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Indoor localization in 5G and the Internet of Things has been paid increasing attentions. Recent advances have demonstrated
reasonable localization accuracy that can be provided by using a single access point (AP). Yet, existing single AP localization
solutions require frequency hopping or suffer from degraded accuracy performance due to complicated indoor propagation
environment. This paper proposes a new single AP indoor localization method based on time difference of arrival (TDoA) and
angle of arrival (AoA). We divide multiple antennas into two groups, one group with close distance for AoA estimation and
the other group with the farther distance for TDoA estimation. Then, a joint estimation of AoA and ToA is carried by a
spatial smoothing-based multiple signal classification (MUSIC) algorithm. Finally, we propose a weighted least squares method
based on TDoA and AoA estimations to achieve indoor localization. Simulation results verify the effectiveness of the proposed
single AP localization method.

1. Introduction

With the rapid deployment of 5G and the Internet of Things
[1–4], indoor localization technology has attracted more and
more attentions, which plays an important role in people’s
daily life. For outdoor environment, satellite-based position-
ing system such as GPS and BeiDou has already provided
reasonable accuracy performance and widespread coverage.
However, because of large signal attenuations and severe
multipath propagation problem, they cannot be applied in
indoor environment. Among existing indoor localization
solutions [5–9], Wi-Fi localization [10–13] is one of the
most widely used technologies, due to the ubiquitousness
of Wi-Fi infrastructures in 5G and the Internet of Things.

Wi-Fi indoor localization technologies can be mainly
divided into two categories: fingerprint-based and geometric
measurement-based approaches. The fingerprint-based
approach [14–16] includes two stages: offline data training
stage and online matching stage. This approach may render
high positioning accuracy by establishing precise mapping

between Wi-Fi signal characteristics and related physical
positions. However, it requires labor-intensive fingerprint
database construction and update work, especially in a
large-scale and constantly changing target environment.
Geometric measurement-based approach [17–20] measures
the distance or the azimuth of the target device relative to
an AP, relying on time of arrival (ToA) or angle of arrival
(AoA) estimations, respectively. This approach always
requires multiple APs and is vulnerable to a severe multipath
propagation environment. Moreover, for ToA estimation,
due to the phase measurement errors [21] caused by sam-
pling frequency shift, limited bandwidth of the CSI signal,
and time synchronization, it is difficult to achieve an accu-
rate estimation of ToA or TDoA.

Recently, exploration of channel state information (CSI)
has offered opportunities to achieve single AP localization
and adapts to the indoor multipath environment. CSI
records the amplitude and phase of the Wi-Fi signal trans-
mitted on each subcarrier of multiple antennas. It describes
the Wi-Fi signal in a more fine-grained way and can be used
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to derive AoA and ToA information by deploying a multiple
signal classification (MUSIC) algorithm [22]. In order to
improve the availability and signal coverage of Wi-Fi locali-
zation, single access point localization combining ToA and
AoA information has become a research hotspot [23, 24].
Chronos [5] is the first single AP localization system that
can achieve submeter level localization accuracy by combing
ToA and AoA estimations. However, it requires frequency
hopping to increase the bandwidth of CSI signal and mod-
ifies existing Wi-Fi protocols. These requirements [5, 25]
may affect normal Wi-Fi communication functions and
restrict the widespread deployment of Chronos.

In [26], the authors propose a single AP localization
method based on ToA estimations of multiple distributed
antennas. Three pseudo-ToA estimations from three anten-
nas are combined to estimate the two-dimensional target
device location, which assumes that each pseudo-ToA esti-
mation has the same shift. This method just exploits the
ToA information and thus is easily affected by the measuring
accuracy of ToA, especially when the distance between
antennas is small. In [27], the authors combine TDoA esti-
mations of multipath CSI signals with AoA estimations to
achieve a single AP localization. It relies on a sufficient num-
ber of multipaths and neglects multiple reflection paths and
thus cannot adapt in a complicated indoor environment. In
[28], the authors implement ToA estimations of only two
subbands and an interferometer to achieve single AP locali-
zation. The proposed ToA and AoA estimation scheme
cannot effectively distinguish multipath signals and thus
cannot be applied in the indoor multipath propagation
environment.

In this paper, we propose a new single AP indoor local-
ization method based on time difference of arrival (TDoA)
and angle of arrival (AoA). Simulations are carried to verify
the effectiveness and high localization accuracy of the pro-
posed method. Our main contributions can be summarized
as the following aspects:

(1) We propose a new antenna deployment method for
a single AP. Multiple antennas are divided into two
groups, one group with close distance for AoA esti-
mations and another group with the farther distance
for TDoA estimations. The antenna deployment
strategy including antenna distances and antenna
resource allocations are introduced

(2) We design a spatial smoothing-based MUSIC algo-
rithm to estimate ToA of a single antenna and AoA
of an antenna array, respectively. Since ToA estima-
tions are obtained from a single AP with the same
clock, corresponding TDoA estimation errors intro-
duced by the sampling frequency shift and time syn-
chronization can be avoided

(3) We propose a hybrid AoA/TDoA localization algo-
rithm based on the weighted least squares principle.
The observation equation of target coordinates is
firstly constructed based on TDoA and AoA estima-
tions. Then, the weighted least squares-based solu-
tion is used to iteratively obtain target coordinates,

with an analytical solution as the initial coordinate
estimations

2. Theoretical Basis

Channel state information (CSI) is a kind of fine-grained
information in the physical layer of signals, which describes
the corresponding amplitude and phase of all subcarriers in
the frequency domain, as well as the attenuations experi-
enced by the wireless signal during its propagations. In gen-
eral, CSI can be used to describe the wireless channel by
channel impulse response, and the channel impulse response
of multipath signals can be expressed as

h tð Þ = 〠
n

i=1
aiδ τ − τið Þ, ð1Þ

where ai is the signal intensity attenuation factor of the ith
path, δðτÞ is the impulse function, and τi is the time delay
of the ith path. In fact, CSI measured by the Wi-Fi wireless
network card is a complex matrix, which describes the intro-
duced channel attenuations and phase shifts data over all
subcarriers on each antenna. For the 30 subcarriers of the
three antennas in the widely used Intel 5300 Network Inter-
face Card (NIC), the CSI matrix is expressed as follows:

CSI =

csi1,1 csi1,2 ⋯ csi1,30
csi2,1 csi2,2 ⋯ csi2,30
csi3,1 csi3,2 ⋯ csi3,30

2
664

3
775, ð2Þ

where csii,jrepresents the CSI of the jth subcarrier in the ith
receiving antenna.

CSI data are mainly used to estimate the ToA and
AoA information of the target device at the AP port by
the MUSIC algorithm. The basic principle of MUSIC is
to build a CSI signal model according to the phase shifts
introduced by different antennas and different subcarriers
of the same antenna. Assuming that there are M antennas
receiving N incident signals, then CSI received signals can
be expressed as

X tð Þ = AS tð Þ +N tð Þ, ð3Þ

where XðtÞ is CSI matrix whose dimension is ðM ×NsubÞ
× 1 (Nsub represents the number of subcarriers); A = ½að
θ1, τ1Þ, aðθ2, τ2Þ,⋯, aðθN , τNÞ� is the steering vector matrix
array of the same dimension; SðtÞ is the complex envelope
vector of N incident signals whose dimension isN × 1; ð
θi, τiÞ are AoA and ToA estimations of the ith path inci-
dent signal with only two-dimensional localization consid-
ered, respectively; and NðtÞ is the related additive white
Gaussian noise. Assuming that in the Wi-Fi NIC, the dis-
tance between adjacent antennas is d, and the subcarrier
frequency interval of incident signal is f δ; then, the steer-
ing vector of the ith incident signal is
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a θi, τið Þ = 1,Ωτi
,Ωτi

2,⋯,Ωτi
N−1,⋯,Φθi

M−1,⋯,Ωτi
N−1 ×Φθi

M−1� �T ,
ð4Þ

whereΦθi
= e−j2×π×d×sin θi×f /C is the phase shift introduced

by the adjacent antenna, f is the wireless signal center fre-
quency, C is the ideal electromagnetic wave propagation
speed, andΩτi

= e−j2×π×f δ×τi is the phase shift introduce
by adjacent subcarrier. Based on the orthogonality between
the steering vector and the received signal noise subspace,
the MUSIC algorithm constructs the joint spectral peak
function to seek multipath AoAs and ToAs.

3. Proposed Single AP Localization Method

An overview of the proposed single AP localization method
based on TDoA and AoA is shown in Figure 1. It is mainly
divided into three parts: antenna deployment and resource
allocation of a single AP, estimations of direct path AoA
and TDoA based on spatial smoothing MUSIC, and
weighted least squares localization combining AoA with
TDoA. Firstly, for the antenna deployment and resource
allocation of a single AP, this paper divides the multiple
antennas of a single AP into two groups: one group is used
for TDoA estimation and another one is used for AoA esti-
mation. Secondly, we deploy the spatial smoothing algo-
rithm to smooth the CSI signal matrix and use the
superresolution MUSIC algorithm to estimate AoAs and
TOAs of all paths, in which a direct path is identified and
used in the ultimate localization. Finally, the weighted least
squares method is proposed to integrate AoA and TDoA
estimations to achieve ultimate localization.

3.1. Antenna Deployment of a Single AP. We propose a new
antenna deployment method for our single AP localization
method. According to different characteristics of ToA and
AoA estimation schemes, we divide the antennas of a single
AP into two groups. One group is for TDoA estimations,
whose distances are set as the meter level to ensure a good
geometric factor of localization method. Another group is
for AoA estimations, whose distances are set as the centime-
ter level and equivalent to the half wavelength of the wireless
signal.

In order to guarantee localization accuracy in all target
environments, we design the antenna placement strategy
and constraint conditions as follows. The antenna array used
for AoA estimation is set as a linear array to ensure that the
spatial smoothing MUSIC algorithm can be well adopted.
The normal directions of each antenna array for AoA esti-
mations are placed as uniform as possible within the locali-
zation coverage. The normal direction of antenna baseline
for TDoA must not be parallel to that of the antenna array
for AoA estimations, and the included angle should be as
large as possible. This set is necessary for ambiguity resolu-
tion of the proposed single AP localization. Besides, in order
to guarantee a reasonable signal-to-noise ratio (SNR), the
distance between different antennas should be restricted to
reduce line losses. We take the most widely used Intel 5300
NIC as an example to design the antenna deployment of

the proposed single AP localization method. Figure 2 shows
the antenna deployment of the single AP with only three
antennas installed. Antenna 2 and Antenna 3 are grouped
and regarded as an antenna array for an AoA estimation,
whose distance is half of the wavelength. The rest antenna
1 is set several meters away from antennas 2 and 3. Through
the spatial smoothing-based MUSIC algorithm, we can esti-
mate jointly AoA and ToA2 of the target device. TOA1 of
antenna 1 and related TDoA can be also obtained by the
MUSIC algorithm.

3.2. Estimations of AoA and TDoA Based on Spatial
Smoothing MUSIC. We deploy spatial smoothing MUSIC
to adapt coherence of multipath signals. Taking Intel 5300
NIC as an example, its CSI matrix contains a total of 90
CSI samples of 3 antennas and 30 subcarriers for each
antenna. We use the spatial smoothing algorithm to parti-
tion the CSI matrix and obtain the submatrices as follows:

ð5Þ

In Equation (5), the solid line box represents the first
smoothing subarray, and the dashed line box represents
the last smoothing subarray. The steering vector matrix of
all subarrays can be written as a linear combination of the
same steering vector. This steering vector can be expressed
as

asmooth θi, τið Þ = 1,Ωτi
,Ωτi

2,⋯,Ωτi
N−1,⋯,Φθi

M−1,⋯,Ωτi
N−1 ×Φθi

M−1� �T ,
ð6Þ

where N and M are the number of subcarriers and antennas
used in the subarray.

In our proposed single AP localization method using
Intel 5300 NIC as shown in Figure 2, antenna 1 is used for
ToA estimation and the rest two antennas are used for joint
estimation of ToA and AoA. The corresponding smoothing
matrix and steering vector are given as follows. The CSI
smoothing matrix of ½csi1,1, csi1,2,⋯, csi1,30�’ of antenna 1 is

ð7Þ

The related steering vector of antenna 1 is

a τð Þ = 1,Ωτ,⋯,Ωτ
14� �T , ð8Þ
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where Ωτ = e−j2×π×f δ×τ is the phase shift introduced by an
adjacent subcarrier.

The CSI smoothing matrix of the rest two antennas is

ð9Þ

The related steering vector is

a θ, τð Þ = 1,Ωτ,⋯,Ωτ
14,Φθ,Φθ ×Ωτ,⋯,Φθ ×Ωτ

14� �T ,
ð10Þ

whereΦθ = e−j2×π×d×sinθ×f /C is the phase shift introduced by
adjacent antenna and Ωτ = e−j2×π×f δ×τ is the phase shift
introduced by an adjacent subcarrier.

We take double antennas as an example, the channel
state information matrix XðtÞ obtained is used to calculate
the RH . The covariance matrix is divided into signal sub-
space and noise subspace for the signal subspace, and the
noise subspace are orthogonal to each other.

RH = E X tð Þ X tð Þ½ �H� �
=〠csii csiið ÞH =US〠S USð ÞH +UN〠N UNð ÞH ,

ð11Þ

where csii is the ith column of Equation (9). US is the sub-
space spanned by large eigenvalues, which is called a signal
subspace, and UN is the subspace spanned by small eigen-
values, which is called a noise subspace.

Since the steering vector and the noise subspace of the
signal are orthogonal to each other, there must be a mini-
mum value of the signal in the incident direction theoreti-
cally. The spatial spectrum function (12) is used to search
the spectrum peak, where the corresponding AOA and
TOA are obtained.

PMUSIC =
1

aH θ, τð ÞUNU
H
Na θ, τð Þ : ð12Þ

3.3. Weighted Least Squares-Based Localization. We deploy
weighted least squares-based localization fusing TDoA and
AoA information. Firstly, we give an analytic localization
solution based on the observation equation for a rough ini-
tial estimation. Then, the initial target coordinate is used to
update into the weight matrix of the weighted least squares
method. The final position of the target is obtained through
iterative optimization. As shown in Figure 3, antennas 2
and 3 provide AoA estimation, whose coordinate center is
set as ð0, 0Þ. Antenna 1 and the rest two antennas provide
TDoA estimation, with the coordinate of antenna 1 set as
ðL, 0Þ.

We firstly construct the observation equation based on
TDoA and AoA estimations. Assuming that the calculated
AoA of the direct path is θ, and the direct path TDoA
between two antenna groups is Δτ, the following formula
can be obtained according to the geometric relationship in
Figure 3:

tan θ = x
y
, ð13Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x − lð Þ2 + y2

q
= cΔτ: ð14Þ

According to Equations (13) and (14), the initial posi-
tioning coordinates can be obtained:

Antenna deployment and
resource allocation of single

AP

One group
for TDoA

estimations
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distances of
several meters

Another group
for AoA

estimations
with
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half wavelength
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based direct path AoA and 
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Figure 1: Overview of the proposed single AP localization method.
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Figure 2: Antenna deployment of single AP localization with Intel
5300 NIC.
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y0 =
l2 − c2Δτ2

2l tan θ − 2cΔτ sec θ
,

x0=y0 tan θ:

8><
>: ð15Þ

Since measurement errors may be introduced into AoA
and TDoA estimation results, the initial estimated coordi-
nates obtained by the analytic solution may have relatively
large errors. Therefore, we need to further optimize the
localization results by the weighted least squares method.

Aiming at the observation errors of AoA and TDoA in
the equation, we estimated the target position under the
weighted least squares model and solved the positioning
coordinates under the model through iteration according
to the initial coordinates of the target to be determined
obtained in the previous section.

According to the previous derivation, the initial coordi-
nates ðx0, y0Þ were solved by the analytic method. Assuming

R =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
and r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − lÞ2 + y2

q
, R and r represent the

linear distance between the target to be positioned and
observation station 1 and observation station 2, respectively;
the following formula can be obtained.

R + rð Þ R − rð Þ = 2xl − l2: ð16Þ

Then, according to Equations (13) and (14), we can
express the observation equations of AoA and TDoA con-
taining observation noise. The observation equations are as
follows:

θ = arctan x
y

� �
+ Vθ,

Δτ =
1
c
R − rð ÞVτ,

ð17Þ

where Vθ and Vτ represent the observation error of AoA
and TDoA, respectively. Through derivation, we can get

2xl − l2

c Δτ −Vτð Þ −
2y

cos θ −Vθð Þ + c Δτ −Vτð Þ = 0: ð18Þ

Equation (18) and x − y tan ðθ −VθÞ = 0 are extended by
the Taylor formula at ðθ,ΔτÞ; then, all terms of the second
order and above are removed, and the following equations
are obtained:

x − y tan θ = −
yVθ

cos θð Þ2 ,

2xl
cΔτ

−
2y

cos θ
=

l2

cΔτ
− cΔτ

 !
−
2y sin θ

cos θð Þ2
Vθ + Vτ c −

2xl − l2

c Δτð Þ2
 !

:

8>>>><
>>>>:

ð19Þ

In order to ignore the second-order term, the first-order
term should be much larger than the second-order term.
This condition can be reached when the ToA and AoA esti-
mation errors are restricted. The equations of Equation (19)
are expressed in matrix form as follows:

HX = b + e: ð20Þ

Among them,

H =
1 −tan θ

2l
cΔτ

−
2

cos θ

2
4

3
5,

b =
0

l2

cΔτ
− cΔτ

2
4

3
5,

ð21Þ

e =Dv, v = ½Vθ, Vτ�, X = ½x, y�T ,

D =

−
y

cos θð Þ2 0

−
2y sin θ

cos θð Þ2 c −
2xl − l2

cΔτ2

2
6664

3
7775: ð22Þ

where e is the error term and the weighted least squares
algorithm can get a more accurate estimation of the target
position by weighting the error term.

According to the principle of the weighted least squares
method, the weighted least squares solution of the system is

Xwls = HTWH
	 
−1

HTWb: ð23Þ

The weighting matrix is

W = E eeT
� �	 
−1 = DE vvT

� �
DT	 
−1 = DQDT	 
−1, ð24Þ

where Q is the covariance matrix of the observed noise.
The mentioned above is the derivation process of using

the weighted least squares method to obtain the optimal
positioning coordinate solution. When we write the algo-
rithm program, we need to constantly update the coordinate
and weight matrix by using the iterative method, so as to
obtain more accurate coordinates. The calculation of the
weighted matrix W in Equation (23) needs to use the

y

x

rR

(x, y)

Target to be located

Antennas 2 and 3

(0, 0) (L, 0)

Antenna 1

𝜃
∆𝜏

Figure 3: Single AP localization fusing TDoA and AoA.
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coordinates of the target to be positioned. In the estimation
process, the analytic method is used to obtain the rough esti-
mate of the target coordinate to be positioned, namely, the
initial coordinate, and then, it is substituted into Equation
(24) to updateW, so as to optimize the estimate of the target
position.

4. Simulation Results and Analysis

In this section, we firstly compare the simulation results of
ToA and AoA estimations under different SNR. Then, we
compare the analytic method and the proposed weighted
least squares method. Finally, we study the influence of
TDoA and AoA estimation errors on localization accuracy.

4.1. Simulation Results of ToA and AoA Estimations

4.1.1. ToA Estimation Results of a Single Antenna. We set
three incident signals received by a single antenna, whose
ToA values are 10.1 ns, 30.2 ns, and 50.3 ns, respectively.
Figure 4 shows the spectrum estimation results of spatial
smoothing-based MUSIC algorithm for a single antenna
under different SNR. It can be seen that when SNR varies
from 12dB to 18dB, all spectrum peaks are found around
the right ToA values. Moreover, the better ToA resolution
performance is obtained by the higher SNR, whose spectrum
curve is sharper. Figure 5 shows the cumulative distribution
function of ToA estimation error of a single antenna under
different SNR. The cumulative probability of ToA estimation
error within 0.1 ns is 27.2%, 43.7%, 65.6%, and 79.5%, with
SNR varying from 12dB to 18dB, respectively. The cumula-
tive probability of ToA estimation error within 0.2 ns is
52.4%, 78.8%, 95.5%, and 100%, with SNR varying from
12dB to 18dB, respectively. As can be seen from the figure,
with the increase of SNR, ToA estimation errors of a single
antenna decrease significantly. In fact, in a realistic indoor
environment, considering CSI phase measurement error
and more serious multipath problem, the ToA estimation
error may increase to some extent.

4.1.2. Joint Estimation Results of ToA and AoA. We set three
incident signals received by two antennas, whose ToA values
are 10ns, 20 ns, and 30ns, respectively. Related AoA values
are set as 30°, 45°, and 60°, respectively. In order to simulate
realistic channel phase inconsistency, we set the channel
phase inconsistency as a uniform variable distributed from
-10° to 10°. Figure 6 shows spectrum estimation results of
joint estimations with SNR = 16 dB. It can be seen that all
spectrum peaks are found around the right ToA and AoA
values by AoA and ToA joint estimations. Figures 7 and 8
show cumulative distribution function of AoA and ToA esti-
mation errors with different SNR, respectively. As seen in
Figure 7, the cumulative probability of AoA estimation error
within 0.2° is 5.8%, 45.6%, 93.7%, and 100.0%, with SNR
varying from 12dB to 18 dB, respectively. As seen in
Figure 8, the cumulative probability of the ToA estimation
error within 0.1 ns is 5.3%, 48.6%, 95.5%, and 100.0%, with
SNR varying from 12dB to 18dB, respectively. As can be
seen from Figures 7 and 8, with the increase of SNR, AoA
and ToA estimation errors of two antennas decrease signifi-

cantly. In fact, in a realistic indoor environment, considering
the CSI phase measurement error and more serious channel
phase inconsistency problem, AoA and ToA estimation
errors may increase to some extent. When the SNR is low,
compared with the single antenna method, the joint estima-
tion method is more vulnerable to the negative effects of
channel phase inconsistency, resulting in a lower TOA esti-
mation accuracy.

4.2. Comparison of Analytic Method and Weighted Least
Squares Method. We compare the localization results of the
analytic method and our weighted least squares method.
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The analytic method is used as an initial estimation of the
localization and as an initial input of the weighted least
squares method. It can be regarded as a version of the least
squares method. Figure 9 shows the mean localization error
of both methods under different TDoA estimation errors
with σθ = 2°. As shown in Figure 9, when the standard devi-
ation of the TDoA estimation error is smaller than 0.4 ns, the
localization error is comparable for both methods. As the
standard deviation of the TDoA estimation error increases,
the mean localization errors of our weighted least squares
method become smaller than that of the analytic method,
while the gaps between them become larger and larger.
Figure 10 shows the mean localization error of both methods
under different AoA estimation errors with σTDoA = 0:5 ns.
Similarly, when the standard deviation of the AoA estima-
tion error is small, the localization error is comparable for
both methods. As the standard deviation of the AoA estima-
tion error increases, the mean localization errors of our
weighted least squares method is smaller than that of the
analytic method. For example, when the standard deviation
of the AoA estimation error is 2°, the mean localization error
of our weighted least squares method is 1.37m, while that of

the analytic method is 1.78m. It can be seen that our
weighted least squares method is more robust than the ana-
lytic method when degraded ToA or AoA estimation perfor-
mance occurs.

Then, we study influence of the number of iteration
number on performance of the weighted least squares
method. Our weighted least squares method iteratively
updates the weight matrix by using the localization results
of the previous step, until the stop condition of iteration is
satisfied. Figure 11 shows the mean localization error versus
the number of iterations with σθ = 2° and σTDoA = 0:5 ns. At
the first iteration, the mean localization error usually is rela-
tively large, since the weight matrix is not updated yet. Then,
after even one iteration, the mean localization error drops
significantly from 1.85m to 1.37m. Then, the mean localiza-
tion error fluctuates around a certain value as the number of
iteration number increases. It can be seen that, the localiza-
tion error can be rapidly reduced after more than two itera-
tions, and the mean localization errors may converge to a
certain relatively small value.
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4.3. Localization Accuracy Results. We set the antenna coor-
dinate as shown in Figure 3. The coordinate center of anten-
nas 2 and 3 is set as the origin ð0, 0Þ, while the coordinate of
antenna is set as ð15m, 0Þ. The target device is uniformly
distributed in the square space whose four vertices are ð10
m, 1mÞ, ð10m, 16mÞ, ð20m, 1mÞ, and ð20m, 16mÞ.

Figure 12 shows mean localization errors versus TDoA
estimation errors with different AoA estimation errors. As
seen in Figure 12, the mean localization error is 1.09m,
1.66m, and 2.41m, with a standard deviation of the TDoA
error 1 ns, corresponding to the standard deviation of AoA
error being 1°, 2°, and 3°, respectively. The mean localization
error is 2.63m, 3.16m, and 3.92m, with a standard deviation
of the TDoA error 3 ns, corresponding to the standard devi-
ation of the AoA error being 1°, 2°, and 3°, respectively.
Figure 13 shows mean localization errors versus AoA esti-
mation errors with different AoA estimation errors. As seen
in Figure 13, the mean localization error is 0.69m, 0.80m,
and 1.03m, with a standard deviation of the AoA error 1°,
corresponding to the standard deviation of the TDoA error
being 0.1 ns, 0.5 ns, and 0.9 ns, respectively. The mean local-
ization error is 1.33m, 1.43m, and 1.62m, with a standard

deviation of the TDoA error 2°, corresponding to the stan-
dard deviation of the TDoA error being 0.1 ns, 0.5 ns, and
0.9 ns, respectively. It can be seen that the mean localization
error increases gradually while the standard deviation of the
AoA or TDoA error increases. The mean localization error
can be controlled within 1.5m when the standard deviation
of the TDoA error is smaller than 0.6 ns and the standard
deviation of the AoA error is smaller than 1.8°.

Figure 14 shows the cumulative distribution function of
the localization error with σTDoA = 0:5 ns and different
AoA estimation errors. As seen in Figure 14, the cumulative
probability of the localization error within 1m is 98.7%,
74.2%, and 57.1%, corresponding to the standard deviation
of the AoA error being 1°, 2°, and 3°, respectively. The cumu-
lative probability of the localization error within 2m is
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99.9%, 97.3%, and 88.0%, corresponding to the standard
deviation of the AoA error being 1°, 2°, and 3°, respectively.
The medium localization error is 0.36m, 0.73m, and 1.06m,
respectively.

Figure 15 shows the cumulative distribution function of
the localization error with σAoA = 1° and different TDoA
estimation errors. As seen in Figure 15, the cumulative prob-
ability of the localization error within 1m is 95.6%, 78.7%,
and 58.5%, corresponding to the standard deviation of the
TDoA error being 0.1 ns, 0.5 ns, and 0.9 ns, respectively.
The cumulative probability of the localization error within
2m is 99.9%, 98.6%, and 90.7%, corresponding to the stan-
dard deviation of the TDoA error being 0.1 ns, 0.5 ns, and
0.9 ns, respectively. The medium localization error is
0.42m, 0.68m, and 1.02m, respectively. It can be seen from
Figures 14 and 15 that our proposed single AP localization
method may achieve a relatively good accuracy performance
when the TDoA and AoA estimation errors can be con-
trolled within a reasonable scale.

5. Conclusion

This paper proposes a new single AP indoor localization
method based on TDoA and AoA. We design a new
antenna deployment and resource allocation scheme, which
group the multiple antennas into two groups. One group is
used for AoA estimation and the other group is used for
TDoA estimation. A spatial smoothing-based MUSIC algo-
rithm is adopted to jointly estimate the direct path ToA
and AoA. Our single AP localization method exploits com-
plementary advantages of TDoA and AoA information,
while frequency hopping or Wi-Fi protocol modifications
are not required. Simulation results show that the proposed
single AP localization method may obtain accurate localiza-
tion results. We will further verify the proposed method in
a more complicated and realistic indoor environment in
our future work.
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