer and applied to later sequence output operations.
Although RNN can store and use historical data features, the
information in any time length cannot be used, because with
the increase of time series scale, RNN will have problems such
as gradient disappearance in the training process [30], which
slows down the training speed, makes it difficult for the net-
work to converge, and cannot obtain the optimal solution,
which limits the popularization and application of RNN. To
solve these problems, scholars have also put forward some
solutions, such as adding simulated annealing method in
RNN training [31] or using hierarchical compression method
for time series data [32]. These methods did not effectively
deal with the disappearance of RNN gradient until LSTM net-
work appeared. LSTM network was proposed by Hochreiter
and Schmidhuber in 1997. Experiments show that LSTM net-
work can effectively avoid the disappearance of gradient,
which really solves the problems of RNN.

To sum up, the prediction accuracy of models established
based on LSTM network is better than that of traditional pre-
diction methods. After continuous application and network
structure adjustment, the models are widely used in many
fields and many achievements have been obtained. However,
LSTM network is seldom used in surveying and mapping
related fields, and there is almost no research on data process-
ing and prediction of deep foundation pit deformation. There-
fore, LSTM network is introduced into the field of deep
foundation pit deformation prediction in view of its efficient
processing ability and good generalization ability in various
nonlinear time series data, so as to process and analyze highly
nonlinear time series data of deep foundation pit deformation.
However, previous experience can prove that the modeling
process of LSTM network involves the selection of some
parameters, which will affect the training effect of the network,
and LSTM network has certain requirements on timing data.
Therefore, the parameter selection and model structure of
LSTM network in deep foundation pit deformation prediction
are emphatically analyzed in this paper, which adds a new
method for deep foundation pit deformation prediction and
helps to expand the application of deep learning in the field
of deformation prediction.

2. LSTM Network Equation

The training process of LSTM network is the same as that of
RNN, including forward transmission and error reverse trans-
mission. The LSTM network error correction process applies
the back propagation through time (BPTT) [33] algorithm,
which is based on results of calculating the loss function of
output layer and the error over time and in accordance with

the gradient descent method reverse calibration weights of
each neuron, and the execution process is more complex than
RNN.

The operation of each LSTM memory module is the same.
This time, only one memory module is used as an example.
Before deriving the LSTM network equation, each variable of
the network is defined first.Wij is the weight of the connection
between neuron i and neuron j, the input result of a certain neu-
ron j at time t is denoted as atj, and the activation function of the

neuron at this time is denoted as btj. Input gate, forget gate, and
output gate are represented with subscript l, ϕ, and ψ, and
memory unit is equipped with subscript c. stc represents the state
value of memory unit C at time t. The activation function of
gate structure is denoted as f , and g and h are successively rep-
resented as input and output activation functions of neurons.

I represents the number of input nodes, K represents the
number of output nodes, and H represents the number of
nodes in the hidden layer. It should be noted that only the hid-
den layer unit output btc can be connected with other memory
modules, while the remaining activation functions in the
LSTM network, such as cell state, network node input, and
multiplication gate activation function, can only be effective
in the LSTM memory module. For the LSTM network stan-
dard hiding unit, the index h is used to refer to the unit output
of other memory structures in the hiding layer (ordinary neu-
rons can be mixed with the LSTM storage structure in the
same hiding layer if necessary). Similar to standard RNN,
the forward transfer process of LSTM network is to calculate
the input sequence with time step T. From the initial moment
t = 1 of this time period, the time gradually increases, and the
operation equation is constantly updated until t = T, and the
corresponding output results are obtained. The back propaga-
tion of LSTM network starts from t = T, and BPTT algorithm
is used to calculate the neuron derivative recursively. Mean-
while, the time decreases to t. The final weight derivative can
be obtained by summing the derivatives on each time step,
as shown in

δtj ≜
∂O
∂atj

: ð1Þ

In the formula,O is the loss function in the LSTMnetwork
training process. The loss function is used to measure the loss
of the entire network during training, and the network train-
ing is judged by the result of the loss function.

The order of the forward and backward calculation formu-
las for the LSTM network is important and must be followed
as follows. As with standard RNN, the state and activation
function equivalents of all neurons at time t = 0 are set to 0,
and the derivative δ of some weights at time t = T + 1 is also 0.

2.1. Projecting Forward. Input gate:

atl = 〠
I

i=1
wilx

t
i + 〠

H

h=1
whlb

t−1
h + 〠

C

c=1
wcls

t−1
c ,

btl = f atl
� �

:

ð2Þ
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Forget gate:

atϕ = 〠
I

i=1
wiϕx

t
i + 〠

H

h=1
whϕb

t−1
h + 〠

C

c=1
wcϕs

t−1
c ,

btϕ = f atϕ
� �

:

ð3Þ

Memory cell:

atc = 〠
I

i=1
wicx

t
i + 〠

H

h=1
whcb

t−1
h ,

stc = btϕs
t−1
c + btlg atc

� �
:

ð4Þ

Output gate:

atψ = 〠
I

i=1
wiψx

t
i + 〠

H

h=1
whψb

t−1
h + 〠

C

c=1
wcψs

t−1
c ,

btψ = f atψ
� �

:

ð5Þ

Unit output:

btc = btψh stc
� �

: ð6Þ

2.2. Reverse Calculation. Suppose

εtc ≜
∂O
∂btc

≜
∂O
∂stc

: ð7Þ

Unit output:

εtc = 〠
K

k=1
wckδ

t
k + 〠

H

h=1
wchδ

t+1
h : ð8Þ

Output gate:

εtψ = f ′ atψ
� �

〠
C

c=1
h stc
� �

εtk: ð9Þ

Current status:

εts = btψh′ stc
� �

εtc + bt+1ϕ εt+1s +wclδ
t+1
l +wcϕδ

t+1
ϕ +wcψδ

t
w: ð10Þ

Memory cell:

δtc = btlg′ atc
� �

εtc: ð11Þ

Forget gate:

δtϕ = f ′ atϕ
� �

〠
C

c=1
st−1c εts: ð12Þ

Input gate:

εtl = f ′ atl
� �

〠
C

c=1
g atc
� �

εts: ð13Þ

This chapter first introduces the related theories of RNN,
the advantages and disadvantages of RNN, and how LSTM
network is improved from RNN, then introduces the struc-
ture of LSTM network in detail, and finally deduces the
training equation of LSTM network in detail.

3. The Construction of Deep Foundation Pit
Deformation Prediction Model Based
on LSTM

3.1. LSTM Network Modeling Principle and Process. The
prediction process of deep foundation pit deformation is a
dynamic process, and it is necessary to update the measured
data constantly to forecast the deformation of deep founda-
tion pit in real time. The advantage of LSTM network train-
ing is that the model can be saved after the LSTM network
prediction model training. When the model is used again,
the newly added data will not affect the overall training of
the model, which can effectively reduce the training time
of the model and then dynamically predict the deformation
of deep foundation pit. Deep foundation pit excavation is a
huge systematic engineering; its deformation changes with
time, external conditions, and other factors. The monitoring
value of deep foundation pit is a series of time-dependent
data and is affected by external environment and other fac-
tors. The single monitoring value is fuzzy and random, but
the whole time series data has certain regularity. Through
the analysis of time series data, the deformation trend and
certain regularity of deep foundation pit can be found.
LSTM network is mainly used for modeling analysis and
prediction of time series data, and LSTM network can build
multi-to-multiple model structure with time difference
according to actual requirements, which meets the basic
requirements of deep foundation pit deformation prediction.
Usually, time series data obtained from early monitoring are
used to construct network training samples to predict the
deformation in the middle and late period.

The key of LSTM network lies in the choice of memory
module. Generally speaking, a memory unit corresponds to
a hidden layer. The input sequence data needs to be seg-
mented, and the data in each sequence needs to correspond
to the memory unit.

Firstly, the preprocessed data is transferred from the net-
work input layer, and the segmented timing data ½X1, X2,⋯
,Xn� (n is the sequence length, which is determined by the
segmentation scale) are input to the LSTM memory units
at different times in sequence, After the LSTM memory unit
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(hidden layer) transfers and extracts information layer by
layer, it is transmitted to the network output layer. The out-
put layer is added with full connected layers (FC) and drop-
out [34] (introduced in Chapter 4), which are, respectively,
used to model regression and prevent over fitting of training.
Finally, the timing data ½Y1, Y2,⋯,Yn� is output.

The prediction process of deep foundation pit deforma-
tion based on LSTM can be seen introduction that the LSTM
network model divides the prediction process of deep foun-
dation pit deformation into three parts: acquisition and data
preprocessing of deep foundation pit monitoring data,
LSTM network model training, and directly obtaining the
predicted value by using the trained model parameters.
The main process is as follows.

3.1.1. Data Acquisition and Preprocessing. In this paper, the
deformation monitoring data of a subway deep foundation
pit in Wuhan is used, which is the data observed by relevant
instruments during the construction period of the deep
foundation pit. The data acquisition frequency varies
according to the deformation situation. In the early stage
of deep foundation pit excavation, the monitoring frequency
was once every 3 days. As the depth of deep foundation pit
deepens, the monitoring frequency began to adjust to once
every 2 days. As the structure of deep foundation pit sup-
porting and other structures changed greatly due to soil
unloading, the monitoring frequency was set to once every
day. The obtained monitoring data cannot be directly used
for prediction, so it is necessary to conduct outlier test and
eliminate (the number of monitoring samples is set as n,
and PauTa rule should be selected). Chauve net criterion
should be used. Grubbs rule is suitable. LSTM network is
used to predict peer-to-peer time series data, so data after
outlier processing should be interpolated. Interpolation
methods include linear interpolation, Newton interpolation,
and cubic spline interpolation. The monitoring data of deep
foundation pit columns are highly nonlinear due to the
influence of many uncertain factors, so linear interpolation
method is not suitable for them. Cubic spline interpolation
is a relatively simple interpolation method that can well
reflect the nonlinear characteristics of deep foundation pit
deformation monitoring data. Cubic spline interpolation
has good smooth effect and fast implementation and is a
common method of monitoring data interpolation at pres-
ent. The interpolated data is constructed as time series data
and divided into training set and test set.

3.1.2. LSTM Network Training. Like other neural networks,
LSTM network also needs to normalize the training set,
and the normalized data is conducive to the rapid conver-
gence of the network. LSTM network training mostly uses
a large number of data for training, but the monitoring data
of deep foundation pit used in this paper are about 100
periods, and the training set data is limited. Therefore,
LSTM network carries out network training in the way of
iterative training, so as to obtain the global optimal solution.
Before LSTM network training, all parameters need to be
initialized. After each iterative training, the training error
can be obtained through the loss function. When the error

meets the requirements, it can be predicted. If the tolerance
is not satisfied, the LSTM network will automatically adopt
BPTT algorithm to back propagate the error. The optimiza-
tion algorithm is adopted (see the next section) to continu-
ously update the parameters such as the weights of each
layer of the network and finally debug the super parameters
such as the number of iterative steps and global learning rate
according to the loss function value. The network continu-
ously iterates and trains to obtain the most loss value and
obtain the optimal network parameter solution.

3.1.3. Network Prediction.When the LSTM network training
error meets the requirements and the number of iterations is
completed, in which the network parameters are obtained, it
can be directly used to calculate the predicted value, and the
real predicted value can be obtained after the obtained pre-
diction results are calculated by the inverse normalization
formula. Then, compare with the test set to test the predic-
tion accuracy.

3.2. Selection of Optimization Algorithm. LSTM network is a
deep neural network model, which can be fitted by single or
multiple complex time functions. The independent variables
of composite time function in LSTM network are the
weights and bias items of each layer in the network, which
directly affect the accuracy of the final output results of the
whole LSTM network. In order to improve the effectiveness
of LSTM network training, it is necessary to constantly
update and optimize weight and bias parameters. The opti-
mization algorithm starts to play its role at this moment,
which directly affects the final training effect of LSTM net-
work. Therefore, the selection of LSTM network optimiza-
tion algorithm must be careful. Different optimization
algorithms have different effects in LSTM network model-
ing. At the present stage, deep learning model mainly uses
frequently optimization algorithms: stochastic gradient
descent (SGD) algorithm, momentum algorithm, Nesterov
algorithm, AdaGrad algorithm, RMSProp algorithm, and
Adam algorithm [35], and to choose the suitable LSTM opti-
mization algorithm of network model needs to be deter-
mined through examples. The principles of each algorithm
will be introduced in detail below.

3.2.1. SGD Algorithm. SGD algorithm is the simplest and
most commonly used optimization algorithm in deep learn-
ing. It randomly selects l small batch samples from all train-
ing samples n, which are independent of each other, and
then takes the average gradient value of these small batch
samples as the next gradient updating direction. The specific
algorithm is as Algorithm 1 as follows.

3.2.2. Momentum Algorithm. Momentum algorithm can
effectively reduce network training oscillation and make net-
work convergence easier. The specific algorithm is as Algo-
rithm 2 as follows.

vt in the algorithm will accumulate the previous training
gradient. Compared with the learning rate η, the larger the
momentum coefficient α is, it indicates that the current net-
work training iteration direction is more influenced by the
previous gradient. The previous iteration point of SGD
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algorithm is used as the gradient update orientation, while
the momentum algorithm takes the sum of all previous gra-
dients and current gradients after weight calculation as the
current network training iteration orientation. The value of
α represents the total proportion of all historical iterations,
usually 0.9 or 0.99.

3.2.3. Nesterov Acceleration Gradient Algorithm. Nesterov
algorithm first predicts the orientation of the iteration point
of the next parameter θ and then obtains the gradient at the
predicted point. Finally, weight calculation and sum of the
current gradient and all previous gradients are carried out
to obtain the updated orientation of the gradient at the next
iteration point, as Algorithm 3 as follows.

3.2.4. AdaGrad Algorithm. The learning rate of the three
optimization algorithms introduced above is constant, while
the learning rate of the following optimization algorithms
changes according to certain rules in network training, that
is, the algorithm will adjust the learning rate according to
certain rules in the whole network training stage. AdaGrad
algorithm first gives an initial learning rat, and then uses
the ratio of the learning rate to the square of all previous gra-
dients as the learning rate of network training at this
moment, as Algorithm 4 as follows.

3.2.5. RMSProp Algorithm. Similarly, given the initial learn-
ing rate firstly, RMSProp algorithm considers that the far-
ther the iteration point from the current iteration point in
the historical gradient has less impact on the current, so
set an exponential attenuation rate value (the default value
is 0.9), calculate the attenuation average value of the histor-
ical gradient, and then divide the initial learning rate by this
value to the learning rate of the current iteration point, as
Algorithm 5 as follows.

3.2.6. Adam Algorithm. As Algorithm 6, Adam algorithm
combines the advantages of RMSProp and norm, which
has the characteristics of easy implementation, high opera-
tion efficiency, and low storage requirements. Adam algo-
rithm only requires to obtain one step of the loss function
in the training process of deep learning model. If the param-
eters are inconsistent, the learning rate will also change. The
learning rate is usually determined by Adam algorithm
according to the first-order and second-order moment esti-
mation of gradient.

These six algorithms involve the initialization process of
initial parameter θ. Generally, in order to avoid a series of
numerical problems caused by 0 in mathematical operation,
it is not suitable to set a to 0. At present, the commonly used
method is to give a very small random number, which will
not affect the whole process of algorithm optimization
LSTM network training but also solve the numerical prob-
lem caused by 0.

These six optimization algorithms are widely used and
skilled algorithms in deep learning model and have their
advantages and disadvantages in some aspects. Therefore,
the depth learning model applicable to each optimization
algorithm will be different, and the applicable data types or
scenarios are also different. It is necessary to select the
appropriate optimization algorithm in practical application.
In order to select the LSTM network prediction model suit-
able for deep foundation pit deformation prediction, the
above six optimization algorithms are used for LSTM net-
work modeling, respectively, and the best selection of LSTM
network optimization algorithm is determined through spe-
cific engineering examples.

3.2.7. Sequence Segmentation Scale. Before timing data is
input to the LSTM network input layer, data segmentation
is often required to correspond to LSTM memory units. If

Require: set the initial learning rate to η
Require: set the initial parameter to θ
While stop condition not satisfied do
Randomly extract l samples xi = fx1, x2,⋯,xlg from the training set, and yi is the true value corresponding to xi.
Calculate the average gradient of l samples: gt = ð1/lÞ∇θt−1

∑iLð f ðxi ; θt−1Þ, yiÞ
Parameter updating: θt ⟵ θt−1 − ηgt
End while

Algorithm 1: SGD algorithm.

Require: set the initial learning rate to η, set to momentum coefficient α
Require: set the initial parameter to θ, set initial speed v to 0
While stop condition not satisfied do
Randomly extract l samples xi = fx1, x2,⋯,xlg from the training set, and yi is the true value corresponding to xi.
Calculate the average gradient of l samples: gt ⟵ ð1/lÞ∇θt−1

∑iLð f ðxi ; θt−1Þ, yiÞ
Step size update: vt ⟵ αvt−1 − ηgt
Parameter updating: θt ⟵ θt−1 − vt
End while

Algorithm 2: Momentum algorithm.
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the sample data changes according to a certain period, the
period is used as the scale of sequence segmentation. If no
change rule of time series data can be seen, a value should
be set in advance, and then, the sequence segmentation scale
should be manually increased or decreased as required. The
advantage of LSTM network compared with RNN is that
LSTM network can capture the temporal connection of
input data no matter how big the time step is. However, in
the prediction of deep foundation pit deformation, the sam-
ples that can be used for training are limited, and the seg-
mentation scale should not be set too large. Therefore, the
sequence segmentation scale of LSTM network in this paper
is controlled within 15.

3.2.8. Loss Function. The loss function is usually used to cal-
culate the difference between the model output f ðxÞ and the
input data Y , often represented by LðY , f ðxÞÞ. The smaller

the loss function, the better the robustness of the model.
At present, loss functions commonly used in deep learning
models include mean square error loss function, cross
entropy loss function, exponential loss function, and abso-
lute value loss function. In this paper, LSTM network is
applied to the prediction of deep foundation pit deforma-
tion. In order to see the training effect more intuitively, the
mean square error loss function is adopted as the loss func-
tion of LSTM network training.

L Y , f xð Þð Þ = 1
2 Y − f xð Þk k22: ð14Þ

3.2.9. Activation Function. The function of activation func-
tion is to retain the characteristic information in the data
and remove the redundant information. Nonlinear function

Require: set the initial learning rate to η, set to momentum coefficient α (0.9 or 0.99)
Require: set the initial parameter to θ, set initial speed v to 0
While stop condition not satisfied do
Randomly extract l samples xi = fx1, x2,⋯,xlg from the training set, and yi is the true value corresponding to xi.

Forecast point update: eθt ⟵ θt−1 + αvt−1
Calculate the gradient at the predicted point: gt ⟵ ð1/lÞ∇eθt∑iLð f ðxi ; eθtÞ, yiÞ
Speed update: vt ⟵ αvt−1 − ηgt
Parameter updating: θt ⟵ θt−1 + vt
End while

Algorithm 3: Nesterov algorithm.

Require: set the initial learning rate to η, and the value of δ of the initial constant maturity is 10-7, the initial parameter is set to θ
Require: set the initial gradient accumulative value v to 0
While stop condition not satisfied do
Randomly extract l samples xi = fx1, x2,⋯,xlg from the training set, and yi is the true value corresponding to xi.

Forecast point update: eθt ⟵ θt−1 + αvt−1
Calculate the average gradient of l samples: gt ⟵ ð1/lÞ∇θt−1

∑iLð f ðxi ; θt−1Þ, yiÞ
Square of accumulated value of historical gradient: vt ⟵ αvt−1 + g2t
Update gradient value: Δθt ⟵ −ðη/ðδ + ffiffiffiffi

vt
p ÞÞ ⊙ g2t (element operation)

Parameter updating: θt ⟵ θt−1 + Δθt
End while

Algorithm 4: AdaGrad algorithm.

Require: set the initial learning rate to η, the decay rate is set to ρ, and the initial parameter is set to θ
Require: set the initial gradient accumulative value v to 0, and the value of the initial constant δ is 10-8

While stop condition not satisfied do
Randomly extract l samples xi = fx1, x2,⋯,xlg from the training set, and yi is the true value corresponding to xi.
Calculate the average gradient of l samples: gt ⟵ ð1/lÞ∇θt−1

∑iLð f ðxi ; θt−1Þ, yiÞ
Square of accumulated value of historical gradient: vt ⟵ αvt−1 + ð1 − αÞgt⨀gt
Update gradient value: Δθt ⟵ −ðη/ð ffiffiffiffiffiffiffiffi

vt+δ
p ÞÞ ⊙ gt (element operation)

Parameter updating: θt ⟵ θt−1 + Δθt
End while

Algorithm 5: RMSProp algorithm.
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is usually used, and the key role of adding nonlinear function
is to increase the nonlinear factor of neural network. It is the
repeated superposition of nonlinear functions of each layer
of network that makes the neural network have enough abil-
ity to extract various complex nonlinear features and
approximate various functional relationships. The tanh or
sigmoid function is often used as the activation function
for the operation between memory units in the LSTM net-
work, while the ReLU function is selected for the activation
function between each layer of the network according to
the previous experience. The ReLU activation function was
proposed by Hintion et al. In 2010 and was originally used
in the restricted Boltzmann machine (RBM). ReLU is essen-
tially a function taking the maximum value, and its formula
is as follows:

f xð Þ =
xi, xi ≥ 0,
0, xi < 0:

(
ð15Þ

ReLU has the following advantages compared with other
activation functions:

(1) Only need to judge whether the output is greater
than zero, so the operation speed is fast

(2) It is an unsaturated activation function, which will
not cause the disappearance of model gradient like
sigmoid and tanh saturation functions. ReLU func-
tion can converge rapidly during model training

3.3. Project Example. In order to compare the influence of
different optimization functions on the output accuracy of
LSTM network, six commonly used optimization algorithms
are used to model and analyze LSTM network. As the exter-
nal parameters are not the critical factors to determine the
accuracy of the final output results of the LSTM network
model, the external parameters of each model are adjusted
to the optimal solution state. In order to better evaluate the
prediction accuracy of each model, the average prediction
accuracy (Formula (16)), the average relative error (Formula

(17)), and the total time spent on model training and predic-
tion were adopted as the accuracy evaluation indexes.

σ2
p =

∑n
i=1 xi − bxið Þ2

n
, ð16Þ

MAPE = 1
n
〠
n

i=1

Vi

xi

���� ����: ð17Þ

In the above formula, σP represents the average predic-
tion accuracy, v2i represents the sum of the squares of resid-
uals, xi and x̂i represent the measured value and predicted
value, respectively, and n represents the total number of pre-
diction periods.

3.3.1. Application in Horizontal Displacement of Deep
Foundation Pit Pile. The data source is the monitoring value
of horizontal displacement of retaining pile ZQT-14 at 21
meters in a subway deep foundation pit in Wuhan (denoted
as ZQT-14-21). In deep foundation pit, the retaining pile is
not only used to protect the surrounding structures and
pipelines from damage but also used to maintain the stability
of the adjacent soil, so as to ensure the safety of deep foun-
dation pit engineering. In the process of deep foundation
pit construction, the retaining pile is not only affected by
the force of soil inside and outside the foundation pit but
also affected by many factors such as the supporting struc-
ture and traffic flow around it, so the monitoring data of
ZQT-14-21 change frequently and the deformation law is
uncertain. The monitoring data of ZQT-14-21 were proc-
essed according to the pretreatment method, and 118 mon-
itoring data were obtained.

The first 98 periods of monitoring data of ZQT-14-21
were used for LSTM network training, and the deformation
data of the next 20 periods were predicted by rolling and
then compared with the measured values. The prediction
results obtained by the six optimization algorithms are
shown in Table 1 (the data with odd observation periods
are listed in the table), and the average prediction accuracy
is shown in Table 2.

Require: set the initial learning rate to η, and the exponential decay rate of moment estimation of the first and second orders is set to
β1 and β2 in turn, and the value range of β1 and β2 is in the interval ½0, 1Þ.
Require: set the initial parameter to θ, and initialized first and second orders are denoted as m = 0 and v = 0, respectively, initialize
time step t = 0
While stop condition not satisfied do
Randomly extract l samples xi = fx1, x2,⋯,xlg from the training set, and yi is the true value corresponding to xi.
Calculate the average gradient of l samples: gt ⟵ ð1/lÞ∇θt−1

∑iLð f ðxi ; θt−1Þ, yiÞ
Biased first-order moment estimation update: mt ⟵ β1∙mt−1 + ð1 − β1Þ∙gt
Biased second-order moment estimation update: vt ⟵ β1∙vt−1 + ð1 − β2Þ∙gt⨀gt
First-order moment error correction: cmt ⟵ −mt/ð1 − βt

1Þ
Second-order moment error correction: bvt ⟵ −vt/ð1 − βt

2Þ
Update gradient value: Δθt ⟵ −ηcmt /ð ffiffiffiffiffiffiffiffi

vt+δ
p Þ (element operation)

Parameter updating: θt ⟵ θt−1 + Δθt
End while

Algorithm 6: Adam algorithm.
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As can be seen from the calculation results in Tables 1
and 2, the prediction results and prediction precision
obtained by each model are different. From the perspective
of average prediction accuracy and average relative error,
Adam algorithm has the best effect among the six optimiza-
tion algorithms. In terms of time consumption, Adam algo-
rithm consumes not the least time in the whole training and
prediction process of LSTM network, but at a medium level.
This is because Adam algorithm needs to calculate more
parameters than other algorithms and theoretically con-
sumes more time. On the whole, the LSTM network predic-
tion model optimized by Adam algorithm has the best
accuracy, which is more consistent with the deep level dis-
placement and deformation of deep foundation pit pile. It
shows that Adam algorithm has the greatest influence on
the accuracy of LSTM network output and the best optimi-
zation effect and has better applicability than other optimi-
zation algorithms. In general, Adam algorithm optimized
LSTM network training and prediction effect is the best
among the six algorithms.

3.3.2. Application in Settlement of Column of Deep
Foundation Pit. The data source is the vertical displacement
variation of column settlement monitoring point LZC-05 of
a subway deep foundation pit in Wuhan, which has been
observed for 95 periods. Firstly, the original column settle-
ment monitoring data were tested and eliminated by outlier
test. The total monitoring data of LZC-05 was less than 100
periods, and the test method was Grabus’ rule. LZC-05 does
not have outliers after inspection, but the monitoring fre-
quency of column settlement measurement points in the
first 23 days is once every two days, so interpolation is
needed. The cubic spline method is used to obtain 23 periods
of data, and a total of 106 periods of data are obtained before
and after interpolation.

Similarly, the data of phase 86 were used for the training of
each model, and the data of the last 20 phases were used for
comparison with the predicted values. The prediction results
of each model are shown in Table 3 (odd number of phases
was selected), and the calculation results of average prediction
accuracy are shown in Table 4.

Combined with Tables 3 and 4, it can be seen that LSTM
network prediction accuracy and time required by different
optimization algorithms have a large gap. From the perspec-
tive of prediction accuracy, Adam algorithm has the best
effect, and it has the highest prediction accuracy when
applied to LSTM network modeling, while SGD algorithm
has the lowest accuracy. In terms of consumption time, Ada-
Grad algorithm consumes the most time and the network
convergence is the slowest, while RMSProp algorithm
updates the gradient fastest, so it consumes the least time.
On the whole, the LSTM network optimized by Adam algo-
rithm consumes not the least time in training and predic-
tion, but it is not different from other algorithms, and its
accuracy is the best among all optimization algorithms.
The prediction of deep foundation pit deformation requires
a high-precision prediction model, so Adam algorithm is the
most suitable LSTM network trainer.

3.3.3. Analysis and Summary. Because LSTM network has
excellent feature extraction, long- and short-term memory
ability, and strong nonlinear fitting and generalization abil-
ity for time series data, it is applied to time series data pro-
cessing of deep foundation pit deformation, and good
prediction effect is obtained. In the same example,
RMSProp, AdaGmd, Adam, momentum, Nesterov, and
SGD algorithms are selected to optimize the LSTM network
prediction model, and the prediction results of each model
are compared and analyzed. Through two examples of hori-
zontal displacement of pile and vertical displacement of col-
umn in deep foundation pit, it is found that there are
nonlinear and time sequence characteristics in the data of
the two examples, and the LSTM network prediction model
constructed is relatively accurate, which confirms the feasi-
bility of LSTM network. The LSTM network prediction
results constructed by these six optimization algorithms are
quite different, among which the LSTM network model con-
structed by Adam optimization algorithm has the best accu-
racy, and the consumption time is not much different from
other algorithms, indicating that the selection of optimiza-
tion algorithm plays a crucial role in LSTM network predic-
tion results. Therefore, on the whole, LSTM network
prediction model constructed by Adam optimization algo-
rithm is the most suitable for deep foundation pit deforma-
tion prediction. Firstly, the modeling method and process of
LSTM network are discussed in detail, then the optimization
algorithm used in the model is described in detail, and the
parameter selection methods such as initial learning rate,
activation function, and iteration number related to LSTM
network training are introduced in detail. Then, taking the
deformation data of the monitoring body of deep foundation
pit as an example, the influence of different optimization
algorithms on the prediction effect of LSTM network is com-
pared, which proves that the selection of optimization algo-
rithm plays an important role in LSTM and also verifies the
feasibility of LSTM network in the data processing and pre-
diction of deep foundation pit deformation.

4. Conclusions

LSTM network is used to process the deformation data of
deep foundation pit, and random gradient descent, momen-
tum, Nesterov, RMSProp, AdaGmd, and Adam algorithms
are selected in the same example for modeling prediction
and comparison. Two examples of horizontal displacement
prediction of pile and vertical displacement prediction of
column in deep foundation pit show that the LSTM network
model established by different optimization algorithms has
different prediction accuracy, and the LSTM network model
established by Adam optimization algorithm has the highest
accuracy, indicating that the selection of optimization algo-
rithm is particularly important in LSTM network modeling.

Combining LSTM network and its improved model on
the part of the monitoring data of deep foundation pit defor-
mation analysis and prediction obtained some achievements,
but there are some contents that need to be perfect, as
follows:
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(1) Due to the fact that technology and ability are lim-
ited, only the LSTM network optimization algorithm
is presented in this paper, method of super parame-
ter selection and made a research on the multipoint

prediction, etc. Future research focus can be consid-
ered on LSTM network training algorithm to further
improve LSTM network training and prediction
performance

Table 1: Prediction results of pile horizontal displacement measurement point ZQT-14-21.

Optimization algorithm
Numbers of period
(s)

Measured value
(mm)

Adam
(mm)

Momentum
(mm)

SGD
(mm)

RMSProp
(mm)

AdaGrad
(mm)

Nesterov
(mm)

1 -0.44 -0.42 -0.39 -0.50 -0.45 -0.40 -0.42

3 -0.68 -0.62 -0.61 -0.70 -0.58 -0.61 -0.65

5 -0.92 -0.98 -0.81 -0.78 -0.98 -0.82 -0.84

7 -0.88 -0.79 -0.78 -0.75 -0.87 -0.79 -0.99

9 -0.66 -0.61 -0.59 -0.58 -0.56 -0.59 -0.73

11 -0.95 -1.00 -0.84 -0.80 -1.04 -0.85 -0.86

13 -0.88 -0.90 -0.78 -0.75 -0.82 -0.79 -0.81

15 -0.75 -0.78 -0.67 -0.65 -0.85 -0.67 -0.70

17 -0.68 -0.61 -0.61 -0.60 -0.72 -0.61 -0.65

19 0.12 0.14 0.10 0.07 0.07 0.09 0.08

Table 2: Calculation results of accuracy evaluation indexes of each ZQT-14-21 model.

Optimization algorithm
Indicator Adam Momentum SGD RMSProp AdaGrad Nesterov

Average prediction accuracy (mm) 0.05 0.08 0.11 0.07 0.08 0.07

Average relative error (%) 7.31 11.69 15.45 11.39 11.32 11.49

Time consumed (seconds) 13.40 12.30 15.20 11.70 35.90 12.00

Table 3: Prediction results of column vertical displacement measurement point LZC-05.

Optimization algorithm
Numbers of period
(s)

Measured value
(mm)

Adam
(mm)

Momentum
(mm)

SGD
(mm)

RMSProp
(mm)

AdaGrad
(mm)

Nesterov
(mm)

1 18.40 17.79 17.57 17.42 17.53 17.49 17.41

3 19.40 18.72 20.51 18.25 18.41 18.45 18.26

5 19.80 19.08 18.88 20.58 20.75 20.63 20.60

7 19.90 20.37 18.98 20.66 19.03 19.23 19.38

9 18.90 18.26 19.94 18.03 17.97 17.97 17.83

11 18.10 17.52 17.28 19.16 19.27 17.20 17.15

13 19.00 18.35 19.73 19.92 18.06 18.06 18.09

15 18.90 19.56 18.24 18.33 17.89 20.10 18.23

17 22.00 23.06 20.91 20.32 20.58 20.96 20.42

19 22.10 23.14 21.00 20.40 20.66 21.05 20.50

Table 4: Calculation results of accuracy evaluation indexes of lZC-05 models.

Optimization algorithm
Indicator Adam Momentum SGD RMSProp AdaGrad Nesterov

Average prediction accuracy (mm) 0.75 0.95 1.16 1.08 0.94 1.10

Average relative error (%) 3.60 4.70 5.21 5.31 4.71 5.19

Time consumed (seconds) 15.60 15.40 18.50 11.90 41.00 15.00
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(2) As the multipoint prediction model will reduce the
training speed with the increase of the number of
monitoring points, GPU acceleration can be consid-
ered in the future to improve the running speed of
the model
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