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Random deployment, the absence of central authority, and the autonomous nature of the network make wireless sensor networks
(WSNs) prone to security threats. Security, bandwidth, poor connectivity, intrusion, energy constraints, and other challenges are
critical and could affect the performance of the WSN while considering the energy-efficient and secure routing protocols in WSNs.
Security threats to WSNs are gradually being expanded. Thus, to improve the network’s performance, detection of anomalies
(malicious and suspicious nodes, redundant data, bad connections, etc.) is important. This paper is aimed at introducing the
malicious node detection algorithm based on the DBSCAN algorithm, which is a density-based unsupervised learning method
for enabling wireless sensor networks to be much more secure and reliable. The prime objective of this algorithm is to develop
a routing algorithm capable of detecting malicious nodes and having a prolonged network lifespan and higher stability period.
Clustering and classification are two well-known methods in the field of machine learning that can be successfully used in
various domains. Density-based clustering is a popular and extensively used approach in various domains. The DBSCAN is the
utmost popular and best-known density-based clustering algorithm and is capable of determining arbitrary-shaped clusters.
This paper addresses the two anomalies in the WSN, namely, spatial redundancy and malicious node identification. In this
article, an algorithm has been suggested to reduce redundant data transmission along with the identification of suspicious
nodes to conserve energy and to avoid falsification of data through malicious nodes. The analysis of simulation results and
comparison of other algorithms that are in the same class shows that the SDBMND performs significantly better than
EAMMH, TEEN, IC-ACO, and LEACH in dense networks.

1. Introduction

Modern communication requires secure and high-quality data
transmission. With the advancement of micro-electro-
mechanical systems, cheap and tiny sensor nodes (SNs), the
wireless sensor network has emerged as a widely used field
in various applications such as medical science, industry, agri-
culture, and environmental home applications [1]. In most
applications, the SNs have a vital role in decision-making;
hence, the quality of data and quick response are the prime
concerns in aWSN [2]. The presence of data that seems incon-

sistent with the rest of the data set is considered anomalous
data. Many anomaly detection and prevention-based tech-
niques have come into existence since the security threats to
WSN are increasing day by day. The advancement of anomaly
detection techniques is important in WSN as these networks
are characterised by constrained resources like limited energy,
limitedmemory, short communication range, poor connectiv-
ity, bandwidth, computation, and capability. Anomalous data
also referred to as outliers are unusual measurements [3, 4].

Anomaly detection is a crucial issue in WSN that
demands precise, effective, and timely data analysis to aid
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critical decision-making in various applications. In WSNs,
SNs are densely deployed; hence, there is a high likelihood
of sensing and transmitting redundant information. The
redundant data transmission affects the residual energy of
the SNs. Thus, it impacts the network performance as energy
is the prime constraint in WSN.

Redundancy means a supplement or replica of
resources that leads to similar data obtained from differ-
ent resources. In a wireless sensor network, redundancy
has a negative as well as a positive impact. To have reli-
able and quality data, redundancy plays a vital role. On
the other hand, duplicate data transmission and acquisi-
tion lead to speedy energy exhaustion [5]. A literature
survey reveals that a lot of effort is required to minimise
redundant data transmission to increase the lifespan of
WSN. Various redundancies, like spatial redundancy, tem-
poral redundancy, physical redundancy, and analytical
redundancy, have been addressed in a wireless sensor net-
work. In spatial redundancy, similar information has been
acquired from a different resource. In the case of a
densely deployed WSN, the SNs offer spatial redundancy,
which delivers a huge amount of redundant data [6]. In
this paper, we are considering the densely deployed
WSN; hence, spatial redundancy has been addressed. In
order to have an efficient routing protocol for a densely
deployed network, it is important to deal with the prob-
lem of spatial redundancy because it takes up a lot of
network resources and increases the amount of network
overhead.

WSNs are susceptible to various threats. It is very impor-
tant to identify and remove the compromised or malicious
nodes to avoid having falsified information or data being
introduced by the adversary through these SNs. A series of
threats, including buffer overflow, big mouth attack, and
DoS attack, may occur due to mischievous nodes in WSNs.
Since WSN has constrained working conditions and is vul-
nerable to various security threats, the malicious nodes
may impact the performance of the entire network. Hence,
the identification of these malicious nodes in WSN has
become a research hotspot [7, 8]. Existing routing algo-
rithms such as LEACH, EEAMH, TEEN, and IC-ACO
cannot handle malicious nodes or spatial redundancy.

In this paper, the three key issues: redundant data trans-
mission, identification of malicious nodes, and improvement
of network life span by selecting the optimal route, have
been addressed as prime objectives, which are the prime
concerns in the design of energy-efficient and secure routing
algorithms in WSN. The descriptions of the key contribu-
tions are as follows:

(1) Efforts have been made to develop a routing
algorithm capable of handling redundant data. The
DBSCAN method is applied to divide the network
area into low- and high-density cluster regions. The
nodes in a high-density area are prone to sense the
redundant information. In high-density regions,
efforts have been made to handle redundant infor-
mation. In low-density areas, critical information is
handled

(2) The malicious nodes have been identified based on
the temperature values. All the possible malicious
nodes will not be able to send the sensed data in
the next rounds. This will save energy and make
the data more secure and accurate

(3) Hence, since these two issues add extra overhead in
handling the redundancy and detection of malicious
nodes, they affect the lifespan of the network. Hence,
efforts have been made to increase the network
lifespan by simulating the behaviour of ants by
incorporating the ACO (ant colony optimization)
algorithm to route information in various clusters
from SNs to cluster heads (CHs) and from CHs to
sink node or base station (BS)

The rest of the paper is organised as follows. Section 2
talks about existing techniques in depth. Section 3 gives an
overview of the radio model used in the implementation,
and Section 4 talks about the SDBMND in depth. In Section
5, the simulation results have been discussed and the com-
parison of the SDBMND has been done with the TEEN,
EEAMH, IC-ACO, and LEACH algorithms. The perfor-
mance has been assessed based on various parameters.
Lastly, Section 6 concludes the research work and discusses
future work.

2. Literature Review and Related Work

Due to low-quality sensors, signal interference, unsupervised
nature, harsh environmental conditions, and other domi-
nant factors, sensors grieve with the anomaly in receiving
information.

A lot of energy is wasted in the processing of this anom-
alous and redundant information [9]. Thus, in a dense
network, detecting anomalies and malicious nodes, identify-
ing the appropriate CH, and selecting the best path can
significantly improve the routing algorithm’s performance.

Various hierarchical routing algorithms have been pro-
posed in the literature. However, the most well-known and
traditional routing method is LEACH, which is widely
employed by academics in their research. LEACH [10] is a
cluster-based hierarchical routing technique. CHs are used
to deliver processed data to the BS, and clusters are gener-
ated based on the strength of the received signal. Only such
CHs are used for transmission, which helps the network’s
nodes save energy. Data processing operations like aggrega-
tion and data fusion are done locally within the cluster.

The literature review reveals that the appropriate cluster
selection using fuzzy logic can enhance the performance of
the routing algorithm in WSN. Zadeh [11] introduces a nat-
ural extension of ordinary set theory and names it fuzzy set
theory. The literature survey also demonstrates that, using
fuzzy set theory, different classical problems can be turned
into their fuzzy equivalents, allowing them to be employed
more effectively in a variety of applications.

FMCHEL [12] is a homogeneous routing algorithm
based on fuzzy logic. All the SNs are homogeneous in
nature. This algorithm was developed for the scenario where
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the base station is positioned far away from the network
area. In this algorithm, in order to maximise the network
lifespan, fuzzy logic-based cluster CH selection is performed.
The FMCHEL is substantially more energy-efficient due to
the concept of selecting a master cluster head among the
selected CHs. The processed data can only be sent to BS by
the master cluster head. The master-cluster-head node
transfers the processed information to the BS. In CHEF
[13], the selection of CHs is done in a distributed manner.
The CHEF follows a fuzzy-based approach for the CH selec-
tion. While selecting the cluster heads, this algorithm also
guarantees that no two CHs should lie within r distance. In
CHEF, the node with the maximum energy and that is
locally optimum is chosen as CH.

Bandyopadhyay and Coyle [14] proposed EEHC as a
hierarchical clustering algorithm with K-steps. It is distrib-
uted in nature. This algorithm was made to solve the
problems of one-hop random selection routing protocols
like C-LEACH [15] and LEACH by adding multihop cluster
formation to the process.

Fathi [16] applied the base DBSCAN algorithm for the
formation of clusters, and cluster head selection is based
on two parameters, namely, distance and energy. The simu-
lation results demonstrate that as energy is saved in each
round, the total network lifespan is improved in comparison
to existing routing protocols.

In IC-ACO [17], a solution is proposed to implement
and design a routing algorithm that has the ability to avoid
random transmission. The deployment of SNs is random.
The ACO approach has been used for selecting the optimal
route for data transmission. The performance of the IC-
ACO is compared, and simulation results show that the
IC-ACO performs better in densely deployed networks and
is more energy-efficient in dense networks. Hence, it can
be successfully applied to densely deployed WSNs.

Abbasi and Younis [18]and Afsar and Tayarani-N [19]
compared and reviewed various algorithms and protocols.
Furthermore, some additional existing algorithms, like
FLOC [20], MOCA [21], PEGASIS [22], HEED [23, 24],
CCHs [25], EEDC [26], EEMC [27], CA-GA [28], DSCBA
[29], LMANET [30], LCM [31], P-SEP [32], are among the
latest work in the area of clustering.

TEEN [33] is a threshold-sensitive energy-efficient rout-
ing protocol. It is an improvement to the LEACH protocol.

The TEEN protocol introduces the ideas of “soft threshold”
(ST) and “hard threshold” (HT) to restrict the number of
data transmissions.

EAMMH [34] is a multihop, multipath energy-aware
algorithm. This algorithm works in two stages. A setup
phase followed by a steady-state phase is used for cluster for-
mation and data transmission. The user needs to provide the
number of nodes as input. After the node deployment, the
nodes execute the neighbor discovery algorithms to find
the neighbor nodes. The selected CHs broadcast the adver-
tisement message to all neighboring nodes, and after that,
cluster formation takes place within the fixed boundary.

3. Review of Existing Methodologies
Used for SDBMND

3.1. DBSCAN (Density-Based Spatial Clustering of
Applications with Noise). Clustering is an unsupervised learn-
ing technique that splits the data points into various particular
clusters or groups in such a way that data points that belong to
the same clusters will have similar properties and data points
in other clusters will have other properties. There are many
clustering algorithms based on different distance measures,
like affinity propagation, spectral clustering, mean-shift,
Gaussian mixture, and DBSCAN algorithms [35]. For a range
of different distributions, the DBSCAN algorithm also yields
more realistic results than k-means. The main concept of
density-based clustering, also known as unsupervised learning
methods, is to classify distinguished clusters in the data in such
a manner that clusters are separated from each other by con-
tiguous areas of high and low point density. DBSCAN is a
density-based algorithm in which clusters of different sizes
and shapes from a large amount of data can be identified,
which contains outliers and noise. The following two parame-
ters have been used in DBSCAN:

(1) MinPts: it is the minimum number of data points
grouped together to be considered dense

(2) Eps (ε): the distance used to trace the points in the
neighborhood of any point

These two parameters can be well explained with the
help of two concepts: density connectivity and density
reachability.

Reachability in terms of density finds a point to be reach-
able from another if it lies within an Eps distance from it.

Connectivity comprises transitivity-based chaining
approach to find out whether points are positioned in a par-
ticular cluster.

In the DBSCAN algorithm, three types of points have
been considered as seen in Figure 1 which are discussed
below.

Core: it is a point that has at least n points within a dis-
tance x from itself.

Border: it is a point that has at least one core point at a
distance x.

Noise: it is neither a core nor a border point. This point
has fewer than x points within a distance of x from itself.

Core

MinPts = 3

Border

ww

Noise

𝜀

Figure 1: Illustration of DBSCAN points.

3Wireless Communications and Mobile Computing



3.2. Ant Colony Optimization. It is a probabilistic method for
answering computational problems that can be condensed to
find the best route through graphs. These artificial ants are
stimulated by the behaviour of real ants. Communication
is based on the pheromone lying behaviour of biological
ants. Artificial ants trace the optimal solution by traversing
through the parameter space and by signifying all promising
answers. Pheromones have been laid down by the real ants
and direct each other to a final goal by traveling around
within the environment.

The ACO algorithm was proposed in 1992 by Marco
Dorigo [36]. The algorithm was designed with the objective
to discover the optimal route in a graph entirely based on
the behaviour of ants seeking a route between the food and
their colony. This concept has now been expanded to
unravel a broad range of numerical problems, which further
causes various or numerous emerging fields portraying the
numerous characteristics of the behaviour of ants.

In this algorithm, an ant is considered as a computa-
tional agent that tries to locate an optimal solution to a given
optimization problem. To apply this approach to optimiza-
tion issues, it must first be transformed into the problem
of finding the shortest route [37, 38]. In the first step, every
ant stochastically creates a partial solution. In the second
step, the route identified by other ants is matched. Finally,
on each edge, the pheromone levels get updated.

3.3. Energy Model Analysis. A simple energy model proposed
by Heinzelman et al. is being cast off in this algorithm. The
amplifier used for electronic receiving and transmission is
displayed in Figure 2. Here, the power attenuation is based
on the distance between the receiver and transmitter.

The energy dissipation for transmission is calculated as

ETx k, dð Þ = Eelec ∗ k + ∈f s ∗ k ∗ d2 if d < d0

= Eelec ∗ k + ∈mp ∗ k ∗ d4 if d ≥ d0:
ð1Þ

The energy dissipation on receiving a k-bit data packet is

ERx kð Þ = Eelec ∗ k: ð2Þ

Eelec is the parameters for energy dissipation.
k is the packet size.
d denotes the distance between two nodes.
Efs and Emp are transmitter amplifier characteristics.

3.4. Combinatorics-Based Feature Analysis. This section dis-
cusses the feature analysis based on the principle of combi-
natorics that helps in determining the global dynamics of
different parameters for malicious nodes in densely deployed
WSN. The combinatorial basic can be written as

xð Þn = Pn
k =

n!
n − kð Þ! : ð3Þ

The selection of parameter P can be done on the basis of
k features from a set of n nodes and can be written as nk
combination without repetition that can be written as

n

k

 !
= Cn

k =
n!

k! n − kð Þ! : ð4Þ

K bit packet

Receive
electronics

K bit packet

d

Transmit
electronics

Tx amplifier

ETX (d)

Eelec 
⁎ k

Eelec 
⁎k

𝜀amp 
⁎k ⁎d2

ERx

Figure 2: Energy dissipation diagram.

Table 1: Fuzzy sets and input variables.

S. no. Input Fuzzy sets

1 SN’s residual energy Low Average High

2 SN’s distance from BS Near Medium Far
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For selecting k features from a set of n nodes, each node
can be tested more than once. In this case, the different
number of combinations can be

f nk =
n + k − 1

k

 !
=

n + k − 1ð Þ!
k! n − 1ð Þ! : ð5Þ

In equation (5), f nk can provide many integer solutions
that can be written as

= p1 + p2 + p3+⋯+pn = k, where pi ≥ 0 i ∈ 1, n
� �

: ð6Þ

To deduce the prediction, value k features so that the

corresponding vector may differ in
n

k

 !
ways [39]. The

subcomponent can differ in 2k ways that can be equal to 2

n − k ways. With the help of permutation and combination
with a repetition formula, after multiplying

n

k

 !
∙2k∙2n−k =

n

k

 !
∙2n: ð7Þ

According to the inclusion-exclusion principle, which is
also known as the sieve principle,

[n
i=1

Ci

�����
����� = 〠

n

i=1
−1ð Þi−1 〠

I⊆1,n
Ij j=i

⋀
j∈I
Cj

�����
�����: ð8Þ

0

0

0.5

1

10 20 30 40
Input variable ‘‘Distance’’

Membership function plots

MediumNear
FIS variables

Distance

Energy

Chance

Far

50 60 70

Figure 3: Membership function editor_distance.

0

0

0.5

1

0.05
Input variable ‘‘Distance’’

Membership function plots

MediumLow
FIS variables

Distance

Energy

Chance

High

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 4: Membership function editor_residual energy.
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The above equation (8) can be restructured for two
parameters (X) and Y , which can be generalised as

X ∪ Yj j = Xj j + Yj j − X ∩ Yj j: ð9Þ

Equation (8) can now be extended as

[n
i=1

Ci

�����
����� = 〠

n

i=1
−1ð Þi−1 〠

I⊆1,n
Ij j=i

CIj j = 〠
n

i=1
−1ð Þi−1 n!

i!
=〠

i=1

−1ð Þi−1
i!

:

ð10Þ

And, from equations (8) and (10), it can be deduced as

C0j j = Cj j −
[n
i=1

Ci

�����
����� = n!−n!〠

n

i=1

−1ð Þi−1
i!

= n!〠
n

i=0

−1ð Þi
i!

: ð11Þ

Lastly,

n!〠
n

i=0

−1ð Þi
i!

=
n!
e

� �
: ð12Þ

The problems associated with the detection of certain
diseases can be better identified with the help of combinator-
ics. This also helps in finding combinations of parameters in
various features of certain components for densely deployed
WSN.

4. Detailed Discussion for SDBMND

The proposed hierarchical unsupervised clustering-based
routing algorithm is discussed in this section. The algorithm
has four phases. The first phase includes the separation of
densely deployed and sparsely deployed sensor network
areas using the DBSCAN algorithm and the selection of
CH nodes. The second phase includes the identification of
malicious nodes and the removal of those malicious nodes
from the network in order to avoid the introduction of falsi-
fied information within the WSN. In the third phase, sleep
management is applied in order to avoid spatial redundancy.
Sleep management has been incorporated to avoid redun-
dant data transmission in a densely deployed network. The

fourth step is the transmission phase, in which data is sent
from node to CHs and from CHs to BS in an optimized
manner based on ant behaviour using ACO algorithm.

4.1. The First Phase. In this phase, the setup of the network
and the separation of densely and sparsely deployed sensor
network areas have been completed. The network is ran-
domly deployed, so some of the network areas are densely
deployed and some of the network areas are sparsely
deployed. Sleep management is applied to avoid redundant
transmission and to save the energy of SNs in the transmis-
sion of similar data in densely deployed networks, but at the
same time, we cannot overlook the SNs in sparsely deployed
networks because they are critical and cover the information
of those areas.

4.2. Separation of Sparse and Dense Network Regions Using
the DBSCAN Algorithm and Selection of CHs Based on
Fuzzy Logic. Like other clustering approaches, DBSCAN is
a density-based unsupervised learning method to discover
data proximity. The Euclidean distance has been employed
to calculate the distance in this approach. Clustering is done
using two parameters: Eps and MinPts. Eps is the neighbor-
hood’s maximum radius, and MinPts is the cluster’s
minimal number of SNs in a given area [40]. This algorithm
determines the clusters as low-point and high-point density
zones. It has the detection capability of an arbitrarily shaped
cluster set along with the ability to locate the noisy data. It is
difficult to estimate the proper value of Eps in the case of
DBSCAN. If we select a large value of Eps, then finding the
noisy data point is difficult and the number of clusters
formed is also lower. If we select the smaller value for Eps,
a large number of clusters will be formed, and many points
will be considered noisy. The DBSCAN algorithm is used
to separate the low-density and high-density areas in this
phase.

4.3. Fuzzy Logic-Based CH Selection. In this phase, the CHs
are chosen using a fuzzy logic-based approach. For the iden-
tification of optimal CHs, the distance between SNs and the
BS and residual energy was evaluated as input factors [41].
The network plots in a range of 100 ∗ 100, where the value
of the distance could be anywhere from 0 to 75. The distance
could be represented as three fuzzy sets: far, medium, and
near. Table 1 represents the fuzzy sets for energy and
distance [42]. The membership function for distance and
residual energy is represented in Figures 3 and 4. The pro-
posed approach is homogeneous, so all the SNs have similar
initial energy. Hence, the value of residual energy could lie
anywhere between 0 and 0.5, as shown in Figure 4. The
Mamdani rule-based model is used by the SNs for deci-
sion-making, and existing fuzzy if-then rules have been used
in the selection of the neighboring node as chances [43]. The
rule base and its representation are given below in Table 2.

When the data is reformed to the membership functions
and additional functions are reassigned to the fuzzy
inference, the fuzzy rule base [44, 45] copes with these
linguistic factors to provide the output.

Table 2: Inference rules.

S. no. Distance Energy Chance

1 Near Low Low

2 Near Average High

3 Near High High

4 Medium Low Low

5 Medium Average High

6 Medium High High

7 Far Low Low

8 Far Average Low

9 Far High High
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4.4. Second Phase (the Identification of Malicious Nodes). In
this phase, every SN senses the temperature value and has
an initial weight value. Initially, the value of weight is set
to 1 for all the SNs. Every node transmits the weight value
and temperature value to the CHs [46]. To identify the
malicious node, the optimum temperature value must be
determined. It could be calculated using

Topt =
∑n

i=1wi ∗ Tempið Þ
∑n

i=1wiÞ
: ð13Þ

Here, Topt is the weighted average temperature, i.e.,
initially all the nodes have a weight value of 1.

There could be some events, and because of those events,
the temperature of SNs could be increased or decreased, so
there would be temperature variation. To find the range
for trusted optimal temperature ðTopt + varÞ < Topt
trusted > ðTopt‐varÞ, some variation is allowed. If any node
transmits the temperature value within this limit, then that
node is considered a normal node. Otherwise, it would be

considered a probable malicious node and the weight of
those SNs would get updated with some fine as

wi =wi − β: ð14Þ

Otherwise, values will remain the same. β is fine or
penalty.

Separation of high dense and low dense cluster regions using DBSCAN algorithm

True 

False 

ACO path

Initialization of parameters

End 

Passing fuzzy input variables to FIS

Ant colony optimized route for each SN to their respective CHs is
identified within the dense cluster

The SN transmits the information to the cluster head via the ant
colony path which then transfers it to the sink.

The crtical node within the
sparse cluster transmit data
directly to BS or to the CH

whichever is nearer

Selection of cluster heads based on the output chance

Dense cluster with CHs

Identification of malicious node

Minimization of spatial redundancy using sleep management

False 

True 

Iterations <=
MaxRounds

Figure 5: Flowchart for the proposed approach.

Table 3: Parameter values.

Simulation parameters Values

The BS’s XYð Þ position 50, 50ð Þ
Maximum rounds 3000

ETX = ERX 50 ∗ 0:000000001 joules

Emp 0:0013 ∗ 0:000000000001 joules

Efs 10 ∗ 0:000000000001 joules

Initial energy 0.5 joules

Data aggregation energy (EDA) 5 ∗ 0:000000001 joules
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This value keeps on being updated, and if this value goes
below some threshold value (α), the node is considered a
malicious node. The node will not participate further and
be declared as malicious node.

4.5. Third Phase (Sleep Management to Avoid Redundant
Data Transmission). The nodes are partitioned into low-
and high-density regions using the DBSCAN algorithm. To
avoid the transmission of false or wrong information, the
malicious nodes identified in phase two will not be permit-
ted to transmit the information. Since the nodes in the
highly dense cluster tend to transmit the redundant infor-
mation to the CHs, only 5% of the nodes with maximum
energy are permitted to transfer the information, and the
rest of the SNs will be in sleep mode. Only those 5% of nodes
will sense the information, process the information, and be
allowed to transmit that information to CHs. Hence, there
are two advantages to using sleep management. First, the
redundant information will not be transmitted; thus, the
energy of nodes in sensing, processing, and transmission will
be saved [47]. The same applies to CHs as well. The energy

of CHs is saved in the processing of redundant information
received from all the nodes. The second advantage is that,
since the energy of SNs is saved, they will remain alive for
a longer period of time. This means the network will last
longer as a whole.

4.6. Fourth Phase (the Transmission Phase Based on ACO).
After the partitioning of the network into low- and high-
density regions, the identification of malicious nodes, and
the minimisation of redundant data transmission, the
routing of data to BS takes place in the fourth phase. Since,
in high-density areas, we have CHs, so they will transfer
the processed information to the BS. In low-density areas,
all the nodes are critical since they are sparse and they do
not tend to sense redundant information. Hence, the infor-
mation sensed by these nodes is critical and needs to be
sensed, processed, and transmitted directly to the BS or
CHs, whichever is nearer. In this phase, we applied the
ACO algorithm to discover the best route for the transmis-
sion of data from SNs to CHs and CHs to BS in high-
density regions. In this phase, the critical SNs also transmit
the data to the BS in low-density regions.

4.7. The Emerging Solution for ACO-Based Routing. Infor-
mation transmission within the network took place in this
phase. The ACO algorithm is used to determine the best

0

10
20
30
40
50
60
70
80
90

20 40 60 80 100

DBSCAN clustering (𝜀 = 5, MinPts = 3)

Noise
Cluster #1

Cluster #2
Cluster #3

Figure 6: Formation of the cluster with 100 SNs.
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0

100

10 20 30 40 50 60 70 80 900 100

Figure 7: Selection of CH with 100 SNs.

Table 4: Round values at which the first node dies for LEACH, TEEN, EAMMH, IC-ACO, and SDBMND.

FND_round values LEACH TEEN EAMMH IC-ACO SDBMND

FND_round value with 100 SNs 436 452 370 930 1570

FND_round value with 200 SNs 222 378 203 948 1620

FND_round value with 300 SNs 133 590 145 962 1690

Table 5: Improvement in stability period in SDBMND over LEACH, TEEN, EAMMH, and IC-ACO.

Description
An improvement over LEACH

in %
An improvement over

TEEN in %
An improvement over

EAMMH in %
An improvement over IC-

ACO in %

With SNs:
100

260 247 324 69

With SNs:
200

629 328 698 71

With SNs:
100

1170 186 1065 76
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path between the SNs and CHs. The following stages are
used to determine the best path between SNs and CHs:

(A) At each node, a forward ant is introduced

(B) To get to specific CHs, all ants practice the interme-
diate SNs with a specific goal

(C) The ants take a probabilistic approach to determine
the next node to be navigated. The heuristic and
pheromone data are used to form this probabilistic
attitude. The probability is expressed as

Pij =
τij
� �α1 η j

� �β1
∑j∈N τij

� �α1 ηj

� �β1 , ð15Þ

where dij is the distance between the CH and SNi and τij
represents the pheromone information; it is calculated as

τij =
1
dij

: ð16Þ

ηj signifies the heuristic information, it denotes the
node’s energy, and it is figured as

η j =
E0 − Eresidual
∑kϵNEk

, ð17Þ

where E0 is the initial energy and Eresidual is the residual
energy. The α1 and β1 parameters aid in amending the
relative weight of the pheromone trail and heuristic
individually.

(D) An SN with maximum probability is selected as a
succeeding hop to transfer the information to its
allied CHs

4.8. Steps of the SDBMND

Step 1. Create a 100 ∗ 100 network area with n ð100,200,300Þ
nodes.

Step 2. As the nodes are randomly deployed, some of the
nodes are densely deployed (highly dense) and some are
sparsely deployed (low density). The highly dense areas
and low-dense areas are separated using the DBSCAN
algorithm.
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Figure 10: Formation of the cluster with 300 SNs.
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Figure 8: Formation of the cluster with 200 SNs.
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Step 3. In a densely populated area, there is a proclivity to
detect similar information (redundant information, one of
the anomalies). In low-density areas, nodes are sparse and
are considered critical nodes. With the help of two fuzzy
input parameters, the CHs have been identified in a high-
density region. All the nodes in low-density regions are
classified as “critical nodes.”

Step 4. Every node senses the temperature value from its sur-
roundings and has an initial weight value. Initially, the
weight is 1 for all. Every node transmits the weight value
and temperature value to the CH. Using equation (13), the
optimum value of temperature has to be calculated to find
the malicious node. There could be some events, and
because of those events, the temperature of nodes could be

increased or decreased, so there would be temperature vari-
ation. To find the range for trusted optimal temperature
(Topt+var) (Topt-var), some variation is allowed. If any
node transmits the temperature value within this limit, then
that node is considered a normal node. Otherwise, it would
be considered a probable malicious node and the weight of
the nodes would be updated with some fine using equation
(14). Otherwise, values will remain the same.

This value keeps on being updated, and if this value goes
below some threshold value (α), the node is considered a
malicious node. The node will not participate further and
be declared a malicious node.

Step 5. As a result of being close together and being in a
dense cluster, some of the nodes tend to sense redundant
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Figure 11: Number of SNs alive at different rounds (SNs: 100).
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data. The nodes in the dense cluster follow the sleep
management.

Step 6. Routing of data through ACO algorithm within the
dense cluster has been done.

Step 7. The data will be sent straight from the critical node to
the BS or to the nearest CH, whichever is closer to the node.

Figure 5 below shows the flowchart for the proposed
algorithm.

5. Simulation Results and Analysis

The 100, 200, and 300 SNs are randomly deployed in the
100 ∗ 100 simulation environment. The performance of the
SDBMND is compared with four existing protocols, namely,
EAMMH, TEEN, IC-ACO, and LEACH, in a dense environ-
ment. Based on two parameters, namely, the stability period
and number of packets transmitted by SNs, the performance
of EAMMH, LEACH, IC-ACO, TEEN, and the SDBMND is
compared. Table 3 lists the simulation parameters.

Two parameters are used in this performance analysis:
the stable region and the number of data packets that are
sent. Both the parameters are described below.

(1) The stable region is the region within which all the
SNs are alive

(2) The number of packets transmitted by the SNs

Simulation results reveal that in comparison to
EAMMH, TEEN, LEACH, and IC-ACO, the proposed
approach has an improvement in the stability period as well
as in the overall network lifetime of the networks, and it is
also found to be superior in terms of energy utilisation when

we compared it with the TEEN, EAMMH, IC-ACO, and
LEACH. Table 4 indicates the round value until all the nodes
are alive in the SDBMND, IC-ACO, TEEN, EAMMH, and
LEACH with 100, 200, and 300 SNs. Table 4 shows the value
of the round at which the first node dies for LEACH, TEEN,
EAMMH, IC-ACO, and SDBMND, and it could be seen that
SDBMND has the highest value of all in all the cases, i.e., 100
SNs, 200 SNs, and 300 SNs. A stability period could be
calculated from the region within which all the SNs are alive.
It could be seen clearly that the SDBMND has the highest
stability period among all. Table 5 shows the improvement
in stability period in SDBMND over LEACH, TEEN,
EAMMH, and IC-ACO. The IC-ACO is specifically
designed for dense network and it could be seen that
SDBMND has improvement of 69%, 71%, and 76% over
IC-ACO algorithm in case of 100, 200, and 300 SNs.

Figures 6 and 7 shows the cluster formation and the
selection of CHs with 100 SNs. Those nodes which are not
part of any cluster are considered critical nodes. Figures 8
and 9 show the cluster formation and selection of CHs with
200 SNs. Figure 10 shows the formation of the cluster when
the number of nodes is 300. Hence, on increasing SNs, the
SDBMND performs much better when the network is dense.

From Figure 11, all the SNs alive at various rounds can
be seen, which specifies the network lifetime when 100 nodes
are installed. It is clear that the suggested algorithm’s perfor-
mance is much better as compared to EAMMH, TEEN, IC-
ACO, and LEACH. In LEACH, all the nodes are alive till 436
rounds, in IC-ACO till 930 rounds, in TEEN till 396 rounds,
in EAMMH till 370 rounds, and till 1570 in the SDBMND,
which illustrates the substantial progress in the stable region.

Figure 12 portrays the total alive SNs at different rounds,
which specifies the network lifetime when the network is
much dense, as 200 nodes are installed. In dense environ-
ments, the SDBMND outperforms the TEEN, EAMMH,
IC-ACO, and LEACH, as shown in Figure 12. In the LEACH
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protocol, all nodes stay alive until 222 rounds, 948 rounds in
IC-ACO, 378 rounds in TEEN, 278 rounds in EAMMH, and
1620 rounds in the suggested algorithm. This shows that the
LEACH protocol is less effective in dense networks, but the
IC-ACO algorithm significantly improves its performance.
However, SDBMND performed better than IC-ACO.

Figure 13 portrays the total alive SNs at different rounds,
which specifies the network lifetime when the network is
much dense, as 300 nodes are installed. Figure 13 illustrates
that the SDBMND performs much better than IC-ACO and
LEACH in dense environments. In the LEACH protocol, all
nodes stay alive till 133 rounds, till 962 rounds in IC-ACO,
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till 590 rounds in TEEN, till 120 rounds in EAMMH, and till
1690 in the suggested algorithm. The LEACH protocol’s
performance declined in a dense network, but the perfor-
mance of the IC-ACO algorithm was significantly improved,
whereas the SDBMND algorithm performed better than IC-
ACO.

Figure 14 shows the data packets transmitted to the BS
with 100 wireless SNs in the network. It could be seen that
even though an effort has been made to avoid the transmis-
sion of redundant information, the total data packets
received at the base station have increased. The SDBMND
has a higher network lifetime in comparison to the LEACH,
TEEN, EAMMH, and IC-ACO protocols.

Figure 15 shows the data packets acquired by the BS
when 200 SNs are installed in the WSN. The figure shows
that the SDBMND algorithm transmits more data packets
to the BS than the existing TEEN, EAMMH, IC-ACO, and
LEACH algorithms in a dense network.

Figure 16 displays the data packets acquired by the BS
when 300 SNs are installed in the WSN. From the figure, it
is evident that in the SDBMND the total data packets trans-
mitted to the BS are higher compared to the existing TEEN,
EAMMH, IC-ACO, and LEACH algorithms in a dense
network.

Simulation results have the following conclusions.
SDBMND is much more stable than the TEEN,

EAMMH, IC-ACO, and LEACH protocols when used in a
densely deployed WSN.

The number of data packets transmitted has increased
significantly for a similar network configuration.

6. Conclusion

Identification of malicious nodes, finding the optimal route,
cluster formation, and processing of redundant information

are some of the critical key problems in WSN. To extend the
network’s life span in densely deployed WSNs, the proposed
study intends to save energy by avoiding redundant data
transmission and identifying and deleting malicious nodes.
When SNs are positioned in close proximity, there is a high
probability of redundant data transmission. It is perceived
that the SNs are typically positioned in close proximity in
a dense network and are used to transfer redundant
information; hence, energy is wasted in processing that
redundant information. This approach is excellent for usage
in a dense network since it avoids duplicate data transmis-
sion by employing the DBSCAN algorithm to separate
low- and high-density regions, as well as proper CH selec-
tion using fuzzy logic, malicious node identification, and
sleep cycle management. In the SDBMND, the malicious
nodes have been identified to make this algorithm perform
much better so that we can avoid the malicious information
being processed by the BS and more accurate information
can be received by the base station. The algorithm is
designed to implement a secure routing algorithm that is
competent in terms of stability period and prolonged
network lifespan in a densely deployed network as compared
to existing well-known algorithms like LEACH, TEEN,
EEMAH, and IC-ACO, and simulation results show that
the performance of the SDBMND is significantly better than
the existing protocols, which makes it suitable to be used in a
dense network. The IC-ACO algorithm is specifically
designed for dense wireless sensor networks, but SDBMND
shows 69%, 71%, and 76% improvements over IC-ACO with
100, 200, and 300 SNs, respectively. In the proposed work,
all the SNs are homogeneous, but in the future, heteroge-
neous nodes could be considered. As a future scope, the size
of the network could also be expanded to access the scalabil-
ity of the proposed algorithm. In the proposed work, the
temperature has been taken as a parameter to check the
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malicious node. However, in the future, more parameters
could be added to find out the probable malicious node.

Data Availability

The code has been implemented using MATLAB. The
MATLAB code for the proposed work is available.
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