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Rotation estimation is one of the crucial elements of pose estimation. Accurate pose estimation facilitates the observation of
objects in the metaverse and is also the most fundamental part of automated archaeological mapping. Many studies have been
conducted on 6D pose estimation, but no systematic study has only been conducted on 3D rotation estimation. We
systematically study the rotation estimation problem for 3D point cloud models. Firstly, we discuss the representation of
rotation and how it affects the training of the neural network. After that, the dataset is created. A new method of generating
labels is also proposed, in which two points are used as labels, with the two points being able to recover the initial orientation.
Finally, a new serial network is proposed, which can be used to improve the performance of rotational estimation systems. The
research described in this paper has been successfully applied to the restoration of the Huangze Temple Grotto Buddha statue
in Guangyuan, Sichuan Province, providing a reliable scheme for solving the rotation estimation problem with faster
convergence and higher accuracy.

1. Introduction

In recent years, the metaverse has been an area of great
interest to researchers. The integration of the virtual world
with the natural world is a trend. Access to the metaverse
requires immersive hardware devices such as virtual reality
and augmented reality, as well as technical support related
to immersive experiences. Furthermore, 3D objects need to
present a realistic and natural, accurate, and stable posture
in the metaverse, which involves the problem of posture esti-
mation in computer vision and is an inevitable topic in the
future regarding immersive experiences.

The field of technological archaeology has developed in
recent years. Using 3D scanners, we can get more point
cloud data of the cave statues. The archaeological reports’
images are two-dimensional projections of the three-
dimensional model in a fixed view. There are two ways of
acquiring images, one is to acquire images manually, and

the other is to acquire images automatically. The manual
way to obtain an image is to manually rotate the statue to
a certain angle in a professional point cloud processing soft-
ware. The automatic method is to estimate the rotation angle
of the point cloud and then automatically rotate the point
cloud to a fixed perspective to generate a projection image.
Generally, a front view is obtained first and based on the
front view, two-dimensional views such as side, top, and
profile views can also be obtained automatically. Images
can be acquired in two ways: one is to acquire images man-
ually, and the other is to acquire images automatically.
Rotating the Buddha to the front is the most fundamental
aspect of automatic archaeological mapping, and images of
these views are an essential part of the archaeological report.

In archaeological reports, the size of a three-dimensional
object in an image is determined by the scale and is not
directly reflected in the image. The detail in the image is
determined by the orientation of the three-dimensional
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object, which affects the archaeologist’s observation and
analysis. The Buddha is a complex and irregular object in
three-dimensional space. If data is missing and the Buddha
needs to be readjusted to a frontal view, it can only be
rotated to an approximate range by human intuition, which
can lead to errors in the resulting side view and profile view,
thus affecting the archaeologist’s judgement.

Pose estimation is a significant subject in computer
vision, which generally includes the estimation of transla-
tions and rotations, and is a six-degree-of-freedom estima-
tion problem. Rotation estimation is one of the essential
elements of pose estimation, which belongs to the three-
degree-of-freedom estimation problem. Some researchers
have studied the issue of continuity of rotation representa-
tions. However, there is a lack of research on the stability
of various representations during training, and stability is
one of the factors affecting the selection of rotation represen-
tations. On the other hand, in previous studies of rotation
estimation, the concept of “Coarse to Fine” (C2F) has not
been used to enhance the accuracy and convergence speed
further.

In this paper, we propose a systematic scheme to esti-
mate the amount of rotation of the point cloud to be mea-
sured to a fixed viewpoint using an end-to-end deep neural
network. To summarize the contributions of this paper,
there are three main points.

(i) We analyze the continuity and stability of the rota-
tion representations

(ii) No dedicated dataset is available, so new datasets
and labels must be generated

(iii) A serial network is proposed, and the model is
trained using an online training method. The serial
network can accelerate the convergence speed and
increase the results’ accuracy

2. Related Work

Rotation estimation is an important part of 6D pose estima-
tion. Studies on pose estimation are numerous and cover
many fields, such as human pose estimation [1–3], object
pose estimation [4], SLAM [5], 3D reconstruction [6], and
point cloud alignment [7, 8]. First, we elaborate on the work
related to 6D pose estimation. We then explore work related
to the representation of rotation in rotation estimation.
Finally, we elaborate on the concept of iteration for the
model used in this paper.

In this section, we review these three works and compare
them with our approach with the aim of obtaining a class-
level rotation estimation system with greater accuracy and
convergence speed.

2.1. 6D Pose Estimation. The pose estimation problem is
classified into an instance-level pose estimation problem
and a category-level pose estimation problem, depending
on whether an accurate 3D model of the object is known.

Instance-level pose estimation requires an accurate tar-
get point cloud against which the object to be estimated

can be compared to obtain a relative pose. Instance-level
pose estimation methods are mainly classified into two cate-
gories: traditional methods and deep learning-based
methods. The traditional method is mainly based on a tem-
plate approach, using images from different viewpoints to
construct a discrete pose space about the object, and the
images from unknown viewpoints are compared with the
template to find the most similar state in the pose space, thus
obtaining the pose of the current point cloud. [9–12] con-
struct a template space by extracting feature points from a
2D image and then searching through the templates of
numerous object poses to find the closest pose. The other
category is based on deep learning methods. Deep learning
methods have powerful representational capabilities, while
eliminating the tedious manual step of design features,
achieving better results than traditional methods. [13] is
the first method that uses CNN to process the input RGB
image to obtain the object pose. [14–16] fuse the color and
depth information to extract features for more accurate
results. In instance-level pose estimation, the difficulty of
pose estimation is reduced because it is compared to an
accurate model, but when the geometry, color, texture, and
lighting change slightly, the point cloud to be estimated does
not match well with the exact target model, resulting in poor
accuracy.

Category-level pose estimation does not have an accurate
3D model of the target. Currently, the commonly used solu-
tion is to generate a continuous template space at the cate-
gory level which is an abstract representation of the
category-level pose information. The representation of the
space can be of a concrete shape and size, as in the case of
the NOCS map space [17], or it can be an abstract implicit
space, as in the case of the CASS space [18] constructed
using VAE [19]. Eventually, the pose of the object is esti-
mated by mapping the instances to that space. Category-
level pose estimation requires the construction of an inter-
mediate template space, which can lead to complex neural
network models. As it does not require the provision of an
accurate target model, this greatly expands the application
scenarios for pose estimation.

The problem we are addressing is that of category-level
rotation estimation. In contrast to [17, 18], the method in
this paper does not generate an intermediate template space,
but maps the point cloud directly to the rotation representa-
tion space via PointNet [20] and MLP. We have also demon-
strated the feasibility of the method experimentally.

2.2. Rotation Representations. The rotation has three degrees
of freedom and various representations. The rotation repre-
sentations can be divided into two categories according to
whether they are continuous or not. One category is discon-
tinuous rotation representations such as quaternions [21,
22], axis angle [23], Euler angles [24, 25], 6D vectors with
GS constraints [26], and 9D vectors with SVD constraints
[27]. The paper [9] demonstrates that for 3D rotations, all
representations are discontinuous in the real Euclidean
spaces of four or fewer dimensions and refer to some nega-
tive effects on the learning of neural networks. The study
of the properties of rotation representations can contribute
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to the selection of rotation representations in neural net-
works. Some of these properties have not been studied fur-
ther, such as the lack of research and experiments related
to training stability. Training stability is a factor that influ-
ences the selection of representations; the more stable the
training, the less susceptible the training can be to noise in
the dataset.

2.3. C2F. C2F (Coarse to Fine) is an idea of hierarchical iter-
ation commonly used in neural network training, which is
widely used. [28] applies the method to the field of image
segmentation, [29] applies it to the classification of diabetic
retinas, [30] applies it to the localisation of feature points
on faces, and so on. The refine module used in DenseFusion
[31] is also based on the C2F idea, which iteratively opti-
mizes the 6D pose. The inputs to DenseFusion are RGB
images and RGBD images, and the position and pose are
optimized using two modules, coarse and fine, in a cyclic
and iterative manner. The C2F iteratively utilizes the output
of the model, adding parameters and calculations to the neu-
ral network, but this process allows the accuracy of the
results to be further improved.

The serial network we propose is also formed based on
the idea of Coarse to Fine. In contrast to DenseFusion, our
input is point cloud data, and we use the same modules in
series. The number of modules can be greater than two
and only iteratively optimize 3D rotations without consider-
ing translations. Furthermore, we elaborate on the effective-
ness of serial networks in terms of data distribution.

3. Overview of the Rotation Estimation System

We propose an end-to-end network that enables the rotation
of the original point cloud to a fixed view without the target
point cloud as a reference. The pipeline for this system is
shown in Figure 1. The system consists of four main
components.

(i) The first step is to select the appropriate rotation
representations for the specific dataset. The different

rotation representations generate different labels
and map the point cloud to different rotation repre-
sentation spaces

(ii) The dataset and labels are then generated. We use
an online training approach, generating new data-
sets during the training process

(iii) In the next step, the rotation estimation network
was used for training. The input to this network is
a 3D point cloud coordinate, and the output is a
rotation representation. The series network consists
of several rotation estimation modules connected in
series. Each rotation estimation module contains
two parts, the feature extraction module and the
rotation representation estimation module, which
use PointNet and MLP, respectively, for the extrac-
tion of features

(iv) Finally, after mapping the point cloud into the rota-
tion representation space, the point cloud can be
rotated to a fixed viewpoint using the values of the
resulting rotation representation

4. Rotation Estimation

In this section, three main components of the 3D rotation
estimation system are discussed. In Section 4.1, we consider
the issue of continuity and stability in rotational representa-
tions. The method for generating datasets is described in
Section 4.2. In Section 4.3, a serial network and an online
training method that we propose are presented.

4.1. Rotation Representation

4.1.1. Accuracy of Training Results. In a neural network, a
particular constraint is applied to make the output strictly
satisfy the following equation, and the output under this
constraint is called the constrained representation, as
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Figure 1: Pipeline of rotation estimation systems. The system is divided into four parts in total. First, a suitable rotation representation is
selected for the actual situation (a). Then, the dataset and labels are generated (b) and the tandem network is trained using online training
(c). Finally, the rotation angle that will rotate the model to be estimated to a fixed viewpoint is obtained (d).
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defined in papers [9, 10].

M MMT�� =MTM = I, det Mð Þ = 1
È É

: ð1Þ

By observing the experimental results, we draw the fol-
lowing two conclusions:

(i) The convergence accuracy of the representations
with constraints is higher than that of the discontin-
uous representations. This phenomenon is caused
for two reasons. First, the paper [26] argues that it
is mainly because the discontinuous representations
can negatively affect the learning of neural networks.
Second, a neural network can easily learn the hidden
laws with the constraint

(ii) Quaternions perform the worst accuracy and stabil-
ity in discontinuous representations, while Euler
angles and axis angle are very close. We hypothesize
that the output dimensions of the neural network
and the orthogonality of each dimension belong to
solid prior knowledge that can help the neural net-
work be trained. The dimensions of Euler angles
and axial angles are equal to the number of freedom
degrees of 3D rotation, and therefore, they have an
advantage over quaternions

4.1.2. Stability of Training. We define N as the number of
iteration rounds on each dataset and define the error of each

iteration round as ei and �e as the average of the errors under
this dataset. We can know the training smoothness by the
variance, which is calculated as follows:

σ2 = 1
N
〠
N

i=1
ei −�eð Þ2: ð2Þ

The training method in this paper generates several
small datasets, each of which can be calculated to obtain a
variance, and a broken line about the training stability can
be obtained by connecting all the variances. The discontinu-
ous representations gradually decrease errors during train-
ing, and the training process is smooth. Constrained
representations have a large error at the beginning of the
training phase, and then, the error decreases rapidly. The
training process is relatively jittery.

In conclusion, we can be guided by the following princi-
ples when selecting a representation.

(i) If the training data is noisy, the discontinuous con-
tinuous representation can be selected because the
training process is more stable in discontinuous rep-
resentations, and the error is lower at the beginning
of training
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Figure 2: Storage structure and computation process of labels and point clouds.
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Figure 3: The rotation of the point around the “xy” axis.

Data: point cloud
Result: a rotation representation;

1 initialization;
2 set N as the number of re-generation datasets;
3 set S as the number of dataset size;
4 set e as the number of epochs;
5 k⟵ 0,m⟵ 0;
6 while k <N or not converged do
7 generate a smaller dataset, the size of which is S;
8 while m < e do
9 perform one epoch of training;
10 m⟵m − 1
11 end
12 empty the dataset;
13 k⟵ k − 1
14 end
15 training completed.

Algorithm 1: Online training algorithms.
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(ii) If the requirement for accuracy is very high and the
data is relatively clean, the constrained continuous
representation can be selected to have a higher accu-
racy of the final result

4.2. Label Generation and Dataset Creation

4.2.1. Label Generation. The label is a vector that restores the
3D model to its initial rotated state, and this vector can be an
arbitrary rotation representation. However, keeping track of
the label changes is tedious if a neural network is trained
with multiple rotations on the data.

In this paper, we propose a method to recover the initial
angle by two points, which combines the Euler angles with
the unit sphere and records the rotation information of the
point cloud with two points. Figure 2 shows the storage
structure and calculation process of labels and point clouds.
Note that the two points are rotated together with the point
cloud but not as inputs to the neural network.

(1) The Connection between the Euler Angle and the Spheri-
cal Coordinate System.

(1) We assume that the point cloud is rotating in the
direction of the “yxy” axis. First, select two points
on the unit sphere as the orientation of the point
cloud. The center of the sphere and the two points
on the surface of the sphere form two vectors, and

these two vectors are not colinear. For example, in
this paper, we select upð0, 1, 0Þ and forwardð0, 0, 1Þ,
two orthogonal vectors, to represent the model’s
orientation

(2) The two points rotate α degrees around the y axis,
α ∈ ½0, 2π�. After rotation, the position of forward
changes, and the position of up does not change

R1 αð Þ = Ry αð Þ =
cos α 0 sin α

0 1 0
−sin α 0 cos α

2
664

3
775 ð3Þ

(3) The two points rotate about the x and y axes. After
two rotations, the point up can be rotated to any
position on the sphere. As shown in Figure 3, θ is
the angle of rotation on the x axis, and ϕ is the angle
of rotation on the y axis. A point ð0, r, 0Þ on the y
axis is rotated to the point ðr, θ, ϕÞ under the repre-
sentation of the spherical coordinate system. Then,
the coordinate values of the points in the spherical
coordinate system are converted to the coordinate
values in the rectangular coordinate system. Given
r = 1, θ ∈ ½0, π�, ϕ ∈ ½0, 2π�, the formula is as follows:

x = sin θ cos φ,
y = cos θ,

z = sin θ sin φ

ð4Þ

The rotation of the point around the “xy” axis can be
understood as the movement of the point on the sphere.
The formula for the second rotation is as follows:

R2 θ, φð Þ = Ry φð ÞRx θð Þ =
cos φ 0 sin φ

0 1 0
−sin θ 0 cos φ

2
664

3
775

1 0 0
0 cos θ −sin θ

0 sin θ cos θ

2
664

3
775:
ð5Þ

(4) The final rotation matrix is shown as follows:
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(Tow points)

Rotation matrix

Representation of
neural network

output

Various
representation

Loss+

Figure 7: The process of calculating the loss function.
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Figure 8: The geodetic error of orientation.
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R α, θ, φð Þ = R2 θ, φð ÞR1 αð Þ

=

cos α cos φ − sin α sin θ sin φ sin θ sin φ sin α sin φ + sin φ cos α cos θ

sin α sin θ cos θ −sin θ cos α

−sin φ cos α − sin α cos θ cos φ sin θ cos φ −sin α sin φ + cos α cos θ cos φ

2
6664

3
7775

ð6Þ

(2) Restoring the Initial Angle Method Using Two Points.
Given up′ and forward′ are the points after rotation. The
specific steps to restore the initial state are as follows:

(1) Use up × up′ to get the rotation axis, and then, use
the inverse trigonometric function to get the angle
between up and up′. Finally, using the axis-angle for-
mula, rotate up′ to up. The formula is as follows:

ω
!
1 = up × up′,

θ1 = arccos up · up′
upk k · up′

 
 !

,

R1 = θ1ω
!

1

8>>>>><
>>>>>:

ð7Þ

(2) Forward′′ is rotated by R1. The formula is as follows:

forward′′ = R1 · forward′ ð8Þ

The angle between forward and forward′′ can be
obtained using the inverse trigonometric function. The y
axis is the axis of rotation. The rotation matrix R2 between
forward and forward′′ can be obtained using the axis-angle

formula.

ω
!
2 = upω!2 = up,

θ2 = arccos forward · forward′′
forwardk k · forward′′

 
 !

,

R2 = θ2ω
!
2

8>>>>><
>>>>>:

ð9Þ

(3) The final matrix for recovering the initial angle is

Rrecovery = R−1 = R2 · R1 ð10Þ

The approach described above is a two-point method to
restore the initial orientation. When the label is rotated back
to its original state, the points in the point cloud are corre-
spondingly rotated back to their initial state.

4.2.2. Dataset Creation and Online Training Method. There
is no specialized dataset for the rotation estimation problem,
so samples with various orientations need to be generated
based on the available dataset.

In general, uniform sample distribution and an adequate
number of samples allow the neural network to achieve bet-
ter results. It is necessary to ensure that the generated orien-
tation samples are distributed uniformly. This means that
the orientations cannot be clustered in a particular area. As
the number of data increases, according to the law of large
numbers, the orientation of the samples will naturally spread
over all states, so there is no need to generate samples with
different orientations deliberately. Furthermore, this paper
adopts the training method of online learning, which can
theoretically generate infinite data samples and thus ensure
that the orientation will be uniformly distributed as the
training continues to grow.

(a)

(b)

Figure 9: Visualization of airplane point cloud data. (a) Initial orientation of partial airplanes. (b) Partial sample of airplanes with different
orientations.
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Figure 10: Continued.
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The sample generation method is as follows. First, a rota-
tion matrix is generated randomly. Then, the randomly ori-
ented sample data is generated by multiplying the rotation
matrix with the labels and point clouds.

The method often used to generate datasets is to gener-
ate all samples at once and store them on the hard disk.
With too few samples in the dataset, overfitting problems
can easily occur. However, generating a large number of
samples means taking up a lot of storage space. Further-
more, since the dataset does not change, the fit is probably
problematic when the sample distribution is unbalanced.

The online training method is used in this paper to gen-
erate a new dataset during the training process to overcome
the overfitting problem and avoid an unbalanced sample dis-
tribution as shown in Algorithm 1.

The samples in the dataset generated by this training
method are different each time, so it is not easy to have over-
fitting. Also, it is easier to analyze whether the data
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Figure 10: Experimental results of the airplane. The dataset size is 5000, and 25 datasets are generated in total. Each dataset was trained for
30 iteration epochs. (a) The broken line plot generated by the epochs. (b) Broken line plot of the mean of the errors for all epochs within
each dataset. (c) The variance of each dataset.

Table 1: Comparison of errors in different representations.

Representation
Minimum

value
(radian)

Error of the 25th
round (radian)

Variance of
the 25th
round

Euler 0.27 0.3029 0.0002

Axis 0.3 0.3445 0.0004

Quaternion 0.303 0.3597 0.0007

GS-6D 0.227 0.2884 0.0023

SVD-9D 0.239 0.3408 0.0055
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Figure 11: Comparison of the error of the single module with that
of the serial network. The single module was trained for 25 rounds,
and the tandem network was trained for 5 rounds.

Table 2: Comparison experiment of data from single module and
serial network.

Representation

Minimum
error in the
20th round
(radians)

Single
module
25th
round
error

(radian)

Series
network
25th
round
error

(radian)

Error
reduction
(radian)

Euler 0.304 0.3029 0.1137 0.1892

Axis 0.3257 0.3445 0.1164 0.2281

Quaternion 0.3232 0.3554 0.1696 0.1858

6D 0.2465 0.2884 0.1264 0.161

SVD 0.2703 0.3408 0.104 0.2368
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converges or not by observing the results at the scale of the
dataset iteration.

4.3. Serial Network. The serial network is built on the basis of
the rotation estimation module. Therefore, the rotation esti-
mation module is first described in detail in Section 4.3.1,
and then, the architecture of the tandem network is
described in Section 4.3.2.

4.3.1. Architecture of the Rotation Estimation Module. The
architecture of the rotation estimation module used for the
experiments in this paper is shown in Figure 4 and is a com-
plete neural network that can be trained independently. The
model contains a feature extraction module and a rotation
representation extraction module, which constitute the
architecture of the rotation estimation model. The feature
extraction is borrowed from PointNet by eliminating the
T-Net from it because the T-Net can be considered as a rota-
tion of the point cloud or feature, which will disturb the
rotation feature of the original point cloud. The input of this
module is (x, y, z), and the output is to obtain a 2048-
dimensional feature vector. The MLP part uses five fully
connected layers, which contain four hidden layers with out-
puts of 512, 256, 128, and 64 dimensional vectors, respec-
tively, adding BN layers [32], while using the Leaky ReLU
function, and the output layer is the dimension of the rota-
tion representation.

4.3.2. Architecture of the Serial Network. When predicting
the orientation of a model, a single-module rotation estima-
tion network may not allow the model to learn effectively
during the training phase due to the small dataset, unbal-
anced sample distribution, and symmetry of the model,
which eventually leads to problems such as large errors in
the regression results and unstable convergence results. It
can be used to coarsely extract the rotation angle of a point
cloud.

An approach to solving these problems is to call the
model several times after completing the training. When
the prediction results do not change much, we consider that
the model has converged and then, the results estimated by
each module are superimposed to obtain the final rotation
angle.

However, the method mentioned above is not an end-to-
end method, and the intermediate calculation results need to
be saved, and additional hyperparameters are introduced,
such as the number of iterations and angular errors. To
avoid the above mentioned problems, we propose the serial
network based on the idea of multiple iterations.

4.3.3. The Process of Serial Network Training. The process of
training is shown in Figure 5. The training process has two
stages:

(i) In the beginning, a single module is trained until the
results converge or nearly converge

(ii) Then, the second stage of training is then performed.
The parameters obtained from the training of the
first-stage rotation estimation module are copied to
the rotation estimation module in the serial model,
and the parameters are fixed for the first and second
parts of the serial network

Some details of the serial network are shown in Figure 6.
In the serial network, the input data of each rotation estima-
tion module is a point cloud and the output is a representa-
tion. After outputting a representation in the intermediate
stage, it is necessary to convert it into a rotation matrix
and apply it to the point cloud and labels to get the rotated
data as the input data for the next module.

4.3.4. Loss Function and Error Evaluation Criteria. The flow
of calculating the loss is shown in Figure 7. The loss function
of the serial network is related to the number of rotation
estimation modules. We define the representation obtained
by the labels as rrecover, the representation output by each
rotation estimation module as ri, and the loss of the module
as the L2 norm of ri and rrecover. L is the total loss function,
which is the sum of the loss functions of each module, with
minimization of this loss function as the objective of optimi-
zation. Where D is the representation’s dimensionality, N is
the number of rotation modules, and the loss function is cal-
culated as follows:

L y, ŷð Þ =〠
N

1
D
〠
D

yND − ŷND
 : ð11Þ

Because each dimension in the different representations
has a different physical meaning, the results of rotation esti-
mation cannot be judged by L alone. In this study, the error
is expressed as a geodesic distance on the unit sphere, which
is used to quantify and compare the final error. The sphere’s
geodesic is the arc on the great circle intersected by the plane
going through the sphere’s center and surface. The radian
value is the length of the arc on the unit circle. As previously
described, two points can indicate orientation; then, the sum
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Figure 12: Both single module and serial network are trained using
the SVD-9D representation, and the figure shows the experimental
results after 115 rounds of training, which corresponds to 3450
epochs.
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of the geodesic distances between the two points and the ini-
tial two points can indicate the difference in orientation. As
shown in Figure 8, it is known that up′ and forward′ are the
values of the current label, and up and forward are the initial
points. Therefore, the calculation equation of the geodesic
error is as follows:

θerror = θup−error + θforward−error = arccos up′ · up
up′
  · upk k

 !

+ arccos forward′ · forward
forward′
  · forwardk k

 !
:

ð12Þ

5. Experiment

In this section, we evaluate the convergence speed and stabil-
ity of different rotation representations in experiments with
the single rotation estimation module. To demonstrate the
advantages of the serial network in terms of accuracy and

convergence speed, we compare the serial network with the
single module network in the experiment. Further, the neu-
ral network is trained over a long period of time to verify
whether the online training method is subject to overfitting
and the stability of the results. Finally, the serial network is
applied to the Buddha statue dataset to verify its feasibility.

All experiments were implemented using PyTorch 1.8
with an i7 6700 CPU and a gtx1080 GPU. The single-
module network and the serial network in the experiment
uniformly use the same architecture as the rotation estima-
tion module. The architecture of the rotation estimation
module can be found in Section 4.3.1. During online train-
ing, each generated dataset is of size 5000, and the number
of iteration epochs for each dataset is 30. We define a train-
ing round as all training after generating a new dataset.

5.1. Dataset Generation. The Aligned ModelNet40 dataset
contains 40 categories [33], of which the airplane data is
used in this paper. As the base data for sample generation,
310 different airplane models are selected, and the initial ori-
entation is shown in Figure 9(a). Firstly, add two points up
ð0, 1, 0Þ and forwardð0, 0, 1Þ to the airplane data, which are
the labels. Then, the point cloud is randomly rotated. The
partially rotated point cloud is shown in Figure 9(b).

5.2. Representation Experiments. The experiment was
designed to evaluate the speed of convergence and the stabil-
ity of the results of different rotation representations during
training. Five rotation representations were selected for
comparison, which are Euler angles, axis angle, quaternions,
GS-constrained 6D vector, and SVD-constrained 9D vector.

We use the dataset provided in Section 5.1. The architec-
ture of the neural network is the single rotation estimation
module in Section 4.1. The dataset was regenerated 25 times
during the online training process, and each dataset was
trained for 30 epochs, for a total of 750 epochs. We trained
the neural network utilizing the Adam optimizer, with a
learning rate of 10−3, while the learning rate was decayed
using an exponential decay strategy with a decay rate of
0.998. The results of the experiment are shown in Figure 10.

Figure 13: Partial sample of Buddha statue.
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Figure 14: The figure shows the error of the Buddha data. After 50
rounds of training with the single module, 20 more rounds of
training are performed using the serial network.
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From the data in Table 1, we can draw the following
conclusions:

(i) After 750 iteration epochs of training, the minimum
values of the errors are listed in ascending order as
GS-6D, SVD-9D, Euler angles, axis angles, and qua-
ternions. The result of quaternions has the largest
error, and the GS-6D has the smallest error. The
maximum distance between the errors is 0.076
radians, which corresponds to 4.35

(ii) Figure 10(b) shows that after a period of training,
the differences between the results of various repre-
sentations will gradually become smaller, and even-
tually, all will converge to a more stable result.
According to the results of the 25th round, the qua-
ternions have the largest error, and GS-6D has the
smallest error. The maximum distance between the
errors is 0.056 radians, which corresponds to 3.21

(iii) As shown in Figure 10(c), the value of the variance
of the discontinuous representations is smaller,
while the variance of the continuous representations
with constraints is large. Representations of GS-6D
and SVD-9D were jittery and unstable during train-
ing. The training process for Euler angles, axis
angle, and quaternions is relatively smooth

5.3. Serial Network Experiments. The experiment was
designed to verify the effectiveness of the serial network in
terms of acceleration of convergence and improvement of
accuracy. Five rotation representations were also selected,
and each rotation representation was tested using the
single-module rotation estimation network and the serial
network. The experimental results of the two architectures
were then compared.

We use the dataset provided in Section 5.1. The dataset
was regenerated 25 times during the online training process,
and each dataset was trained for 30 epochs. The serial net-
work utilizes the results of the single-module rotation esti-
mation network from round 20. The parameters of the
neural network are selected from the set of data with the
lowest error in the 20th training round of the single module,
and then, the training is continued for 5 rounds to compare
the errors in rounds 20 to 25. We trained the neural network
utilizing the Adam optimizer, with a learning rate of 10−3,
while the learning rate was decayed using an exponential
decay strategy with a decay rate of 0.998.

As shown in Figure 11 and Table 2, the upper group of
lines represents the error of a single module, and the lower
group of lines represents the error of a serial network. The
error of the serial network decreases rapidly between rounds
20 and 21. After 5 rounds of training, the minimum error in
the serial network is SVD-9D, and the maximum error is
quaternions. Compared to single-module networks, the
reductions are all over 50%. In the 25th round, the mini-
mum error was 0.104 radians for the SVD-9D. The error is
reduced by 0.2368 radians compared to the single module,
which is 30.54% of the single module.

5.4. Stability Experiment. We train the neural network suffi-
ciently to verify the stability of the online training method
and also to verify the advantages of the serial network in
terms of accuracy by the final convergence results. The
experiment was designed to test the stability of online train-
ing, so instead of selecting all rotation representations, only
the rotation representation of SVD-9D was chosen as the
output of the neural network. On the other hand, we exper-
imentally compare the final convergence results using both
architectures (Section 4.3.1 and Section 4.3.2) as a way to
verify the advantages of serial networks in terms of accuracy.
The errors after training are illustrated in Figure 12.

After 115 iterations of the dataset, there was no overfit-
ting, and the results were very stable. The minimum value
for the single module of SVD-9D is 0.1453 radians, and
the minimum value for the series network is 0.0298 radians.
The error is reduced by 0.1155 radians, which is only 20.51%
of that of the single module. It is concluded that using a
serial network can converge quickly and obtain a highly
accurate and stable result.

5.5. Application in Buddha Statues

5.5.1. Buddha Statue Dataset. Samples in the Buddha statue
dataset come from the Huangze Temple in Guangyuan,
Sichuan (see Figure 13). The collected Buddha statue needs
to be manually rotated to the front. Since the point cloud
of the Buddha is different from the CAD data, the error is
relatively large, and the number is relatively small, so it is
more difficult to converge. In addition to verifying the algo-
rithm’s effectiveness in this paper, the experiment can also
be conducted to test the algorithm’s performance in an envi-
ronment with few samples and large errors.

The dataset for the current experiment is generated from
49 Buddha statues, which are divided into two groups: 42
point clouds are used to generate the training set, and the
other 7 point clouds are used to generate the testing set.
The experiment was trained using the online training
method. For the training set, five thousand samples with dif-
ferent orientations are generated. The point cloud of each
Buddha statue in the testing set generates ten different orien-
tations, and 70 samples of different orientations are gener-
ated in total.

5.5.2. Experimental Results. This experiment is designed to
verify the performance of the serial network in a real dataset.
Therefore, only the serial network is used for the training of
the neural network. It is more difficult to converge due to the
small number of Buddha statues and large errors. In this
experiment, the axis angle with less variance is selected as
the output of the neural network, and the number of itera-
tions should be increased as a way to obtain a more stable
training process and higher accuracy.

We use the dataset provided in Section 5.5.1. The archi-
tecture of the serial network in this experiment is the same as
in the previous experiments. During online training, each
generated dataset is of size 5000. The number of iteration
epochs for each dataset is 30. In the first stage of training,
50 rounds of dataset generation were performed, with a total
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data size of 25,000 and a total of 1500 iteration epochs of
training. We trained the neural network utilizing the Adam
optimizer, with a learning rate of 10−3, while the learning
rate was decayed using an exponential decay strategy with
a decay rate of 0.998. The experimental results are shown
in Figure 14.

A set of comparatively well-trained parameters with an
error of 0.387 radians from the training results of the first
stage is selected as the parameters of the serial network.
After another 20 rounds of training, the model has con-
verged. The error of the serial network decreases rapidly at
the beginning of training and then basically stabilizes after
five rounds of training. The minimum value of the error
for the single module is 0.4085 radians, and the minimum
value of the error for the series network is 0.2850 radians,
which is a reduction of 0.1235 radians, or 30.11%.

The current amount of Buddha data is small, so the
accuracy was not as high as that of the airplane dataset.
However, the advantages shown by the network are consis-
tent with the previous experiments, and it can be concluded
that the accuracy is bound to improve as the scan data
increases.

6. Discussion and Conclusion

6.1. Discussion

6.1.1. Significant Effectiveness of Serial Network. First, there
are two constraints in the serial network. One is that the
inputs and outputs between different modules are strictly
controlled, and the other is that the training goal of each
module is to try to recover the initial state. Both of these pro-
vide directions for the learning of neural networks.

Second, the distribution of the input data of the last
module changes considerably due to the multiple calls of
the rotation estimation module. When the error of a single
module is small, the input of the last module is almost close
to the point cloud of the original orientation, which is very
conducive to further convergence of the model.

6.1.2. Applicability of Online Training. Online training
methods are well suited when the dataset needs to be gener-
ated manually, and the problem to be solved is the regression
problem in supervised learning.

The prediction results of the regression problem are con-
tinuous values. Each time, the generated dataset can be con-
sidered the dataset with the same distribution as before but
composed of different samples, which prevents the overfit-
ting problem during training. In addition, the method uses
less storage space, allowing convergence results to achieve
high accuracy.

6.1.3. Summary of Rotation Representations. In this paper,
the reasons for the relatively poor performance of quater-
nions in discontinuous representations are analyzed. It is
concluded that the output dimensions of the neural network
and its orthogonality are thought to be strong prior knowl-
edge that can help with neural network training.

Continuous representations with constraints improve
accuracy, and unconstrained discontinuous representations

improve stability during training. We analyze the reasons
for the higher accuracy of continuous representations with
constraints. One reason is that the continuity of the repre-
sentations makes it easier for the neural network to learn.
Another reason is that constraints can influence the direc-
tion of parameter learning, allowing the neural network to
learn hidden laws easily. Further research is needed as to
the leading cause of the accuracy difference. All representa-
tions can be obtained with better results using the serial net-
works. When doing related projects, the appropriate
representation can be selected as the neural network’s output
according to the requirements.

The use of PointNet and MLP in our experiments allows
the point cloud to be mapped directly to the rotation repre-
sentation space. This approach, which does not construct an
intermediate template space, allows for a simpler model
architecture and has demonstrated its effectiveness from
experiments.

6.2. Conclusion. A systematic solution to the rotation estima-
tion problem was provided through a series of experiments
and summaries, and the research findings have been applied
to the restoration work of the Huangze Temple Grottoes in
Guangyuan, Sichuan, with expected results. First, we sum-
marize the properties of the representations in the neural
network and give recommendations for their selection. Sec-
ond, the method of two-point recovery of the initial orienta-
tion is proposed and applied to the generation of the dataset.
Finally, we use a serial network while using online training
to improve the convergence speed and accuracy and make
the training process more stable.
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