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The extraction of rivers in cold and arid regions is of great significance for applications such as ecological environment
monitoring, agricultural planning, and disaster warning. However, there are few related studies on river extraction in cold and
arid regions, and it is still in its infancy. The accuracy of river extraction is low, and the details are blurred. The rapid
development of deep learning has provided us with new ideas, but with lack of corresponding professional datasets, the
accuracy of the current semantic segmentation network is not high. This study mainly presents the following. (1) According to
the characteristics of cold and arid regions, a professional dataset was made to support the extraction of rivers from remote
sensing images in these regions. (2) Combine transfer learning and deep learning, migrate the ResNet-101 network to the
LinkNet network, and introduce the attention mechanism to obtain the AR-LinkNet network, which is used to improve the
recognition accuracy of the network. (3) A channel attention module and a spatial attention module with residual structure are
proposed to strengthen the effective features and improve the segmentation accuracy. (4) Combining dense atrous spatial
pyramid pooling (DenseASPP) with AR-LinkNet network expands the network receptive field, which can extract more detailed
information and increase the coherence of extracted rivers. (5) For the first time, the binary cross-entropy loss function
combined with the Dice loss function is applied to river extraction as a new loss function, which accelerates the network
convergence and improves the image quality. Validation on the dataset shows that, compared with typical semantic
segmentation networks, the method performs better on evaluation metrics such as recall, intersection ratio, precision, and F1
score, and the extracted rivers are clearer and more coherent.

1. Introduction

The semantic segmentation of remote sensing images is very
widely used. Rivers are an important part of the ecosystem,
and accurately extracting river information from remote
sensing images has extensive applications in resource explo-
ration, early disaster warning, and agricultural planning.
Cold and arid regions are widely distributed in China. As
the birthplace of many rivers, the ecological environment is
fragile. Therefore, it is important to find an accurate and fast
river-extraction method on the basis of characteristics of
cold and arid regions [1–3].

Traditional river-extraction methods include the thresh-
old [4], water body index [5], and decision tree [6] methods.
The threshold method is simple in principle and fast in
extraction speed [7]. However, this method often cannot dis-
tinguish between ground objects with similar reflectivity to
water bodies, such as other water bodies, shadows, and veg-
etation, which leads to low accuracy of water body informa-
tion extraction. A water body index can more accurately
distinguish water body and vegetation information, but a
water body and building shadows are still easily confused.
The decision tree method has higher extraction accuracy
and many applications, but also slower extraction speed. In
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addition, some newer methods have emerged. For instance,
combined RGB remote sensing images with the characteris-
tics of different refractive indices of various objects for river
extraction, reducing the confusion of building shadows [8].
Combine the shadow–water index with the threshold and
water body index methods to extract rivers in arid
regions [9].

With the progress of artificial intelligence, deep learning
has become a hot spot in scientific research, and great prog-
ress has been made in applying deep learning methods to the
river extraction of remote sensing images [10–13]. Among
them, convolutional neural networks (CNN), as an impor-
tant development direction of deep learning, have had great

achievements in semantic segmentation [14] and image clas-
sification [15]. With a CNN, deep features were directly
extracted from the input image layer by layer, and the spec-
tral–spatial laws of the input data were extracted. To
improve the accuracy of water segmentation, combine a
deep convolutional neural network with a new effective
learning system, the broad learning system (BLS), which
achieved good results in the classification of remote sensing
images [16].

FCN learns pixel-to-pixel mapping. The input and out-
put are pictures. Combine a full convolutional neural net-
work with sample mining, and use the mined samples to
capture different intraclass features, effectively reducing the
burden of network training and achieving the rapid segmen-
tation of water bodies [17]. Build a Unet network on the
basis of FCN, introduce shortcuts, use Transposed-conv as
its upsampling structure, and build a connection between
the network encoder and decoder parts. Low-level informa-
tion is fused with high-level information [18]. This makes
the network recover more spatial information during the
upsampling process, which is of great significance for fine-
grained segmentation. Combine the Unet network with
transfer learning and train the network using weakly super-
vised training methods. With only 100 pieces of data, the
superior classification performance of the neural network
was used to obtain pixel-level segmentation effects [18].
The ResNet network [19] introduced residual learning into
deep learning, which greatly improved the accuracy of
image-classification extraction and obtained superextensive
applications in remote sensing image extraction [20]. In
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Figure 1: Experiment area: the cold and arid regions of China, as shown in the shaded area.

Figure 2: Dataset for extracting river water from remote sensing
images in cold and arid regions.
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2017, Chaurasia et al. raised a LinkNet deep learning net-
work model that uses a U-shaped structure [21, 22]. It has
more shortcuts, which can make the deeper layers obtain
shallower information, and achieves pixel-level image
semantic segmentation. During the execution process, exces-
sive parameter increase is avoided, and operation efficiency
is improved. To resolve the contradiction between feature
map resolution and receiving field, the DeepLab series
[23–25] introduced expanded the convolution and pyramid
pooling structure (ASPP). ASPP uses multiscale information
to further improve the segmentation effect, but in the face of
high-resolution input, ASPP needs a sufficiently large expan-
sion rate to obtain a sufficiently large receptive field; how-
ever, as the expansion rate increases (d > 24), volume
expansion decreases. Combine ASPP in the DeepLab series
with dense connections in DenseNet to form DenseASPP
[26]. The new module has a larger receiving field and denser
sampling points [27–29]. The attention mechanism can
make the network focus on the segmentation target and
improve the segmentation accuracy of the network [30, 31].

In view of the characteristics of thin rivers and mountain
shadows in cold and arid regions, this paper proposes an
AR-LinkNet network constructed by LinkNet and ResNet
networks and attention mechanism and combines Den-
seASPP to extract remote sensing river images. Because of
network training and loss function in river extraction, it is
easy to cut off the river and reduce the recognition accuracy.
Therefore, we combined two loss functions with better per-
formance and introduced the superposition of Dice loss
[32] and binary cross-entropy loss (BCE loss) [33] as the
semantic segmentation network of loss function in the train-
ing process. Avoid river discontinuity and improve the accu-
racy of river extraction.

2. Experiment Area and Data

Our data are from China’s cold and arid regions, as shown in
Figure 1. The coldest monthly average temperature in this
area is less than –3.0°C, the monthly average temperature
is greater than 10°C for less than 5 months, and average
annual rainfall is less than 500mm. It is a typical cold and
arid area. Problems, lack of unified management and sched-
uling, and inadequate irrigation systems and technologies

worsen the ecological environment in cold and arid areas
by each day. At the same time, the origin of many rivers is
in this area. If these problems cannot be solved in time, eco-
logical problems in the cold and arid regions could increase
further, and it would be difficult to achieve the sustainable
development of the ecological environment. Therefore, this
paper produced corresponding data for river extraction in
cold and arid regions and provided strong support for subse-
quent research.

This paper collected 100 images containing rivers
through Google Maps with a size of 1024 × 1024, with mul-
tiple and manually labeled semantic maps. The label data are
the result of binarizing water data and nonwater bodies from
original image data. Water bodies were labeled as 1 and non-
water bodies as 0. The collected images include multiple
river scales and various representative disturbances, such as
mountain shadows, cloud occlusion, road disturbances, dif-
ferent river-sediment content, dry-riverbed disturbances,
and image-stitching changes. There was high coverage of
multiple features in cold and arid regions; some sample pic-
tures are shown in Figure 2.

3. Network Architecture

Figure 3 shows the overall river-extraction scheme used in
this paper. A remote sensing image first passes through a
semantic-segmentation network that combines AR-LinkNet
and DenseASPP. DenseASPP is located in the middle of an
encoder and a decoder of the AR-LinkNet, which is to
increase the size of the feature map and network receptive
field. Through the loss function, the prediction map output
by the decoder is contrasted with the ground truth until
the minimal loss-function value is obtained. If it is not the
minimal value, the back propagation parameter is adjusted
to obtain the final output semantic map. Each section is
described in detail below.

3.1. AR-LinkNet. LinkNet introduces ResNet on the basis of
a U-shaped full convolutional neural network to achieve
pixel-level image semantic segmentation. ResNet-18 is the
encoder of the original LinkNet, which has the disadvantages
of low accuracy and weak characterization ability and
belongs to a lightweight network. Therefore, this paper used
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Figure 6: Structure diagram of residual channel attention module.
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ResNet-101 as the encoder of the network and adds the
attention blocks with residual structure between the encoder
and decoder to strengthen the effective features and improve
the segmentation accuracy and convergence speed of the
network. At the same time, the FReLU function was the
most active function to form the AR-LinkNet network. The
network structure is shown in Figure 4, which included 2
convolution layers, 1 transconvolution layer, 4 encoding
layers, and 4 decoding layers. Each coding layer contained
6 Res-blocks, and each decoding layer contained 2 convolu-
tion layers and 1 deconvolution layer.

Forward propagation is a process in which training data
pass information through multiple hidden layers, and the
prediction data are then obtained at the output layer. During
the training of the river-information-extraction model,
training data with a size of 1024 × 1024 pixels containing 3
feature channels were first input. The convolution kernel of
the first convolution layer was set to a size of 7 × 7, and

the number of steps was 64, growing to 2. After the first con-
volution layer, image size became 512 × 512, and the number
of feature channels was 64. The specific convolution was cal-
culated as

Xl
j = f 〠

d

i=1
Xl−1
i · Kl

ij + Bl
j

 !
, ð1Þ

where Xl
j is the j-th feature map output by the l-th layer, f ð⋅Þ

is the activation function FReLU; Xl−1
i is the i-th channel

image of layer l − 1, Kl
ij is the convolution kernel matrix of

the l layer, “·” is the convolution operation, Bl
j is the bias of

the j-th feature map after the l-th layer convolution, and d
is the number of convolution kernels.

After the convolution operation, each pixel in the image
was fused with its own original information and the infor-
mation of each pixel in the 3 × 3 neighborhood. To raise net-
work robustness, a pooling layer was set after convolution.
The pooling way mainly includes taking, for example, the
maximal, average, and random values. AR-LinkNet uses
maximal pooling. The maximal pooling window of this net-
work was 3 × 3, and the step was set to 2. After the pooling
operation, the image size became 256 × 256, and the feature
channel number was 64.

In the coding structure, feature channels of the four-time
output image were 64, 128, 256, and 512, respectively. At
this point, the number of feature channels of the image
was expanded up to 8 times. In the decoding structure, 2
convolutional layers and 1 transposed convolutional layer
were used. In this structure, the number of feature channels
of the output image after four decoding instances was 512,
256, 128, and 64, respectively. At this time, the feature chan-
nels of the image were reduced to their original number.

After the encoding–decoding structure, the image enters
the deconvolution layer. This process is equivalent to an
upsampling operation that reduces computational complex-
ity and maintains the spatial-position information of the
image data. After transposing the convolutional layer, the
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Figure 7: Structure diagram of residual spatial attention module.
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Figure 9: Description diagram of pixel-level modeling capabilities for funnel conditions.
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Figure 10: Dilated convolution.
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Figure 11: Dense atrous spatial pyramid pooling (DenseASPP), where c represents concatenation.
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image size became 512 × 512, and the number of feature
channels was 32. Finally, the image entered a convolution
layer, the image size became 1024 × 1024, and the number
of channels became 1. At this time, the extracted prediction
data by the river were output.

3.1.1. Attention Blocks. In the task of semantic segmentation
of remote sensing images, the model needs to distinguish
some objects with blurred boundaries and distinguish
objects with different appearances. For example, a road
object and a river object are indistinguishable in the bound-
ary area, and the river object can be affected by the shadows
of snow and mountains. Therefore, it is necessary to
strengthen features that are effective for segmentation tasks.
Each feature channel and feature space in high-level features
contain rich semantic information, which can be regarded as
the prediction of a specific category, and the semantics of
different categories have a certain correlation. By modeling
the interdependencies between different feature channels
and feature spaces, the ability of feature maps to express spe-
cific semantics can be effectively enhanced. Inspired by this,
this chapter proposes two attention modules with residual
structure, including Residual Channel Attention Block
(RCAB) and Residual Spatial Attention Block (RSAB). This
attention module does not use a parallel structure but a serial
structure design and is a structure in which the residual
channel attention module is in front and the residual space
attention module is behind. After actual testing, it is found
that this structure has the best effect, as shown in Figure 5.

First, the features that have been subjected to the residual
channel attention module are fused with the original fea-
tures, and the fused features are fused with the features that
have been subjected to the residual spatial attention module
to obtain the final output feature map. The residual channel
attention model provides the weight parameters of the chan-
nel so that the channels with rich feature information get
greater weight, and the residual spatial attention module
provides the spatial weight parameters of the feature map
so that the key points in the feature map can be obtained,
greater weight. Residual attention module, it is expected that
the model can obtain the importance of each feature channel
and feature space through self-learning, that is, the weight.
In order to make full use of the features that are effective
for the segmentation task, the respective weights are applied
to each original feature channel and feature space and then
selectively strengthen these features so that the subsequent

processing can make full use of these features, while sup-
pressing invalid or effect small features. The RCAB module
and the RSAB module perform feature recalibration on the
input features in the channel and space dimensions, which
strengthens the features that are effective for segmentation
tasks and helps to improve the segmentation accuracy.

The residual channel attention module draws on the idea
of SENet [34] and adopts the model of first compression and
then expansion, and its structure is shown in Figure 6. First,
the feature map extracted by the encoder is compressed
using Average Pooling in the spatial dimension to obtain
the global feature information of each channel, and then,
the Bottleneck structure composed of two 1 × 1 Conv layers
is used to compress the features. The interchannel depen-
dency modeling is aimed at fitting the complex interchannel
dependencies and reducing the amount of parameters and
computational overhead. Then, use the Sigmoid function
to obtain the weight of each feature channel, and then, apply
the weight to the feature map processed by dilated convolu-
tion through the scale operation to obtain the feature map
with channel attention.

The idea of the residual spatial attention module [35] is
similar to that of the residual channel attention module,
and it also adopts the idea of compressing and then expand-
ing. Its structure is shown in Figure 7. The feature map is
first max-pooled at the channel level, because this saves the
most obvious feature points. Then, after a 7 × 7 (experiments
have proved that in the spatial attention model, the 7 × 7
convolution kernel sampling is better than the 3 × 3 convo-
lution kernel sampling) convolution is downsampled to
obtain the compressed feature map, then pass. The 7 × 7
deconvolution upsampling restores the same size as the orig-
inal feature map. Finally, the weight parameter matrix is
obtained through the Sigmoid function, which is multiplied
by the channel and the feature map after hole convolution
to obtain the fused output feature map.

3.1.2. Visual Activation Function: FReLU. The nonlinear
activation function is a necessary part of the convolutional
neural network to provide good nonlinear modeling ability.
Common activation functions mainly include ReLU and its
evolved PReLU. However, in the field of computer vision,
these activation functions cannot extract finer pixel-level
spatial modeling capabilities, so the visual task activation
function Funnel ReLU (FReLU) [36] semantic segmentation
network proposed by Hong Kong University of Science and
Technology and Megvii Technology in 2020 is used for accu-
racy compensation. Obtain richer spatial context semantic
information. FReLU is a two-dimensional funnel-shaped
activation function specially proposed for computer vision
tasks. By adding a funnel condition TðXÞ to the one-
dimensional ReLU activation function to expand it to a
two-dimensional space (as shown in Figure 8), only a small
amount of computation and risk of overfitting is introduced
to improve the vision task by activating the spatially insensi-
tive information in the network, which is expressed as

f xi,j,k
� �

=max xi,j,k, T xi,j,k
� �� �

, ð2Þ
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T xi,j,k
� �

= xωi,j,k ⋅ p
ω
i , ð3Þ

where xi,j,k is the two-dimensional spatial position of the
nonlinear activation function f ð⋅Þ of the i-th channel, the
function Tð⋅Þ is the funnel condition, xωi,j,k is the parameter-
ized pooling window on xi,j,k, p

ω
i is the shared coefficient on

the common channel, and ð⋅Þ is the point multiplication
operation.

Its funnel condition is a square sliding window with pre-
set parameters, which is realized by depthwise separable
convolution and data normalization (BN), which can
improve the spatial dependence between pixels and activate
spatially insensitive information to obtain rich spatial con-
text information to improve pixel-level spatial modeling
capabilities. The graphical description of the pixel-level
modeling capability of the funnel condition is shown in

Figure 9, which introduces only a small number of parame-
ters and minimal complexity. Considering that in natural
objects, in addition to vertical and horizontal directions,
oblique lines and circular arcs are also common, so squares
of different sizes are used to represent the pixel spatial infor-
mation extracted by different activation layers. The slash and
arc activation domains are formed through extreme approx-
imation thinking, so as to avoid the insufficient modeling
ability caused by only using ordinary horizontal and vertical
activation domains.

3.2. DenseASPP. Compared with a traditional convolution
operator, dilated convolution can expand the receptive field
while keeping the number of kernel parameters unchanged.
The size of the feature map generated by dilated convolution
remains unchanged, but the receptive field of each neuron is
expanded, so it can encode higher-level semantics, and each
output of the convolution has a larger range of information.
The principle is shown in Figure 10. Figure 10(a) represents
a common convolution kernel that can also be understood as
dilated convolution with a dilation rate = 1, which is a special
form of dilated convolution; Figure 10(b) is dilated convolu-
tion with a dilation rate = 2 that expands a 3 × 3 convolution
kernel to 7 × 7 by adding holes with a weight of 0 around 9
points on the basis of an ordinary convolution kernel. The
7 × 7 convolution kernel increased the receptive field, but
only 9 original points in the figure had weights to participate
in the convolution operation, and the other values were all 0.
In Figure 10(c), dilation rate = 4, which expanded the recep-
tive field range to 15 × 15.
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Horizontal mirror

Flip vertically

Fill in zeros 
after zooming out

90° clockwise
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Chroma
transformation
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Ground truth

Figure 13: Database extension. An image is rotated, scaled, and transformed into 9 images.

Table 1: Super parameter setting.

Parameter Setting

Batch 4

Epoch 100

Optimizer Adam

Learning rate 0.01

Rate scheduler Poly

Weight decay 0.0001

Momentum 0.9
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Although hole convolution to solve the contradiction
between the accepted domain size characteristic map resolu-
tion, all neurons in the feature-map output by the hole con-
volution have the same size as the acceptance domain, that

is, the semantic-mask-generation process does not take
advantage of features on multiple scales. However, multi-
scale information helps to resolve ambiguities and produce
more robust extraction results.

Table 2: Results of precision and IoU values in test dataset.

Network model ResNet-101 Attention blocks ReLU FReLU Precision IoU

LinkNet ✓ ✗ ✓ ✗ 0.802 0.589

AR-LinkNet ✓ ✗ ✗ ✓ 0.837 0.611

(a) Input image (b) Ground truth

(c) LinkNet (d) AR-LinkNet

Figure 14: River segmentation results on the test dataset.

Table 3: Attention model comparison test results.

Network ResNet101 FReLU Attention blocks Precision IoU Average time (ms)

AR-LinkNet ✓ ✓

✗ 0.837 0.611 91.3

Add only residual channel attention model 0.849 0.625 92.1

Add only residual spatial attention model 0.843 0.619 91.8

Two attention models in parallel 0.852 0.628 92.3

Space first then channel model 0.856 0.634 93.1

Channel first then space model 0.864 0.645 92.9
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DenseASPP consists of a basic network and a series of
stacked convolutional layers, and it combines the advantages
of using convolutional layers in parallel and cascade to pro-
duce more scale features over a larger range. Through a
series of feature connections, all neurons on the feature
map of each layer are interconnected to encode semantic
information from multiple scales, and different neurons
encode multiscale information at different scales. Through
series and parallel dilated convolutions, the receptive fields
of neurons at later levels increase and avoid the problem of
ASPP nuclear degradation. Finally, DenseASPP’s final out-
put feature map densely covers a large range of semantic
information. Figure 11 shows the structure of DenseASPP.
The feature map output by the encoder passed through five
convolutional layers, the convolution kernel size of each
convolutional layer was 3, and the stride was 3, 6, 12, 18,
and 24. The output of each stage was concatenated with each
subsequent stage, used as the input of the subsequent stage,
and finally input to the decoder.

3.3. Loss Function. The loss function was used to evaluate the
difference between the semantic map output by the trained
model and the real semantic map. The smaller the value
was, the more suitable the model was for river extraction.

The most widely used loss function in the semantic seg-
mentation problem is the Dice coefficient loss function (Dice
loss), which can truly reflect the overlap between the pre-
dicted image and the real semantic map. However, in the
extreme case where the predicted image and the real seman-
tic map are very small, the unstable phenomenon of training
is easy to occur. Therefore, this paper introduces the two-
class cross-entropy loss function (BCE loss) add LN as a
new loss function to avoid training instability.

Dice loss introduced in the V-Net paper, Dice loss is
used to calculate the overlap between the prediction and
ground-truth classes. The Dice coefficient (value range [0,
1]) is shown in

DIC =
2 GT ∩ Pj j
GTj j + Pj j , ð4Þ

where jGT ∩ Pj, intersection between real semantic map and
prediction map; jGTj and jPj, numbers of elements of GT
and P, respectively. Factor 2 in the numerator is because
the denominator had the repeated calculation of common
elements between GT and P. Its formula is equivalent to
the intersection ratio of the prediction result area and the
ground truth area, so it calculates loss by taking all pixels
of a category as a whole. Because Dice loss directly uses
the segmentation effect evaluation index as loss to supervise
the network and it also ignores a large number of back-
ground pixels when calculating Intersection over Union
(IoU), which solves the problem of imbalance of positive
and negative samples, so the convergence speed is fast.

Our goal was to maximize the overlap between the pre-
dicted real class and the base truth class (i.e., maximize the
Dice coefficient). Therefore, we usually minimize (1 −D) to
achieve the same goal because most machine-learning librar-
ies provide only the minimized option, and the expanded
form is shown in

DiceLoss = 1 − 2 GT ∩ Pj j
GTj j + Pj j : ð5Þ

Entropy is used to measure the chaos of a system and
represents the sum of the information in the system; the
larger the entropy value, the greater the uncertainty of the
system. The river extraction problem can be regarded as a
binary classification problem, so the binary classification
cross-entropy loss function can well represent the stability
of the system.

The expanded form of BCE loss is shown in

BCELoss GT, Pð Þ = −〠
W

i=1
〠
H

j=1
GTi j ⋅ log Pij + 1 −GTi j

� �
⋅ log 1 − Pij

� �� �
,

ð6Þ

where GT is corresponding position label on semantic-
segmentation map, P is the probability value predicted by
the network, and H and W are the input-image height and
width, respectively.
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Figure 15: Curves of precision during each network test.

Table 4: Evaluation indicators of each network.

Network model Recall F1 score IoU Precision

FCN_8s 0.653 0.647 0.428 0.641

ResNet101 0.711 0.728 0.489 0.745

Unet 0.801 0.797 0.519 0.793

DeepLabv3+ 0.826 0.821 0.575 0.817

LinkNet 0.817 0.823 0.604 0.829

AR-LinkNet 0.839 0.851 0.645 0.864
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The loss function used the superposition of Dice and
BCE losses, as shown in

LN = BCELoss + DiceLoss: ð7Þ

4. Experiment Result Analysis

4.1. Evaluation Index. In this paper, we used recall, pixel
accuracy (Acc), F1 score, and Intersection over Union
(IoU) as evaluation indicators. These are the most com-
monly used indicators for evaluating river-extraction results.
River extraction is considered an application of semantic
segmentation; river pixels are set to 1, and other types of
pixels are set to 0. Predictions are divided into four types:
false negative (FN), false positive (FP), true negative (TN),
and true positive (TP). The confusion matrix is shown in
Figure 12. The first T/F indicates the prediction is right or
wrong, and the second P/N indicates the prediction result.
FN represents the number of river pixels that were mispre-
dicted as other types. FP represents the number of other
types of pixels that were mispredicted as rivers. TN repre-

sents the number of other types of pixels that were correctly
predicted. TP represents the number of river pixels correctly
predicted, which is consistent with the true value.

Recall definition is shown in

Recall = TP
TP + FN

: ð8Þ

The definition of precision is shown in

Precision =
TP

TP + FP
: ð9Þ

The definition of F1 score is shown in

F1 =
2 × Precision × Recall
Precision + Recall

: ð10Þ

(a) Input image (b) Ground truth

(c) FCN_8s (d) ResNet101

(e) Unet (f) DeepLabv3+

(g) LinkNet (h) AR-LinkNet

Figure 16: Comparison results of each network extraction (1).
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The definition of IoU is shown in

IoU =
TP

TP + FN + FP
: ð11Þ

4.2. Pretreatment. Due to the difference of photographing
time, different remote sensing images have light changes,
and the ground cover in the image has great differences. A
more aggressive color-amplification method was therefore
used. Because remote sensing image shooting is in bird-eye
view, most objects can remain semantically unchanged after
being zoomed in and out. Because remote sensing images are
isotropic, there is no such thing as direction difference, and
the purpose of adding data is achieved by spinning the
image. Through spatial geometric inversion and chromatic
transformation, the acquired images were enlarged 9 times
to 900 pieces. The schematic is shown in Figure 13. The test
data collected 20 water-containing images with a side length
of 10 kilometers in cold and arid regions and included rivers

of various scales, including mountain shadows, road distur-
bances, image stitching, and river color changes.

4.3. Experiment Settings. The experimental hardware plat-
form in this paper is Windows10 operating system, NVIDIA
GeForce RTX 3080 (16G) GPU, i9-11980HK CPU, 64GB
memory. The network is built under the Pytorch framework,
and other super parameters are shown in Table 1.

4.4. Experimental Results. In order to verify the effectiveness
of the visual activation function FReLU, ResNet-101 was
used as the pretraining model to migrate to the LinkNet net-
work, and then, the original nonlinear activation function
ReLU in the network was replaced with the visual activation
function FReLU. The experimental results of the Intersec-
tion over Union and precision are shown in Table 2.

According to the experimental results in Table 2, com-
pared with the original LinkNet network, the IoU value of
the improved AR-LinkNet network is increased by 0.035,
the precision value is increased by 0.022, and the

(a) Input image (b) Ground truth

(c) FCN_8s (d) ResNet101

(e) Unet (f) DeepLabv3+

(g) LinkNet (h) AR-LinkNet

Figure 17: Comparison results of each network extraction (2).
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segmentation accuracy of most objects is improved, which
proves that the FReLU activation function can optimize
the network effectiveness. The visual comparison diagram
is shown in Figure 14. It can be seen from the recognition
results that in the test image, the LinkNet network can seg-
ment wide rivers quite clearly, but there is an obvious lack
of segmentation of small river targets that are occluded by
mountain shadows. It can be seen that the AR-LinkNet net-
work after using the FReLU activation function for accuracy
compensation has better semantic segmentation ability for
small river targets. In the second line of test images, the Lin-
kNet network segmentation results have the problem of
blurred target boundaries and wrongly segmented river tar-
gets. By comparison, it can be seen that the AR-LinkNet net-
work segmentation results after using the FReLU activation
function for accuracy compensation have higher boundary
accuracy. It can effectively reduce the problem of misidenti-
fying segmentation targets.

Next, the attention model is first verified. Here, the effect
of adding the residual attention model to AR-LinkNet and

the effect of the order of the two residual attention models
on the network are mainly tested. The test results are shown
in Table 3. Compared with the AR-LinkNet network without
the attention module, when only adding the residual channel
attention model, the accuracy rate is increased by 0.012 per-
centage points, and the IoU is increased by 0.014 percentage
points, which is better than adding only residual space atten-
tion. The 0.006 and 0.008 improvements of the force model
are relatively significant, indicating that the residual channel
attention model has a greater impact on the accuracy. In
terms of test time, the average test time increases by 0.5ms
due to the addition of the two models, and the residual chan-
nel attention model takes longer, mainly because of its larger
amount of computation. When both attention models are
added, we compare the three sequential structures of the
two attention models in parallel, space-first-channel and
channel-first-space, and the three structures are better than
just adding. The residual channel or residual space model
has a certain improvement, which also shows that the effect
of using the two attention models together is better.

(a) Input image (b) Ground truth

(c) FCN_8s (d) ResNet101

(e) Unet (f) DeepLabv3+

(g) LinkNet (h) AR-LinkNet

Figure 18: Comparison results of each network extraction (3).
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However, in terms of average test time, the parallel model is
slightly faster, and the space-first-channel model is slightly
slower, but both are more than 1ms slower than the original
network. After comprehensive comparison, the segmenta-
tion effect of the residual channel attention model and the
residual spatial attention model is the best.

To prove the effectiveness of the AR-LinkNet network,
without the addition of DenseASPP, we made an experiment
comparison with popular semantic-segmentation networks.
The selected compared networks were FCN_8s, ResNet101,
DeepLabv3+, Unet, and LinkNet. The parameter initializa-
tion methods all use the MSRA initialization method [36];
considering only the number of inputs, the weight initializa-
tion follows a Gaussian distribution with a mean value of 0
and a variance of 2/n (n is the number of inputs). In this
experiment, the loss function of all networks uses Dice loss.
The change curve of the precision in the network test is
shown in Figure 15, and the evaluation indicators are shown
in Table 4.

From the experiment results in Figure 15 and Table 4,
AR-LinkNet had certain advantages compared with current

mainstream image semantic-segmentation methods, which
could quickly converge during training, and compared with
FCN_8s, Resnet101, Unet, DeepLabv3+, and the original
LinkNet network, the precision has been improved by
22.3%, 11.9%, 7.1%, 4.7%, and 3.5%, and the IoU has
increased by 21.7%, 15.6%, 12.6%, 7%, and 4.1%.
Figures 16–19 show the segmentation effect in various situa-
tions of the dataset. Figures 10(a)–10(h) show the input
images, ground truth, FCN_8s, ResNet101, Unet, Dee-
pLabv3+, LinkNet, and AR-LinkNet network extraction
results, respectively. FCN_8s caused many mountain fea-
tures, such as mountain shadows, roads, and vegetation, to
be similar to spectral features of the water body. The extrac-
tion results were messy and unsatisfactory, and it was prone
to interruption in some small rivers. ResNet101 and Dee-
pLabv3+ were greatly improved, but it also incorrectly indi-
cated shadows, roads, and vegetation; however, it had a
lower false-lift rate than that of FCN_8s. The effect of the
river extracted by the LinkNet network is better, and its
object-based extraction method eliminates a lot of noise
interference, but the details of the riverside are not handled

(a) Input image (b) Ground truth

(c) FCN_8s (d) ResNet101

(e) Unet (f) DeepLabv3+

(g) LinkNet (h) AR-LinkNet

Figure 19: Comparison results of each network extraction (4).
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well, and the shadow effect is unavoidable. Compared with
the comparison network, the river information extracted
by AR-LinkNet is less affected by roads and vegetation and
does not completely avoid shadow occlusion, but the detail
segmentation of river edges is greatly improved.

To prove the effectiveness of DenseASPP and LN loss
functions on the river extraction of remote sensing images,
we compared AR-LinkNet, AR-LinkNet+DenseASPP, and
AR-LinkNet+DenseASPP+LN. The precision changes are
shown in Figure 20, and various evaluation indicators are
shown in Table 5.

As shown in Figure 20 and Table 5, after adding Den-
seASPP, the precision is increased by 1.3%, and the IoU is
increased by 3.7%. After using the new loss function, the
precision and the IoU are increased by 2.4% and 3.1%,
respectively. It can be seen from Figure 20 that DenseASPP
can effectively improve the accuracy of river extraction with-
out affecting the convergence of the entire network, which
proves the effectiveness of DenseASPP and LN .

Figure 21 shows the river extraction effect of each net-
work on the dataset. The continuity of river extraction is
improved, small rivers are more coherent, and edge detail
extraction is more accurate. Using LN as the loss function
can effectively optimize the water edge details, and the river
network extraction is complete.

The original remote sensing image river dataset consists
of 100 pairs of training images. In order to improve the gen-

eralization ability of the network and avoid overfitting, we
performed data enhancement through operations such as
rotation, reduction, enlargement, mirroring, and chromatic-
ity transformation. Compared with the 100 pairs of training
samples before data enhancement, the training set is
enlarged by 9 times and consists of 900 pairs of training
samples after data enhancement. The effects of different
training scales, including precision rate, recall rate, F1 value,
and IoU are in the internal evaluation index shown in
Figure 22. Obviously, with the expansion of the training
scale, the four evaluation indicators have been improved by
2.5%, 1.3%, 1.9%, and 3.4%, respectively. Therefore, a larger
training scale can improve the generalization ability of the
network and avoid the network overfitting, especially for
networks with many parameters.

5. Conclusion

Aiming at the problem of river identification in remote sens-
ing images in cold and arid regions, an efficient identifica-
tion method is proposed. Firstly, according to the
characteristics of remote sensing images in cold and arid
regions, a dataset of river identification in remote sensing
images in cold and arid regions is made. Second, by combin-
ing transfer learning and deep neural network, ResNet-101 is
migrated to LinkNet, and the FReLU function is used as the
activation function to design and introduce an attention
mechanism with residual structure to form an AR-LinkNet
network. The network can completely restore the resolution
of the image, while ensuring the continuity of river extrac-
tion. Combined with DenseASPP, the accuracy of river
extraction is effectively improved; in the training process,
the BCE loss function and the Dice loss function are added.
The loss function effectively improves the image quality. The
experimental results show that compared with the main-
stream image semantic segmentation network, the AR-
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Figure 20: Precision change curve in network test.

Table 5: Network evaluation indicators.

Network Recall F1 score IoU Precision

AR-LinkNet 0.839 0.851 0.645 0.864

AR-LinkNet+DenseASPP 0.871 0.874 0.682 0.877

AR-LinkNet+DenseASPP+LN 0.894 0.897 0.713 0.901
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LinkNet proposed in this paper has a greater performance
improvement in river extraction. Combining AR-LinkNet
with DenseASPP, the extracted river network is more coher-
ent. LN is used as the loss function, and the details of the
river information extracted by the network after training
are more abundant.

The following aspects will be explored in the subsequent
research:

(1) Further improving results of network edge segmen-
tation: the loss function used in this paper could

ensure that the gradient of back propagation was
more balanced for objects of different scales so that
targets of small rivers could also be identified. How-
ever, this loss function did not clearly monitor the
edges of the object. Therefore, there is still much
potential for advancement on the edge segmentation
of large rivers

(2) Weakly supervised learning for network training: the
cost of manually labeling a large number of data is
relatively high, so the weakly supervised learning

(a)

(b)

(c)

(d)

(e)

Figure 21: Comparison results of multiple network extractions. Columns (a–e) show the input images, ground truth, AR-LinkNet, AR-
LinkNet+DenseASPP, AR-LinkNet+DenseASPP+LN, respectively.
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method trains large numbers of unlabeled data with
labeled data, which can reduce the cost of manual
labeling. This could at present avoid bothering with
few data

(3) The predicted semantic-segmentation graph was
more like an annotation graph, and the forecast
map was a kind of probability map. When dealing
with some small rivers, discontinuities often occur.
Some articles used the idea of adversarial training
to make the prediction map and label map output
by the network more similar. This idea can be used
to solve the problem of identifying small rivers
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