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The traditional multi-subband radar signal fusion method based on pole information fits nonlinear signals via linear models. It is
very important to accurately estimate the order of the pole model, as the wrong order will lead to errors in the resulting fusion
signal. In the case of low signal-to-noise ratio (SNR), it is difficult to obtain accurate pole values. When a noise suppression
method is included in the algorithm, the influence of noise on the pole order may be effectively avoided. However, traditional
methods have many complex links, and only a few samples can be tested each time. Also, approximating a linear model onto a
nonlinear signal will inevitably have errors. Therefore, this paper proposes a method based on the deep neural network (DNN)
that applies nonlinear fitting of deep learning to complete the fusion process. The multi-subband distance envelopes are input
into the DNN, and the fusion full-band distance envelopes are obtained as the output. Using DNN for subband fusion could

improve the radar range resolution and obtain high-resolution one-dimensional range profiles.

1. Introduction

The essence of multi-subband fusion is to extrapolate and
predict the vacant frequency band between the high and
low subbands. Traditional multiband fusion methods can
be divided into two categories. The first category is of non-
parametric methods that do not require prior information
about the target. Larsson et al. proposed the magnification
gap data amplitude and phase estimation method [1] that
uses the least squares method to iteratively estimate the
unknown spectrum. Simulation and measured data confirm
the effectiveness of the method, yet improper initialization
may cause the method to fall into a local optimum. Tian
et al. modeled the phase deviation of different radars as lin-
ear and constant phases [2] using all-phase fast Fourier
transform (apFFT) to perform correlation processing on
pulse compressed images. However, pulse compression
using apFFT loses the initial phase information of the signal
and can only display within a small angle range. Upon large
angular phase difference, the crossrange window phenome-
non occurs, causing estimation errors.

The second category is of parametric methods that
establish a parameterized model and solve related parame-
ters. Compared with nonparametric methods, parametric
methods use rich prior information and perform superiorly.
According to the adopted model, these methods can be
divided into two subcategories. One of them is a fusion
method based on the all-pole model proposed by Cuomo
et al. [3] that builds linear models to predict signals. The
model order is used to determine the number of poles, and
the root-MUSIC and ordinary least squares methods are
used to obtain pole estimates. Among them, only the poles
closest to the unit circle are considered. The attenuation
index and the relationship between the model order reduc-
tion method and the all-pole model show that these poles
deviate from the unit circle in varying degrees due to the
introduction of attenuation terms. Therefore, pole selection
using root-MUSIC is not robust. Ideal results may be
achieved when the signal-to-noise ratio (SNR) is very high.
When the SNR is low, however, interference poles that orig-
inally deviate from the unit circle may be closer to the unit
circle than the real poles, resulting in inaccurate pole
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selection. Zou et al. proposed a matrix beam method to
resolve the disadvantages of using root-MUSIC to determine
the influence of noise on the poles, as well as a noise suppres-
sion method [4]. However, the fundamental disadvantage of
the all-pole model cannot be remedied. For example, when
the power function model has many points, the model
approaches either infinity or zero at the end of the extrapo-
lated data because the power is too large. Although the all-
pole model can express the signal formula, the errors in the
linear model cannot be fitted to the signal perfectly.

With the development of deep learning, it is being applied
to radar high-resolution imaging. Orr et al. used deep neural
network (DNN) to apply high-resolution radar to autono-
mous driving [5]. In modern battlefields, however, large band-
width signals are often required. Niu et al. used DNN to
combine synthetic aperture radar (SAR) images with electro-
magnetic (EM) reflection models to simulate target images at
different imaging angles [6]. It is worth mentioning that there
are limitations in obtaining real SAR images. Similarly, DNN
is also widely used in the field of direction-of-arrival (DOA)
estimation. Tang et al. combined DNN with the DOA estima-
tion of millimeter-wave radar to achieve multitarget estima-
tion [7]. Amrani et al. proposed a robust feature extraction
method for SAR image target classification by adaptively fus-
ing effective features from different CNN layers [8]. Amrani
et al. proposed an efficient feature extraction and classification
algorithm based on a visual saliency model [9]. Amrani and
Jiang addressed the problem of SAR target classification by
proposing a feature extraction method that takes advantage
of exploiting the extracted deep features from CNNs on SAR
images to introduce more powerful discriminative features
and robust representation ability for them [10]. In addition,
to follow the Nyquist sampling theorem, these methods often
require a sampling frequency that is at least twice the band-
width when sampling. Therefore, the use of DNN for large-
bandwidth signal fusion of multi-subband signals will have a
wide range of applications in modern battlefields.

Theoretically, the baseband signal can be obtained from
the chirp echo signal after down-conversion and dechirp
processing. Inverse discrete Fourier transform (IDFT) of
the baseband signal is used to obtain the distance envelope
of the target scattering point. DNN is suitable for high-
resolution processing of target distance information, which
can be obtained through the accumulated distance envelope
information of each subband.

The principal contributions of this paper can be summa-
rized as follows:

(1) We propose a multi-subband fusion algorithm based
on DNN. In this study, the accumulation of the dis-
tance envelope of the multi-subband signal is input
into the DNN, and the distance envelope of the syn-
thesized broadband signal under high SNR is used as
the label such that a high SNR range envelope of the
synthesized wideband signal within the training
range can be obtained

(2) Compared with the traditional all-pole model and
noise suppression method, DNN avoids the power
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FiGure 1: Flowchart of the all-pole model.

function error caused by the characteristics of the
formula of the pole model and solves the inherent
errors of linear model fitting nonlinear signals. Sim-
ilarly, the inaccurate relationship between the pole
and the unit circle caused by the root-MUSIC algo-
rithm when the SNR is low is also resolved
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FIGURE 2: Schematic diagram of multi-subband signals.
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FIGURE 3: Singular value of main diagonal of the Hankel matrix before noise reduction.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the traditional signal fusion method, Section
3 describes the noise suppression method, Section 4 dis-
cusses the proposed algorithm and experimental results;
and finally, Section 5 concludes the paper by summarizing
the proposed work.

2. The Traditional Signal Fusion Method

Cuomo et al. proposed to use the pole information to coher-
ently process and fuse the subbands with a linear model.
Below is a flowchart to represent the all-pole model predic-
tion algorithm (Figure 1).

Consider the following formula (1) where a chirp echo
signal is used as an example.

so(t) = iA exp {jZn[fc(t—Ti) + g(t—ri)z] } (1)

i=1

Here, f, represents the signal carrier frequency; m is the
number of scattering points; ¢t is time; K is the frequency
modulation, which can be determined by the ratio of signal
bandwidth, B, to time width, T,; and 7, is the delay of the i
th scattering point, which is obtained by the ratio of twice
the distance, R, to the speed of light, c.
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The echo signal is multiplied by the basic frequency sig-
nal shown in formula (2) for defrequency modulation. This
process is called down-conversion.

s.(1) = exp (~j2nf ). 2)

The baseband signal of the radar echo signal can be
defrequency-modulated by multiplying with formula (3)
after down-conversion.

si(t) = exp (—jKnt?). (3)

Thus, the baseband signal can be considered as the accu-
mulation of single-frequency signals. The baseband signal
can be expressed in the form shown in the following formula:

s(t) =so(t) 57, (t) - sk (1)

= Y Aexp [jr(Kt? - 2f,1,)] - exp (-j2nKr;t)
i=1
= iKl - exp (—jZHKTiﬁ),
i=1 fs (4)

iK . {exp <—j2n‘ri flﬂ )

K, =Aexp [jn(Kt-2f1)] (n=0,1,--,N-1).

s(n)

Here, N represents the number of baseband signal points,
which can be obtained from the product of the sampling fre-
quency, f, and the time width, T,.

The all-pole model expresses the baseband signal as a
linear model as shown in formula (5). Then, the vacant sub-
band is predicted by calculating the pole point parameters.
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The schematic diagram of the multi-subband signal is shown Here, M, (n) is the all-pole estimate; P, is the number
in Figure 2. of poles, obtained according to Akaike information crite-
rion (AIC) and the minimum description length (MDL),
Py and also expressed as the number of scattering points; ¢,
— n — . . . .
My(n)= Y ap", n=0,1,--,N-1, is the signal phase; a, is the amplitude and phase coeffi-

k=1

a, = A exp [jn(K‘L’,-2 =2f 1;)] = A exp (jy),

pe=exp (o

fs

)

cient of the poles; and p, is the pole value of the model.

(5) Regarding the three elements constructing a signal—am-
plitude, frequency, and phase—a; represents the amplitude
and phase coefficient of the signal, and p; can solve for the
frequency of a single-frequency signal.
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The core of the algorithm is to construct a Hankel matrix
for each subband after coherence. Then, the Hankel matrix
is combined into a forward prediction matrix. Singular value
decomposition is performed on the forward prediction
matrix, from which the model order can be obtained from
the main diagonal singular value. Subsequently, the pole
value of the model is calculated according to the root-
MUSIC algorithm. The pole point amplitude coeflicient is
then determined by substituting the pole point value into
the least squares method. Finally, the vacant subband is esti-
mated according to formula (5).

Multi-subband signal fusion is aimed at improving radar
distance profiles. However, the model order of the tradi-
tional all-pole model algorithm needs to be determined
according to the singular values of the main diagonal of
the Hankel matrix constructed by the signal. When the
SNR is low, the singular value curve gradually tends to be
smooth as shown in Figure 3; this impacts the accuracy of
the model.

The smoothing of the singular values of the main diago-
nal results in inaccurate determination of poles, as shown in
Figure 4. The number of poles of a signal is different under
low SNR, which has a great impact on the accuracy of the
all-pole model.

Therefore, the traditional all-pole model has good per-
formance in a high-SNR environment. However, it has too
many shortcomings in its use in complex electromagnetic
environments.

3. The Noise Suppression Method

A noise suppression method combining the singular values
of the Hankel matrix is proposed in this section by process-
ing the main diagonal values to suppress noise and improve
the accuracy of the model.

Singular value decomposition is performed on the Han-
kel matrix, obtaining the following formula:

H=UxSx V1. (6)

Here, U and V are unitary matrices, V¥ is the conjugate
transpose of V, and § is the singular value matrix.

The main diagonal singular value is usually decreasing,
and its value is expressed as a signal component. According
to the model order, the smaller value represents the noise
component, and the larger one represents the target compo-
nent. The noise component can be set to a smaller value or
zero to achieve noise suppression. As such, a new diagonal
singular value S is obtained. Then, the new Hankel matrix

H' is reconstructed as in the following formula:

s o
H =Ux « VH, (7)
0 0

The reconstructed main diagonal singular values are
shown in Figure 5. Compared with the main diagonal singu-
lar value without noise suppression, the singular value order
is still obvious in low-SNR environments.

9
TABLE 1: Parameters of DNN.

Parameters Values
Input dimension 1500
Output dimension 1500
Learning rate 0.000001
Optimization AdamOptimizer
Epoch 15000
Activation function ReLU
SNR -20-0dB
Initial distance 20-25m
Relative distance 0.1-4m
Scattering points 2-5
Number of train data 7920
Number of test data 2640

Formula (8) is used to reconstruct the signal after sup-
pressing noise.

s'(t) = miZH’(i,j), n=1,2,---,N. (8)

Here, m,, is the number of elements on the antidiagonal
line in the matrix H', where the number of elements in H'
(i,7) meets i+j—1=n; and YH'(i, ) represents the sum
of the antidiagonal elements of the matrix H' each time.

IDFT was applied on the reconstructed signal to find the
distance envelope, which has a higher SNR after noise sup-
pression. Signals of SNR of —1dB and —5dB are shown in
Figure 6 to illustrate and compare the results of their respec-
tive distance envelopes.

Determining the pole order from the Hankel matrix after
noise suppression revealed that the pole values after noise
suppression were accurate, as shown in Figure 7.

Although the algorithm can resolve the inaccuracies in
pole distribution of the traditional method, it cannot com-
pensate for the errors in the linear model in approximating
the nonlinear signal. In addition, the traditional algorithm
has many links; and the fusion of the vacant subband and
the multi-subband predicted under various linear calcula-
tions still has a large root mean square error (RMSE) with
the signal of the whole frequency band.

4. Using the DNN for Subband Fusion

In this section, we take the absolute value of the IDFT of the
baseband signal to obtain the range profile of the target. A
multi-subband distance envelope at low SNR is used as
input, and the distance envelope of wideband signal is used
as label to the network training under high SNR. The restric-
tion of the traditional pole model at low SNR using the root-
MUSIC algorithm may be improved via DNN nonlinear fit-
ting. Thus, a more accurate range profile can be obtained
compared with traditional subband fusion algorithms. The
structure of the DNN is represented in Figure 8.
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The network is divided into five layers, the input layer,
three hidden layers, and an output layer. The activation
function is the rectified linear unit (ReLU) function. The
output of the [ layer constitutes a vector ad of nx1,
expressed by the matrix in the following formula:

a) = a(zﬁ-) =0 (g{ Wha ' + bﬁ) . 9)

The forward propagation algorithm is expressed as using
several weight coefficient matrices, W, and the bias vector, b,
to perform operations with the input value vector. Starting
from the input layer, backward calculations are performed
at each layer, up to the output layer, until the output layer
where the result is obtained. The forward propagation algo-
rithm of DNN is expressed by formula (10), the output of
which then can be expressed as a'.

al:a(zl) :cr<Wlal‘1 +bl). (10)

Before executing the DNN back propagation algorithm,
a method to measure the loss between the output calculated
by the training sample and the output of the real training
sample is to be chosen. Herein, the common RMSE is used
to measure the loss. For each sample, formula (11) is to be
minimized.

RMSE = (d'-)*. (11)
=1

:

Here, a’ and y are vectors whose feature dimension is the
output layer. So, for the parameters of the output, the loss
function becomes

n

RMSE(W, b, x, y) = \/;]Z (a(W’aH + b’) —y)z.

i=1

(12)

Then, the gradients of W and b are expressed via formu-
las (13) and (14), respectively.

aRMSE;x; b.x.y) (=)o’ (#)] (- 1)T, (13)

ORMSE(W, b, x, )

(W090) — (d-y) o' (2).

The symbol © here represents the Hadamard product.
.a;)" and B(by, b,, ---by)" with
the same dimensions, A ® B= (a,b,, a,b,, ---a,b,)".

When solving W and b of the output layer, the interme-
diate dependent part, (ORMSE(W, b, x, y))/0Z, is calculated
using the following formula:

(14)

For two vectors, A(ay, a,, -

(15)

N aRMSE(aZ, b, x,y) _ (al _y) o0 (zl).

According to the forward propagation algorithm in for-

mula (10), the gradients of W' and b' of the Ith layer are eas-
ily calculated via formulas (16) and (17), respectively.
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ORMSE(W, b, x, )

i (16)

zél(al - 1) T,

ORMSE(W, b,x,y) s

ob'

(17)

Through these formulas, the W' and b’ of the Ith layer may
be continuously updated to complete the back propagation.

Now, the distance envelope of the baseband signal is
obtained by the IDFT of formula (4), shown in the following
formula:

G(k) = |IDFT[s(n), N]| =

1 ii}(l.exp [j%ﬂn(k—Br)} )

NE&S
(18)

—

Here, N is the number of points of IDFT.

When k = Bz, the absolute value of G(k) is at maximum.
Therefore, the distance envelope of the baseband signal is
only related to 7, which is the function related to R.

The input of the network is expressed in formula (19),
and its label is expressed in formula (20).

G

Z|IDFT [$201(n), N, ]| + Z|IDFT [n(n), N, ]|

(ne[l+2(i—1)Ny, (2i = 1)Ny),
(19)

input

Giapel (1 yIDFT{ +n(n)],N,} | ) (20)

Here, IDFT[sZi_l(n),NP] represents the IDFT for N,

points for each subband, N, represents the number of points
of the wideband signal, N, represents the number of points
of the subband signal, and #n;(n) is expressed as a noise
sequence. The IDFT accumulation of N, points of the sub-
band and the wideband signal is illustrated in Figures 9
and 10, respectively.

Therefore, for the DNN, the relationship between the
input and the label can be expressed by formula (21).
Through the rules of forward propagation and back propa-
gation, the RMSE value can be minimized continuously to
minimize the error between the predicted result and the
label between each layer.

X

Glabel(”) = Z WiGinput(n) +b.

i

(21)

The SNR, the number of the scattering points, the ini-
tial distance between the scattering points and the radar,
and the relative distance between the scattering points
are all used as training set variables to generate the dis-
tance envelope training set. The data is generated by sim-
ulation, and the radar signals under different conditions
are arranged into a matrix input network. The parameters
of the DNN are shown in Table 1.

The DNN is used to calculate the input data and output
data. After several iterations of training, the weights of each
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neuron of the DNN model are adjusted by the error estima-
tion results, and the training model is saved. In this study,
RMSE is used to evaluate the performance of the network
model. The RMSE is the average result of the test data.
The above-mentioned mixed simulation data set was used
for training. Figure 11 shows the change of RMSE with
epoch. Via comparing the RMSEs of training and testing,
consistency between the test and training data is achieved.
The RMSE difference then is 0.01, which is considered as
good performance for the DNN.

Comparing the test results of the subband distance
envelope with the wideband signal distance envelope, the
following conclusions were reached. First, the DNN has
an accurate degree of fit for multiple scattered points, as
shown in Figure 12. Second, the DNN can input the
multi-subband distance envelope to directly obtain the
wideband signal distance envelope. Third, training the
DNN can omit the cumbersome steps that traditional algo-
rithms need to estimate the signal. Fourth, a trained net-
work can obtain more test results in batches, but the
traditional algorithm must perform an overall calculation
every time to obtain a test result. It is more advantageous
to use the network when obtaining batch test data. More
importantly, the RMSE of the results composed of complex
data trained by the network is smaller than the RMSE of the
single test data of the traditional algorithm. As shown in
Figure 13, this also means that the network has higher accu-
racy than the traditional algorithms.

5. Conclusion

In this paper, an improvement to the traditional subband
fusion algorithm and the use of DNN to obtain the dis-
tance envelope of the fused signal are proposed. Although
noise suppression algorithms can improve the accuracy of
traditional algorithms in low-SNR environments, they are
yet unable to avoid the inherent errors of linear models.
However, the use of neural networks to resolve the prob-
lem of subband fusion results in lower rates of error. Also,
the distance envelope was directly used as the experimen-
tal object in this study to reduce the error caused while
predicting the subband. Moreover, neural networks can
obtain test data in batches, which is impossible with tradi-
tional algorithms. The results show that the range profile
RMSE of the complex data obtained through the DNN is
higher than the RMSE of the single data of the traditional
algorithm; i.e.,, the DNN has higher accuracy.
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