
Research Article
Reinforcement Learning-Based Adaptive Switching Scheme for
Hybrid Optical-Acoustic AUV Mobile Network

Hanjiang Luo ,1 Ziyang Xu,1 Jinglong Wang,1 Yuting Yang,1 Rukhsana Ruby,2

and Kaishun Wu2

1College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China
2College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

Correspondence should be addressed to Hanjiang Luo; luo.hj@foxmail.com

Received 13 November 2021; Revised 10 April 2022; Accepted 11 April 2022; Published 2 May 2022

Academic Editor: Xuebo Zhang

Copyright © 2022 Hanjiang Luo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In an autonomous underwater vehicles– (AUVs–) based optical-acoustic hybrid network, it is critical to achieve ultra high-speed
reliable communications, in order to reap the benefits of the complementary systems and perform high-bandwidth and low-
latency operations. However, as the mobile AUVs operate in harsh oceanic environments, it is essential to design an effective
switching algorithm to execute flexible hybrid acoustic-optical communications and increase the network throughput. In this
paper, we propose a Q-learning-based adaptive switching scheme to maximize the network throughput by capturing the
dynamics of the varying channels as well as the mobility of AUVs. In order to address the challenge associated with partial
observations of the optical channel and improve the switching efficiency in extreme conditions, a blind optical channel
estimation method is designed and implemented with the Extended Kalman Filter (EKF), in which the relationship between
the underwater acoustic and optical channels is utilized to improve the channel prediction accuracy. Based on this
environmental status, a reinforcement learning approach is leveraged to build a near-optimal switching strategy for the hybrid
network. We conduct numerical simulations to verify the performance of the scheme, and the simulation results demonstrate
that the proposed switching scheme is effective and robust.

1. Introduction

The deployment of underwater sensor networks (USNs) has
enabled extensive marine activities of ocean monitoring and
exploring [1, 2], in which both underwater acoustic commu-
nication (UAC) and underwater wireless optical communi-
cation (UWOC) are utilized for underwater networking.
Although UAC is the only reliable and dominated technol-
ogy that currently enables medium and long-range underwa-
ter wireless communications, it also suffers from several
shortcomings (e.g., limited bandwidth, low-speed, high prop-
agation delay, and high energy consumption [3]), which may
make it difficult to meet growing application demands, such
as transferring underwater real-time ultra high-definition
videos and conducting real-time remotely controlled opera-
tions [4, 5].

To alleviate the limitations of UAC, as an alternative and
complementary technology, UWOC has developed rapidly
recently that enables high-speed, low-delay, and low-energy
consumption networks, which may compensate for the defi-
ciencies of UAC in terms of latency and bandwidth [6]. Nev-
ertheless, UWOC has its own drawbacks communicating
only with relatively short range, and it is also affected by haz-
ardous oceanic environments (e.g., underwater obstacles,
turbulence, turbidity, and light noise) [7]. To address these
problems, a paradigm of multimodal networking is proposed
to integrate multiple communicating systems (e.g., optical
and acoustic) in a hybrid network, in order to mitigate short-
comings and take advantage of complementary technologies
[8–10]. Along this line, the integration of optical and acoustic
systems has been explored in both simulations and experi-
ments [11–14], and these optical-acoustic hybrid systems
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are leveraged to retrieve monitored data [9, 15], control coor-
dination [16], build multiple routing paths [17, 18], and
transfer real-time video [9], which demonstrate the benefit
and effectiveness of such hybrid optical-acoustic systems [19].

Since a fleet of AUVs are desirable mobile vehicles to
perform flexible underwater tasks under operational scenar-
ios, such as environment monitoring, security surveillance,
and underwater asset investigation [1, 20], the study focused
on leveraging a swarm of AUVs to form underwater mobile
networks has been developing rapidly in the recent years [3,
21]. By networking a swarm of AUVs equipped with both
optical and acoustic communication systems, such a hybrid
network enables high-bandwidth and low-latency underwa-
ter video transmission and real-time underwater operation
and control [9, 22]. However, implementing such a network
is not trivial as the associated challenges should be addressed
carefully due to the limitations of the system, the hostile
environments, as well as the mobility of AUVs [23, 24].
Among them, one critical issue is to maximize the hybrid
network throughput by exploiting the complementary com-
municating technologies in terms of both acoustic and opti-
cal, especially the optical waves, as UWOC suffers from
limited communication range [23]. Therefore, the optical
link needs to be switched ON or OFF complementarily to
the acoustic link in an automatic manner [13]. However,
the optical system is affected by the communication dis-
tance, beam width, and the mobility of AUVs. Moreover,
as the AUVs are operated in the harsh environments, the
temporal and spatial dynamics of the channel (e.g., the tur-
bidity of the seawater, the obstacles, and the turbulence
and currents) may degrade the performance of the commu-
nication significantly [7]. Consequently, it is desirable to
monitor and even predict the changing conditions of the
channels in order to carry out the switching scheme in an
adaptive and effective manner [25, 26].

There are a few pioneering studies dealing with the switch-
ing issue and providing precious investigations of underwater
multimodal wireless networks [13, 27–29]. In [13], the authors
explored the multimodal switching issue to maximize instan-
taneous network throughput using the range-based triggering
mechanism to proactively switch among different physical
layers (PHYs). However, the switching strategy uses a preset
threshold to execute the switching policy. In [27], the authors
discussed the statistical relationship between acoustic and
optical channels and proved feasibility of predicting the optical
channel state based on the properties of acoustic channels.
Although a switching scheme based on optical signal-to-
noise ratio (SNR) threshold was presented, no further specific
experiments and simulations were conducted to validate the
performance. Nevertheless, an effective switching strategy
should be adaptive to the environmental dynamics, and as
reinforcement learning (RL) has the capability of interacting
with the environment and could gradually learn an optimal
or near-optimal action policy, it is a promising artificial intel-
ligence (AI) tool to develop switching strategy for underwater
sensor networks. In a recent research, a model-free RLmethod
is adopted to deal with the dynamics of the channels in order
to smoothly switch among different types of acoustic modems

in an adaptive manner [28, 29]. However, the switching policy
in a hybrid optical-acoustic communication system, involving
two different types of links, has not been studied much.
Furthermore, as the UWOC has more restrictions compared
to the acoustic communication, these limitations should be
carefully addressed in the switching scheme.

To tackle the aforementioned challenges, in order to
maximize the throughput of the hybrid AUV mobile net-
work, as depicted in Figure 1, in this paper, we leverage
the Q-learning and Extended Kalman Filter (EKF) tools
to deal with the severe oceanic environments and propose
an adaptive switching scheme. Compared to these learning-
ignorant schemes, the proposed scheme does not require
prior knowledge of the environments. Furthermore, we
leverage the relationship between the acoustic and optical
channels to enhance the effectiveness of switching strategy
by capturing the dynamics of the varying channels [27]. To
the best of our knowledge, this is the first study to provide
an adaptive switching scheme for the AUV-based hybrid
optical-acoustic network. To summarize, the major contribu-
tions of this paper are listed as follows:

(1) We propose an adaptive switching scheme for an
AUV-based optical-acoustic hybrid network that
leverages both the Q-learning and EKF tools to
increase the network throughput

(2) A blind estimation method for underwater optical
channel state is implemented with the EKF tool to
improve the channel prediction accuracy for effective
proactive switching

(3) The critical factors (e.g., acoustic and solar noise,
water turbidity, AUV mobility, and optical beam
width) which affect the effectiveness and robustness
of the switching scheme are investigated via numer-
ical simulations

2. Preliminaries

In this section, we introduce the preliminaries for the pro-
posed adaptive switching scheme, which include the follow-
ing: network model, acoustic channel, optical channel, and
localization of AUVs.

2.1. Basics of Network Model. The hybrid underwater
acoustic-optical network includes a swarm of AUVs and an
underwater positioning system, as shown in Figure 1. Each
AUV is equipped with both the acoustic and optical commu-
nication technologies. Moreover, the positioning system is
deployed either on an assistant ship or on a floating buoy,
which is near the AUV operating area. As depicted in
Figure 2, the hybrid system consists of an underwater wire-
less acoustic communication (UWAC) link and an UWOC
link. The UWAC link is dedicated for conveying the feedback
information of channel states and the positioning informa-
tion of the AUVs. Therefore, the acoustic channel is used
for both the control and low-rate data transmission purposes.

As the swarm of AUVs are mobile, the designated switch-
ing scheme aims to choose the UWAC link or UWOC link
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for data transmission in an adaptive manner based on the
channel conditions and the AUV positions. Once the condi-
tions for the optical link are favorable, a well-designed
scheme should switch it ON, which means the initiation of
optical transmission for many tasks, such as pointing, acqui-
sition, and tracking (PAT) system [30]. During the process,
the receiver sends back the feedback information (e.g., chan-
nel state information (CSI)) into the acknowledge string
(ACK) via acoustic links until the UWOC link has been
established.

2.2. Basics of Acoustic Channel. To monitor the channel state
and measure the noise level, the signal-to-noise ratio (SNR) is
selected as CSI to characterize the channel. The path loss in
the underwater acoustic channel is given by [31]: Aðr, f Þ =
A0r

bað f Þr , where A0 is the normalizing constant, r is the

distance between the transmitter and the receiver, b is the
spreading factor, f is the acoustic signal frequency, and a
ð f Þ is the absorption coefficient estimated by Thorp’s der-
ivation which is constant for the specific frequency sound
wave.

By ignoring the changes of noise and transmission power
in a short time period, the observation of SNR of time-
varying and frequency-selective channel can be formalized
as Markov chains in discrete time domain, which implies
that the current theoretical prediction of SNR depends on
the past prediction. The SNR of transmission performed at
frequency over distance between a transmitter and a receiver
can be expressed as follows [31]:

SNRA =
P

A r, fð ÞN0 fð ÞB , ð1Þ

Acoustic link

Optical link

Figure 1: A sample structure of the hybrid optical-acoustic network.
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Figure 2: A sample block diagram of hybrid optical-acoustic systems.
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where P is the transmit power, N0 is the noise power, and B
is the narrow band around the signal frequency.

Although the underwater acoustic noise can be described
as the white Gaussian noise, the received signal always suf-
fers from Non-Gaussian noise (e.g., alpha noise and Middle-
ton Class A and Class B noise) consisting of short spike
pulses generated by external interference in the underwater
channel [32, 33], which result in the probability density
function (PDF) of the noise with longer and extended tails.
According to these studies, it is known that the Non-
Gaussian noise follows the symmetrical alpha-stable (SaS)
distribution class [34]. The characteristic function of the
SaS distribution class is given by

φ xð Þ = exp iμx − γ xj jαð Þ ð2Þ

where α is the characteristic exponent that determines the
degree of pulse characteristic of the distribution and 0 < α
≤ 2 holds. The terms μ and γ are the location and dispersion
parameters, which are similar to the mean and variance of
the Gaussian distribution. When α = 2 holds, the α stable
distribution is equivalent to the Gaussian distribution.

To suppress the spikes and make the noise conform to
the Gaussian distribution, some filters have been proposed
such as U-filter’s Gaussianization process [35] and median
filter [36]. By leveraging the aforementioned filters, the noise
of the acoustic channel NoiseA is defined as

NoiseA ~N SNRA, σ2AC
� �

, ð3Þ

where σ2AC represents the mean error variance.

2.3. Basics of Optical Channel. To build an UWOC link
among the mobile AUVs, an LED is adopted as the transmit-
ter in this work, which has a wide beam angle to reduce the
strict alignment requirement and guarantee the communica-
tion between AUVs [27].

Correspondingly, we also choose SNR as the main fea-
ture of the optical CSI, since in a real-time control system
(RTCS), the optical PAT is driven by affluent SNR. Note that
when the AUV is equipped with an optical noise sensor, the
short-term noise dynamics can be taken into consideration.
The SNR can be modelled as a Markov chain [37] as follows:

SNRO = Pte
−c λð ÞrD2 cos ϕ

4r2NEP tan2θ

� �2
, ð4Þ

where Pt is the optical transmit power, r is the distance
between the transmitter and the receiver, cðλÞ stands for
the attenuation coefficient which consists of absorption
coefficient aðλÞ and scattering coefficient bðλÞ: cðλÞ = aðλÞ
+ bðλÞ, λ is the beam wavelength, D is the receiver aperture
diameter, ϕ is the incident angle between the optical axis of
the receiver and the line-of-sight (LOS) direction, θ is the half
angle transmitter beam width, and NEP is the noise equiva-
lent power.

Under the consumption of unchanged transmit power
and fixed optical system parameters, the noise of optical
channel NoiseO is defined by

NoiseO ~N SNRO,NEP2� �
, ð5Þ

where the noise of optical NEP2 can be modelled as the sum
of a series of Gaussian noises. It includes the thermal noise
in the signal amplification process, the quantum shot noise
generated at the receiving end, the photodetector dark cur-
rent noise generated by the photodetector electrical current
leakage, and the background noise caused by environment
optical clutter.

2.4. Localization of AUVs. Since both the acoustic and the
optical channels are affected by the communication distance,
a positioning system is required to determine the positions
of AUVs [3]. As shown in Figure 3, we use the ultra short
baseline positioning (USBL) technique to locate AUVs by
measuring the phase difference of the target’s acoustic signal
to the hydrophone through the shipborne array probe as fol-
lows:

x = d cos α

y = d cos β
,

(
ð6Þ

where d represents the distance between the shipborne base
station and the positioning target, α is the azimuth angle
along the x-axis, and β is the azimuth angle along the y-axis.
Then, the position information is broadcast to the transmit-
ter AUV Tx and the receiver AUV Rx. After that, Tx can
calculate the relative position Pt

Tx⟶Rx by the following for-
mula [38]:

Pt
Tx⟶Rx =

xRx − xTx

yRx − yTx

zRx − zTx

2
664

3
775, ð7Þ

where zTx is the depth of the transmitter and zRx is the depth
of the receiver, which are updated after completing each
communication round. We assume that the trajectory of
the AUV is preset by the shipborne base station. Thus, the
relative position in the next time slot can be predicted in
advance.

3. Adaptive Switching Scheme

In this section, we present the adaptive switching scheme
design based on the RL technique. The overall diagram of
switching scheme is shown in Figure 2. We first provide
the fundamental mechanism of the proposed switching pol-
icy, then propose an optical channel estimation based on the
EKF in detail, and finally provide the switching algorithm at
the end of the section.

3.1. The Design of the Switching Scheme. As shown in
Figure 4, we briefly describe the primary mechanisms of
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the switching scheme. To design an effective switching pol-
icy, the AUV should consider the positioning of the target
transmitter, the states of acoustic and optical channels. The
channel states are denoted as SNRA and SNRO, respectively.

These sensed information are then fed into the EKF tool for
further processing before sending to the agent as part of the
environment states. It should be noted that SNRO is only
measured and collected after the UWOC link is switched
ON.

More precisely, the agent in an AUV generates and
updates the policy function πðsÞ. The inputs to the policy
function come from the communications with the target
AUV via acoustic link, including state S and reward R. The
state set S consists of acoustic channel state estimation out-
come Spre and the optical channel state estimation outcome
Sest as shown in Figure 4. The output of the policy function
is only a single action, which affects the measurement of
the next state.

Optical state information is more difficult to acquire
compared to acoustic channel states because of the extra cost
of alignments. Therefore, we keep apart the acoustic and
optical communications in the learning process, which in
turn requires a reward function R specifically for the optical
communication, but not for the acoustic communication.
Subsequently, the AUV alternating policy function πðsÞ is
equivalent to the exploration of the successful connections
for the optical communications. To realize the exploration,
we design a blind estimation model for the optical channel.
The basic idea of the estimation process is that the receiver
estimates the optical CSI by combining the theoretical value
of optical CSI and the acoustic measurement outcome when
the optical information is not available via the relationship
between the acoustic and optical channel states [27].

The proposed optical channel state estimation model is
developed based on the EKF tool, and the optical CSI mea-
surement is used to estimate the optical channel SNRO.
When the optical CSI measurement is not available, we
obtain the optical estimation state Sest by updating the obser-
vation matrix with the acoustic CSI tracking information
SNRA and its theoretical value.

3.2. Design of the RL Technique. The interaction between an
AUV and the optical channel can be formulated as a Markov
Decision Process (MDP). The UWOC channel state transi-
tion matrix is estimated and updated by acoustic channel
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Figure 3: The positioning system by ultra short baseline positioning technology.
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observations while switching. Therefore, there is a trade-off
between exploration and exploitation in AUV. Exploration
implies updating the model frequently so as to obtain a more
accurate future prediction, which incurs additional costs. On
the other hand, the higher degree of exploitation may result
in a local optimal solution. For this reason, an effective
quantification function is proposed to adjust ε, which urges
the agent to have more explorations when the constructed
model is ineffective. The following elements are included in
the design of the proposed scheme:

(i) Environment: The environment contains the acous-
tic and optical channels and the receiver, and it gen-
erates reward when the optical communication is
ON

(ii) State: The state S describes the current environment.
We combine the SNR Spre of the acoustic channel
and the optical estimated SNR Sest obtained by the
EKF tool as states S, which is denoted as S = ½Spre,
Sest �. To simplify the design, the state quantities are
discretized into N and M levels in a total of N ×M
states

(iii) State value function: The estimated value of current
state VπðsÞ is calculated as the expectations of the
future rewards

(iv) Action: The action set Action = ½0, 1� is the UWOC
link binary controller bit, where 0 means OFF and
1 means ON

(v) Reward: The reward function Rt can be set accord-
ing to the different tasks of the AUV. An agent seeks
the optimal policy to maximize the value function
Vπ while leveraging the feedback information from
the environment. As there is only a unique task, the
reward function Rt is set to a fixed value, which is
only obtained during the UWOC link. If the
UWOC is successfully established, the agent will
get the reward χ to update Q-value of action ON.
While UWOC is failed to set up, the agent will get
the reward φ to modify Q-value of action OFF:

Rt =

χ, Success

φ, Fail

0, Otherwise

8>><
>>: , ð8Þ

The policy function π is a greedy strategy, which bal-
ances the relationship between the exploration and exploita-
tion as follows:

π sð Þ =
argmaxτ∈ActionQ s, τð Þ, 1 − ε

random, ε

(
, ð9Þ

where the action τ to maximize the Q-value is chosen with
probability 1 − ε and the action is selected randomly with
probability ε.

Bellman equation is used to describe the relationship
between the current state value and the consequent state
value that the current state value is equal to the expectation
of the sum of discount next state value and the instantaneous
reward [29]:

Vπ sð Þ = Eπ Rt+1 + γVπ St+1ð Þ Stj = sð Þ, ð10Þ

where γ is the discount factor. The learned action value
function Q directly approximates the optimal action and
maximizes over all possible actions in the next state as fol-
lows:

Q s, τð Þ = 1 − δð ÞQ s, τð Þ + δ Rt+1 + γ max
τ′

Q s′, τ′
� �� 	

:

ð11Þ

where δ is the learning rate. We assume that the environ-
mental information is observable. Then, we set the reward
function Rt according to the network requirement. For
example, as we want to increase the successful trial of the
switching process, we continuously update Q-table in inter-
action with the environment. The Q-function πðsÞ uses a
tabular approximation method, and the CSI information is
approximated into several levels.

3.3. Optical Channel Estimation. As discussed earlier, the
state of the RL technique consists of two kinds of informa-
tion: SNRA and SNRO. Since the acoustic link is used for
the control channel, its SNR can be easily obtained. The
actual optical SNR, especially when there is no optical com-
municating link, cannot be obtained directly. In [27], the
possibility of using acoustic SNR to predict optical SNR is
discussed. Inspired by this research, we use the EKF tool to
estimate optical SNR from the acoustic SNR which require
a small amount of prior knowledge and is adapted to the
AUV movement.

Table 1: The settings of the SNR levels.

Setting
State dB Level

Spre SNRA ≤ 5 0

5 < SNRA ≤ 10 1
10 < SNRA ≤ 15 2
SNRA > 15 3

Sest SNRO ≤ 5 0
5 < SNRO ≤ 10 1
10 < SNRO ≤ 15 2
15 < SNRO ≤ 20 3
SNRO > 20 4
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We first define the state space vector Xt at time slot t as
follows [38]:

Xt =

Pt
A⟶B

SNRt
O

SNRt
A

2
664

3
775
5×1

, ð12Þ

where Pt
A⟶B is the relative position vector of AUVs and

SNRt
O and SNRt

A are the SNRs of optical and acoustic chan-
nels, respectively. Then, we derive the state transition func-
tion from (4) as follows:

Xt = f Xt−1ð Þ = FtXt−1 + ωt ,

=

I3×3 0 0

⋯ Gt
O 0

0 ⋯ Gt
A

2
664

3
775
5×5

Xt−1 + ωt ,
ð13Þ

Gt
O =

1
ec Ptj j− Pt−1j jð Þ × Ptj j/ Pt−1j jð Þ3 × xt−12 + yt−1

2/xt2 + yt
2ð Þ� �2 ,

Gt
A =

1
1 + Δr/rt−1ð Þð Þb × a fð ÞΔr

, ð14Þ

where Ft is the transfer matrix and is used to adjust the prior
estimation covariance matrix Ptjt−1 and ωt is the process
noise which obeys the Gaussian distribution with mean 0
and covariance Q. Secondly, the observations can be divided
into two stages based on the availability of optical channel

Initialization: Learning rate δ, exploration and exploitation threshold ε state-action-value-
function Qðs, τÞ = 0.
1: for t = 1, 2, 3,⋯do:
2: Obtain the relative position Pt

Tx⟶Rx using the relation in (7)
3: Predict the hybrid channel state mean X̂tjt−1
4: Predict the variance Ptjt−1 using the relation in (23).
Blind Estimation Stage
5: if τ = 0 then
6: Estimate the observation Zb

t using the relation in (17).
7: Obtain the channel estimation X̂tjt using the relation in (24).
8: end if
Feedback Stage
9: if τ = 1 then

10: Observe the channel state Zf
t using the relation in (20).

11: Estimate the channel state X̂tjt using the relation in (24).
12: Obtain the reward Rt .
13: end if
Online Learning Stage
14: Update St+1 = ½Spre, Sest �
15: Update Q-Value Qðs, τÞ using the relation in (11).
16: Choose action τ ∈ Action using the relation in (9).
17: Update the EKF parameters.
18: end for

Algorithm 1: The proposed adaptive switching algorithm.

Table 2: UWOC parameters.

Parameters Value

Receiver sensitivity R 0:26A/W

Receiver aperture diameter D 1:1mm2

Half angle transmitter beam width θ 0:5 rad

Electron charge q 1:6 × 10−19 C

Wavelength λ 532 nm

Downwelling irradiance E 1440watts/m2

Radiance factor Lf ac 2:9

Diffuse attenuation coefficient TA exp −τ0ð Þ
Boltzmann’s constant k 1:381 × 10−23

Equivalent temperature Te 290K

Dark noise IDC 1:226 × 10−9 Ampere

Transmit power 30W

Beam attenuation coefficient 1:0

Signal bandwidth 100 kHz

Planck’s constant 6:6261 × 10−34 Js

Underwater reflectance 1:25%

Speed of light 2:25257 × 108

Radiant absorption factor 0:5

Noise figure of system 4

Load resistance 100Ω
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observations, such as blind estimation stage and feedback
stage.

In the blind estimation stage, due to the lack of the opti-
cal channel observation, we resort the relationship between
acoustic and optical channels to estimate the optical SNR
via the acoustic measurements. At this stage, the observation
(or measurement) vector Zb

t at time t can be expressed as

Zb
t =

Pt
A⟶B

SNRt
A

" #
4×1

, ð15Þ

where Pt
A⟶B and SNRt

A are the measurement of relative
positions of AUVs and the acoustic SNR. Then, the observa-
tion is expressed as

Zb
t = hb Xtð Þ =Hb

t Xt + vbt b =
I3×3 0 0

0 0 Lt

" #
4×5

Xt + vbt ,

ð16Þ

Lt = CbSNRO
r4−b exp2crNEP2

ar cos2∅
, ð17Þ

where hbð∙Þ represents the mapping at the blind estimation
stage, which converts the 5 × 1 state vector X to the corre-
sponding 4 × 1 measurement vector Zb. H

b
t is observation

matrix and vbt is the observation noise, which is assumed
to be zero mean Gaussian white noise with covariance R.
Cb is a constant related to signal amplifier circuits and the
underwater environment.

In the feedback stage, we use the optical channel mea-
surement as feedback to the EKF tool, in order to improve
the accuracy of the estimation. The observation (or measure-

ment) vector Zf
t at time t of this stage can be expressed as

Zf
t =

Pt
A⟶B

SNRt
O

SNRt
A

2
664

3
775
5×1

, ð18Þ

where SNRt
A is the measured value of the optical SNR. After-

wards, the observation is expressed as

Zf
t = hf Xtð Þ =Hf

t Xt + vft , ð19Þ

Hf
t = I5×5: ð20Þ

where hf ð∙Þ represents the mapping at the feedback stage,
which converts the 5 × 1 state vector X to the corresponding

5 × 1 measurement vector Zf . Hf
t is an identity matrix and

vft is the observation noise, which is assumed to be zero
mean Gaussian white noise with covariance R. According
to the aforementioned descriptions, the observation function
hð∙Þ and the observation matrix Ht of the system can be
abbreviated as the following relation:

Zt+1 = h Xtð Þ =
hb Xtð Þ + vbt , at Blind Stage

hf Xtð Þ + vft , at Feedback Stage
,

8<
: ð21Þ

Ht =
Hb

t , at Blind Stage

Hf
t , at Feedback Stage

(
, ð22Þ

Due to the nonlinearity nature of the system view state
and observation function, EKF is employed for channel state
estimation since it is a nonlinear version of Kalman filter.
Standard EKF tool generally consists of two phases: predic-
tion and updating. There are three covariance matrices: P,
Q, and R [39]. The Q and R are both positive definite matri-
ces which depended on the environment settings, and the
P0j0 is initialized as an identity matrix. The state vector and
its covariance matrix can be iteratively updated by the fol-
lowing relations [39]:

Prediction:

X̂t t−1j = f X̂t−1 t−1j
� �

,

Pt t−1j = FtPt−1 t−1j FTt + Q:
ð23Þ

Updating:

~yt = zt − h X̂t t−1j
� �

,

St = HtPt t−1j HT
t + R,

Kt = Pt t−1j HT
t S

−1
t ,

X̂t∣t = X̂t t−1j + Kt~yt,

Pt∣t = I −KtHtð ÞPt t−1j :

ð24Þ

VA

VB

Ф

𝜃

Figure 6: A sample optical communication scenario between two
AUVs.
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After the observations, such as relative position, acoustic
SNR, or optical SNR, have been processed, the EKF tool pro-
vides an estimation of X as the input state for the RL tech-
nique to make decisions.

3.4. The Description of the Proposed Switching Algorithm.
The proposed algorithm is deployed in the controllers of
the AUVs, and the switching policy is stored in a Q-table
and updated by communicating with other AUVs. The dis-
crete time slot is denoted as the period which begins at the
packet transmission until Tx has received the ACK from
Rx and updates the Q-table, and the sequences are related
to the packet transmission process as shown in Figure 5.

We assume that the environment remains relatively sta-
ble over a short period of time. At the beginning of each
interaction, the transmitter first receives the positioning
information PTx⟶Rx , and the receiver tracks and estimates
the channel state Xt using the EKF tool while receiving the
packets. Once the transmission is initiated, the receiver esti-
mates the optical channel state X̂t and places the estimation
value into the ACK. Finally, the transmitter progresses to the
online learning stage and updates the policy function πðsÞ.
The initial parameters are the learning rate δ, the explora-
tion constant ε, and the system error σ. Before the packet
transmission, the position of the target is determined by
the positioning system which resides in the shipborne base
station or a buoy.

Then, the receiver calculates the prediction of the hybrid
channel state X̂t using the relation in (23) and collects the
observations. The value of the observation function is
defined in (21). While the optical communication is OFF,
the measurement function Zt is obtained by the blind esti-
mation which combines the theoretical value of optical
SNRO and the acoustic measurement SNRA using the rela-
tion in (17). Then, the observation is updated with the opti-
cal measurement outcome using the relation in (20) under
the process of optical communication. We choose SNR to
represent CSI [23]; thus, we have a double state tuple St con-
sisting of both the acoustic SNR estimation outcome SNRt

A
and the optical SNR estimation outcome SNRt

O. The quanti-
fied levels are shown in Table 1, and we set the state St =
½Stpre, Stest� for the RL algorithm.

The condition for judging optical communication suc-
cessful is based on an SNR threshold which the PD on the
receiver conceives the optical signal is real [23]. It should be
noted that the optical signal measurement of the receiver is
sent back to the transmitter via the acoustic channel. There-
fore, the online learning stage can be reached at both the
transmitter and the receiver ends through the bi-directional
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communication process, and it reduces the costs of learning.
After the successful switching operation, the optical SNR is
used to assist the PAT procedure [39].

The adaptive switching process is summarized in Algo-
rithm 1. Once the system is initialized, the algorithm is
mainly divided into three parts: blind estimated stage, feed-
back stage, and online learning stage. At the beginning of
each interaction, the relative position P of each agent is
obtained to predict the channel state X̂tjt−1 and the covari-
ance P. When the optical channel is not obtained by the
agent, the blind estimation stage is used to estimate the opti-
cal channel observation Z by the acoustic observations using
the relation in (17). Otherwise, when the UWOC is switched
ON, the feedback stage is used to estimate the optical chan-
nel state Z by the optical observations. Subsequently, the
corresponding agent obtains the reward R at the end of
UWOC switching trials. After getting the channel estimation
X̂tjt from the blind estimation stage or the feedback stage
where the optical state is measured at the feedback stage
but absent at the blind estimation stage, the agent updates
the next state St+1 using SNRA and SNRO in Table 1. In
the online learning stage, the agent updates the Q-table
and EKF parameters, and then the action of the next interac-
tion is chosen using the relation in (9).

4. Performance Evaluation

In this section, we evaluate the performance of the proposed
switching scheme through simulations. The operating area
of AUVs is set to 2000m × 2000m × 500m. The primary
simulation parameters and settings are provided in
Table 2. We first simulate the characteristics of optical com-
munication between mobile AUVs. Then, we verify the
effectiveness of the proposed switching algorithm. Finally,
we testify the robustness of the proposed scheme.

4.1. The Characteristics of Optical Communication between
Mobile AUVs. The performance of the optical communica-
tion of mobile AUVs is affected by several factors. As shown
in Figure 6, when two mobile AUVs encounter, the chance
of performing reliable visible light communication (VLC)
via LOS link depends on several factors (e.g., the distance
between two AUVs, the transmit power P, the half-angle
FOV θ, the incident angle of the receiver ∅, and the speed
of AUV v).

As shown in Figure 7, we illustrate the performance
variations under different communication distances between
two AUVs, and also with different levels of transmit power P
and the incident angle ∅. The half angle is fixed to θ = π/6.
The collision avoidance range of AUVs is set to 10m [40].

As shown in the figure, the solid lines describe the
throughput, and the dotted lines represent the bit error rate
(BER). The distance between two AUVs is varying from
10m to 100m. We take different settings of transmit power
and incident angle to compare the performance, such as the
transmit power is set to 10W and 30W, and the incident
angle is set to 0 rad and 0.5 rad. Figure 7 shows that the opti-
cal communication throughput has good performance
which can reach the magnitude of Mbit. However, the
throughput declines rapidly when the distance is larger than
a number in between the range of 30m and 50m. Conse-
quently, we can take some measures to improve the optical
transmission capability, such as improving the transmit
power. The figure also shows that the BER has a significant
performance for applications associated with the communi-
cation distance of 40m.

Figure 8 shows the UWOC characteristics of two mobile
AUVs with respect to different speeds and half angles. The
speed of AUVs is set to 2 and 5 knots, and the half angle θ
is set to π/6 and π/4. As shown in the figure, it can be
observed that under the same half angle θ, the time window
is larger with a slow speed of AUVs in terms of BER com-
munication performance. The delay that an AUV experi-
ences while communicating with another one via the
optical link is longer with a wide half angle compared to
the narrow half angle under the same speed.

4.2. The Effectiveness of the Switching Scheme. In order to
verify the effectiveness of the proposed scheme, we simulate
the performance of the EKF and Q-learning tools. In the
simulations, two AUVs are deployed in the depth of 15m
and 25m. The trajectories of these AUVs are in a linear
roundtrip patrol along a straight line with a range span
about 500m. The initial positions of the AUVs are on the
left and right sides of their patrol lines, and the AUVs are
moving towards each other at a speed of 2 knot and 4 knot,
respectively. Each interaction process is defined as a time
slot as shown in Figure 5. When the two AUVs patrol along
the preset lines, the SNR of UWOC gradually increases and
decreases in accordance with the change of distance between
two AUVs.

As shown in Figure 9, the EKF tool has a good perfor-
mance when the optical SNR is large enough, and both states
are generated under the simulated environments. Overall,
the EKF is relatively stable when estimating the states, and
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Figure 9: The convergence of the estimation and the actual state.
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the actual states are generally match the estimated states,
especially when there is no optical measured values.

The effectiveness of the Q-learning process is simulated
and analyzed, and the corresponding results are shown in
Figure 10. The accuracy is defined as the ratio of the success-
ful switching time to the total switching trials. The initial
learning rate δ is set to 0.01, and the reward discount γ is
0.7. When the optical communication is successful, the cor-
responding AUV gets the reward χ =1, and the punishment
is φ =0.8 for the other case. The ε of the greedy strategy is
initially set to 0.06, and it decreases with the increasing level
of accuracy.

To compare the performance of the learning process,
we set different half angles in Figures 10(a) and 10(b) to

evaluate the convergence process of Q-function. Overall,
Figure 10 shows that the accuracy of the switching scheme
has significant improvement with the increasing training
rounds. During the beginning stage of the training process,
the optical communication delay becomes less due to the
few number of training samples. However, after the con-
vergence of the policy function, the optical communication
delay is increasing, while the accuracy of switching policy
is stabilized.

The figures also show that the half angle has an impact
on the learning process. Compared to Figures 10(a) and
10(b), the narrow half angle means the shorter switching
time window, and so the exploration trials at the beginning
of the learning process are fewer. However, with the increas-
ing of the training trials, the accuracy with narrow half angle
converges to 80%, which is almost identical to the wide one.

Figure 11 shows the switching accuracy performance of
the proposed method in yellow color compared with tradi-
tional methods which include distance-based method in blue
color [41] and SVM-based switching method in red color
[27]. There are six different underwater communication
locations considered in our simulation which include har-
bor, rough sea, calm sea, calm sea with working boat, turbid
waters, and clear waters corresponding to locations 1, 2, 3, 4,
7, and 8 in [27]. It is worth noting that there are different
kinds of mechanical noise interference in the harbor, obvi-
ous spikes in the rough sea, fixed frequency noise in the calm
sea with working boat, and large attenuation coefficient of
beam in turbid water. As shown in Figure 11, the distance-
based switching method is insensitive to acoustic noise but
vulnerable to the turbidity of the water, and the SVM-
based method depending on acoustic SNR is mainly affected
by the acoustic noise. Compared to these traditional
methods, our proposed method achieves more than 75%
switching accuracy in all cases.

4.3. The Robustness for Switching Scheme. In this part, we
evaluate the robustness of the switching scheme under
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different types of water and sunlight-noise levels for realistic
underwater wireless communication environments.

As the real underwater wireless communication environ-
ment is very complex, we focus on evaluating the robustness
of the switching scheme under different noises and optical
attenuation coefficients. The parameters related to the
underwater environment are taken from the work in [42].
The simulated results are shown in Figure 12, and we can
observe that the environmental noise affects the overall per-
formance of the switching scheme. Moreover, as the radia-
tion noise of sunlight increases, the performance of the
switching scheme decreases. However, under the condition
of strong noise, increasing the transmit power alleviates the

influence and thus improves the adaptivity caused by the
variation of optical attenuation coefficient.

Figure 13 shows the performance of the proposed
scheme under different SNR levels. The left y-axis is the
value of SNR sorting the optical SNR from the smallest to
the largest according to the open dataset in [27] correspond-
ing to locations 7, 8, 4, 5, 6, 3, 2, 9, and 1, respectively. The
dotted line is defined as the mean value of SNR of the acous-
tic and optical channels in the communication range of 10m
and 20m. The right y-axis is the switching accuracy, and the
solid line shows the performance of the proposed method. It
can be seen that the switching accuracy is lower when either
the acoustic or optical SNR is weak. This is because the high
attenuation coefficient of the optical channel can lead to
transmission link instability, while the low acoustic SNR
can lead to poor estimation of the optical channel. Overall,
the proposed method has a good performance under differ-
ent SNR levels.

The learning process generally involves the optical align-
ment procedure, and as the alignment process of the optical
system needs a certain duration of time to perform the task,
it requires the switching scheme to remain effective for that
duration of time. Therefore, the time delay caused by the
alignment procedure affects the successful ratio of the
switching. As shown in Figure 14, the time tolerance of the
Q-learning-based strategy is tested with a greedy coefficient
of 0.01, and the average value of the accuracy is calculated
with different time delays, learning rates, and discounter fac-
tors. As depicted in the figure, the larger time delay leads to
less belief in the past experience, which implies that a larger
learning rate has a better time tolerance. Since the discount
factor indicates the weight to the future reward, as shown
in the figure, a large discount factor γ has a better adaptation
to time delay.
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5. Conclusions

In this paper, we proposed an adaptive switching scheme for
the underwater AUV-based acoustic-optical hybrid mobile
network while combining the long-range but low-rate acous-
tic and the high-rate but short-range optical communica-
tions. In this scheme, we leveraged a RL-based method and
the EKF tool to improve the adaptivity of the switching
method. In response to the challenge associated with the
intermittent feature of the optical channel, a blind estimation
method based on EKF was proposed to estimate the optical
channel state using the acoustic channel measurement. To
deal with the harsh ocean environments, in the scheme, the
relationship between the acoustic and optical channels, the
channel variations and the mobility of the AUVs were con-
sidered and integrated into the learning process of the agent.
We also conducted numerous simulations to verify the effec-
tiveness and robustness of the proposed switching algorithm
by considering the AUV speed, the environmental noise, the
half angle beamwidth, and the optical alignment delay. In the
future, we will apply multi-agent RL techniques in the
switching scheme to improve the overall throughput further.
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