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With the development of the wireless network, location-based services (e.g., the place of interest recommendation) play a crucial
role in daily life. However, the data acquired is noisy, massive, it is difficult to mine it by artificial intelligence algorithm. One of the
fundamental problems of trajectory knowledge discovery is trajectory segmentation. Reasonable segmentation can reduce
computing resources and improvement of storage effectiveness. In this work, we propose an unsupervised algorithm for
trajectory segmentation based on multiple motion features (TS-MF). The proposed algorithm consists of two steps:
segmentation and mergence. The segmentation part uses the Pearson coefficient to measure the similarity of adjacent trajectory
points and extract the segmentation points from a global perspective. The merging part optimizes the minimum description
length (MDL) value by merging local sub-trajectories, which can avoid excessive segmentation and improve the accuracy of
trajectory segmentation. To demonstrate the effectiveness of the proposed algorithm, experiments are conducted on two real
datasets. Evaluations of the algorithm’s performance in comparison with the state-of-the-art indicate the proposed method
achieves the highest harmonic average of purity and coverage.

1. Introduction

With the rapid development of location technology (such as
GPS, Beidou System, AIS), it is becoming easier to get trajec-
tory data of moving objects, including time, location, speed,
acceleration, and heading. The analysis on trajectory data
can provide a lot of valuable information for applications
based on location data, such as traffic pattern detection [1],
fishing detection [2, 3], animal migration behavior detection
[4–6], human behavior patterns recognition [7], and hurri-
cane trajectory prediction.

The preprocessing step of trajectory data mining
includes noise cleaning, segmentation, stop points detection,
compression, and map matching [8]. And trajectory seg-

mentation is one of the most basic tasks, which is to parti-
tion the trajectory into disjoint parts. The motion features
of each part are uniform, and the two adjacent parts repre-
sent different motion modes. Segmentation reduces compu-
tational complexity and allows us to mine richer knowledge,
which exceeds the knowledge we learn from the entire tra-
jectory. Furthermore, accurate segmentation methods can
provide higher-quality features for further analysis of the
behavior of moving objects.

In recent years, the proposed trajectory segmentation
algorithms can be classified the supervised [9–14], unsuper-
vised [15–27], and semisupervised [28].

The trajectory segmentation algorithm as aforemen-
tioned can solve most of the problems in the preprocessing
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of trajectory data mining, but there are still the following
challenges:

(1) At present, most of the supervised trajectory seg-
mentation algorithms, such as SPD [11], Warped
K-means [10], and WS-II [9], required labeled
data or prior information such as time threshold,
speed threshold, and the number of trajectory
segments.

(2) Semisupervised trajectory segmentation algorithm
(e.g., RGRASP-SemTS) uses a combination of both
labeled and unlabeled data to segment. However,
the majority of trajectory datasets do not contain
the labeled data.

(3) The unsupervised trajectory segmentation algorithm
does not require labeled data. But the existing unsu-
pervised segmentation algorithms use greedy algo-
rithms with high time complexity, resulting in
uselessness which causes it is not suitable for large
trajectory data.

To overcome these challenges, we propose an unsuper-
vised algorithm for trajectory segmentation based on multi-
ple motion features (TS-MF). The algorithm includes two
steps: segmentation and mergence. First, to maximize the
homogeneity of the subtrajectories, the segmentation part
uses the Pearson coefficient to measure the similarity of
trajectories. Furthermore, to avoid local oversegmentation,
mergence part merges the subtrajectory by minimizing the
cost function. Finally, we verify the proposed algorithm in
two trajectory datasets of two different domains.

The main contributions of this article are as follows:

(1) The study proposes a segmentation method based on
the Pearson coefficient. First, the Pearson coefficient
is employed to measure the similarity according to
the speed, acceleration, differential position, angle,
and other movement features of the two trajectory
points. Then, the trajectory is segmented from a
global perspective.

(2) Considering the local oversegmentation of trajecto-
ries, we propose a merging method, which merges
trajectories by minimizing cost function value.

(3) Fusion of the segmentation and merging method
proposes an unsupervised algorithm for trajectory
segmentation based on multiple motion features
(TS-MF).

(4) The time complexity of our proposed algorithm is
OðnÞ, which is suitable for the segmentation of large
trajectory datasets.

The rest of this article is organized as follows: Section
2 gives the related works. Section 3 introduces the pro-
posed trajectory segmentation algorithm. In Section 4, we
verify the feasibility of our algorithm on two actual data-
sets. Finally, Section 5 gives our conclusions and future
work.

2. Literature Review

In the past few years, scholars have published lots of papers
related to trajectory segmentation. In this section, we mainly
summarize most of the trajectory segmentation methods.

The supervised trajectory segmentation algorithm
requires label data and heuristic rules such as the time
threshold, speed threshold, density threshold, and angle
threshold to segment trajectory. Mohammad et al. proposed
a segmentation algorithm named WS-II [9], and it requires
the labeled data. But the majority of trajectory datasets do
not contain such information. Zheng et al. proposed a stay-
ing point detection (SPD) algorithm to segment trajectory
[11]. SPD suppose that there is a stay point between two
adjacent motion modes and uses the distance threshold δd
and the time threshold δt to find the stay points. Then use
the stay points to segment trajectory. Finally, SPD was
verified on the geolife dataset. Mirge and Verma define the
distance threshold and the angle threshold to segment tra-
jectory [13]. Although these two algorithms can quickly find
the stay points and segment the trajectory, the algorithm
requires heuristic rules. In practical application, it is difficult
to obtain these rules in advance, and the value of the thresh-
old would greatly impact the accuracy of trajectory segmen-
tation. Leiva and Vidal proposed a trajectory segmentation
algorithm named Warped K-means [10] based on the
K-means [29]. This algorithm adds time constraints in
the K-means. It reaches 97% accuracy on real datasets. How-
ever, the number of trajectory segments k is generally
unknown.

The unsupervised segmentation algorithmmainly includes
clustering-based, cost-function-based, and interpolation-based.
The detailed description is as follows.

The clustering-based segmentation algorithm mainly
improves the existing clustering algorithm, which makes it
more suitable for trajectory segmentation. A plethora of
cluster-based trajectory segmentation algorithms have been
proposed. CB-SMOT [27] was proposed by Andrey, which
is an extension of the DBSCAN algorithm [30]. The
algorithm also uses speed characteristics to discover the stop
points and move points of the trajectory. And to better
process the spatial-temporal trajectory data, it replaces the
distance threshold in DBSCAN with the time threshold.
Chen et al. improved the DBSCAN algorithm and proposed
a segmentation algorithm named T-DBSCAN [18]. This
algorithm utilizes the important spatial-temporal character-
istics of the trajectory to segment the trajectory. The
accuracy of the two algorithms is high on the experiment
dataset. However, since CB-SMOT and T-DBSCAN are
improved based on DBSCAN, they also have the same weak-
nesses as DBSCAN, which cannot reliably detect stop points
from sparse trajectories.

The cost-function-based approach mainly segments the
trajectory by minimizing the cost function, including
GRASP-UTS [23]. It was proposed by Amilcar et al. in
2015. This algorithm first randomly selects the segmentation
point, that is, landmark. Then, it utilizes the adaptive greedy
algorithm to optimal the landmark and calculates the cost
function. Finally, when the cost function reaches the lowest,
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segment the trajectory by landmark. GRASP-UTS is tested
on two real datasets of different domains and achieves high
accuracy. However, because the algorithm uses an adaptive
greedy algorithm, the time complexity is very high, which
makes it is not suitable for large datasets.

The interpolation-based trajectory segmentation algo-
rithm mainly uses different interpolation methods such as
linear interpolation and kinematic interpolation to generate
error signals for segmentation, including OWS [15] and
SWS [19]. Mohammad et al. proposed the trajectory seg-
mentation algorithm named Octal Window Segmentation
(OWS) in 2019, and the SWS is an improvement of the
OWS. The intuition of the two algorithms is that when a
moving object changes from one behavior to another, this
can be captured directly from its geographic location.
Mohammad et al. compare the real position of the moving
object with the estimated one to generate an error signal.
By evaluating this error signal, predicting whether the
behavior of moving object changed, and utilizing this
information to segment trajectory. These two algorithms
are better than the benchmark algorithm in segmentation
accuracy. However, a part of the data is required to optimize
the parameter and different trajectory datasets need to select
different interpolation methods.

The semisupervised segmentation algorithm mainly
includes RGRASP-SemTS [28]. RGRASP-SemTS was pro-
posed by Amilcar et al. It uses the minimum description
length (MDL) principle to measure homogeneity inside seg-
ments and segment trajectories by combining a limited user
labeling phase with a low number of input parameters and
no predefined segmenting criteria. However, when the algo-
rithm faces large-scale data, it is difficult to create a part of
labeled trajectory datasets.

This study proposes an efficient and accurate trajectory
segmentation and merging algorithm based on multiple
motion features (TS-MF) to overcome the limitations of
the aftermentioned, mainly composed of a segmentation
method and a trajectory merging method. The TS-MF algo-
rithm divides the trajectory both from the global and local
perspectives to ensure the accuracy of segmentation.

3. Methodology

This section details the novel unsupervised algorithm for
trajectory segmentation based on multiple motion features
(TS-MF). In Section 3.1, we present the relevant definitions.
Figure 1 shows the overview of TS-MF, which includes the
two core processing: segmentation and mergence. The first
step of TS-MF is to segment the raw trajectory by Pearson
coefficient, which is detailed in Section 3.2. The second step
is to merge the subtrajectory of oversegmented, which is
described in Section 3.3. Finally, the details of TS-MF are
introduced in Section 3.4.

3.1. Definitions

3.1.1. Raw Trajectory. A raw trajectory is composed of a
series of multidimensional spatial-temporal data points. It
is denoted as Traji = ðp0, p1, p2, p3, ⋯ , pi,⋯, pn Þ 0 ≤ i ≤ n,

where pi = ðlati, loni, ti, f iÞ, lati and loni represent the posi-
tion coordinates at the time ti. f i means the movement char-
acteristics of the trajectory point at the time ti such as speed,
angle, and acceleration.

3.1.2. Subtrajectory. A subtrajectory is a set of consecutive
trajectory points in the raw trajectory, for example, the sub-
trajectory can be denoted as Si = ðpi, pi+1,⋯, pjÞ 0 ≤ i < j ≤ n.

3.1.3. Trajectory Segmentation. According to feature similar-
ity of trajectory points, the trajectory segmentation algo-
rithm can efficiently and accurately find a set of segment
points from the raw trajectory, such as Seg = ½p0, p1 ⋯ pk�.
We can segment the raw trajectory into several disjoint parts
by these segmentation points. For example, Traji = ðs0, s1,
s2 ⋯ skÞ, where k is the number of subtrajectories.

3.2. Segmentation Method. The intuition behind the segmen-
tation method is that when the motion features of two adja-
cent trajectory points (such as longitude, latitude, velocity,
angle, acceleration, and heading) have significant variation,
this trajectory point is where the motion state changes, that
is, segmentation points. Therefore, the core of the segmenta-
tion method is to determine the segmentation point.

To accurately extract the segmentation points, it is nec-
essary to define an index to measure the similarity of multi-
ple motion features between two adjacent trajectory points.
Since the Pearson coefficient is sensitive to variation, the
Pearson coefficient is employed to calculate the similarity
of adjoining trajectory points, extract the point where the
motion feature changes, and save it to the segmentation
point sequence.

The Pearson coefficient is a statistical indicator that
reflects the degree of linear correlation between two vari-
ables. The Pearson coefficient can be calculated through
Equation (1), where Fi, Fj, are the features of pi and pj, the
features include longitude, latitude, speed, average speed,
acceleration, and angle, coνðFi, FjÞ is the covariance
between Fi and Fj, μ represents the mean value, σFi

, σF j

means the standard deviations of Fi and Fj, and E½ðFi−μFiÞ
ðFj−μFjÞ� describes the expected value of ðFi−μFiÞðFj−μFjÞ.
The value of ρFi ,F j

is between [-1, 1]. When ρFi ,F j
equals 0,

it indicates that Fi and Fj are irrelevant; when the value
equals 1 (e.g., [1–6] and [1–6]), it suggests that Fi and Fj

are completely positive correlation; when the value equals
-1, it means that Fi and Fj are perfectly negative correlation
(e.g., [1–6] and [-1, -2, -3, -4, -5, -6]). Generally, trajectory
data reflects the motion history of moving objects, and its
sampling time is usually very short, so the characteristics
between adjacent points in the same motion state are usually
the same, that is, the value of the Pearson coefficient is close
to 1. And the acceleration, speed, average speed, and angle of
trajectory points with changed motion state will change
obviously, resulting in Pearson coefficient is closed -1. For
example, we calculate the value of the Pearson coefficient
of two sets of adjacent trajectory points, whose result is
shown in Table 1. We can discover that when the features
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of adjacent trajectory points are no obvious variation, the
value of ρFi ,F j

is close to 1, and it is close to -1 otherwise.

ρFi ,F j
=
coν Fi − Fj

� �
σFi

σF j

=
E Fi−μFið Þ Fj−μFj

� �� �
σFi

σF j

: ð1Þ

Figure 2 shows the change of the value of ρFi ,F j
, and

there are many mutation points of the Pearson coefficient.
The value of ρFi ,F j

between mutation points is close to 1

and remains unchanged. Meanwhile, we can discover there
are multiple mutation points in a short time. However, the
motion state of the moving object does not change in a short
time. It means that some multiple mutation points are the
outlier points. Therefore, the purpose of the segmentation
method is to extract mutation points and remove the outlier
points.

The pseudocode of the segmentation method is detailed
in Algorithm 1. The proposed segmentation method firstly
takes out the raw trajectory (such as Traji = ðp0, p1, p2,
p3,⋯, pi,⋯, pn Þ 0 ≤ i ≤ n) from the database. Then, calculate

Table 1: Pearson coefficients of two sets of adjacent trajectory points.

Index Lng Lat Speed Angle Acceleration Average speed ρFi ,F j

11 -34.94 -5.59 4.39 54.7 -0.0001 4.391 0:999
12 -34.93 -5.47 4.73 38.0 0.0001 4.728

284 -34.91 -1.284 4.43 2.66 -0.0007 4.43 −0:058
285 -34.91 -1.206 4.25 357.79 -0.0008 4.25
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Figure 1: Overview of the proposed segmentation algorithm.
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the value of ρFi ,F j
and save the results into the array pcc.

Finally, the super parameters δ and T are defined to extract
the point where the motion state changes, where δ and T
are the threshold of Pearson coefficient and time interval.
The segmentation method looks for pl with the minimum
value of ρFi ,F j

from a global perspective. When the ρFi ,F j
less

than δ and the time interval between pl and adjacent segment
points is less than T , the pl is added the segmentation point
sequence and remove the pl from array pcc. And on the
contrary, the outlier point pl is removed. The procedure
performs this step until the minimum value of ρFi ,F j

is greater

than δ.

3.3. Merging Method. The trajectory segmentation algorithm
based on the Pearson coefficient achieves high homogeneity
in the subtrajectories. However, in practical application, the
collected trajectories contain some outlier points, which
cause the value of ρFi ,F j

is closed to -1. Though the segmen-

tation method utilizes time threshold T to remove the outlier
points, when the time interval is greater than T , the outlier
points may be mistakenly added to the segmentation point
sequence. This condition may cause the raw trajectory to
be oversegmented. For example, the raw trajectory contain-
ing 122 subtrajectories is finally partitioned into 187 seg-
ments, which is oversegmented. In the mergence part, the
minimum description length (MDL) principle is used to
construct the cost function and merge the subtrajectories
by optimizing the cost function from a local perspective,
which can ensure the final segmented subtrajectory achieves
the best accuracy.

The MDL was proposed by Rissanen [31] and then used
and detailed by Grünwald et al. [32]. According to Grünwald
et al. [32], the MDL cost consists of LðHÞ and LðD ∣HÞ.
Here, H means the hypothesis, and D the datasets. LðHÞ is
the length of the description of the hypothesis in bits, and
LðD ∣HÞ is the length of the description of the data when
encoded with the hypothesis. The best hypothesis H to
explain D is the one that minimizes the sum of LðHÞ and
LðD ∣HÞ.

In the problem of trajectory segmentation, a hypothesis
corresponds to a subtrajectory. Finding the optimal subtra-
jectory means finding the best hypothesis. Give a subtrajec-
tory S = ðpi, pi+1,⋯, pjÞ 0 ≤ i < j ≤ n , and we formulate cost
function by Equations (2), which can be used to measure
homogeneity. In Equations (2), LðHÞ = log2ðlenðpipjÞÞ and

LðD ∣HÞ = log2ð∑j
id⊥ðpipj, pipi+1ÞÞ + log2ð∑j

idθðpipj, pipi+1ÞÞ,
where d⊥ðpipj, pipi+1Þ means the perpendicular distance
between pipj and pipi+1, dθðpipj, pipi+1Þ represents the angle
distance between pipj and pipi+1. The d⊥ and dθ are defined
as Equations (3) and Equations (4), which are mentioned in
[17]. Figure 3 shows the formulation of the cost function, d⊥
and dθ of a subtrajectory, which contains 5 trajectory points.

cost function = L Hð Þ + L D ∣Hð Þ
= log2 len pipj

� �� �

+ log2 〠
j

i

d⊥ pipj, pipi+1
� � !

+ log2 〠
j

i

dθ pipj, pipi+1
� � !

,

ð2Þ

d⊥ =
l⊥1

2 + l⊥2
2

l⊥1 + l⊥2
, ð3Þ

dθ = lik k × sin θ: ð4Þ
Based on the theory as aforementioned, the merging

method is detailed in Algorithm 2. First, the procedure uses
the segmentation point sequence SegPoint to segment the
raw trajectory, it can be denoted as Traj = ðsi ⋯ sj ⋯ skÞ 0
≤ i ≤ j ≤ k. Then mergers si and si+1 into stotal, calculates the
cost function of si, si+1 and stotal, and the results are repre-
sented as costsi , costsi+1 , and coststotal . When costsi , costsi+1 ,
and coststotal satisfy Equation (5), it means that the two sub-
trajectories are oversegmented and merge si and si+1 from
the local perspective. The procedure repeats this step until
the last subtrajectory.

costsi + costsi+1 > coststotal : ð5Þ

3.4. The TS-MF Algorithm. The segmentation part and mer-
gence part are the two phases (global segmentation and local
optimization) of TS-MF, which are described in Section 3.2
and Section 3.3. Algorithm 3 shows the pseudocode of TS-
MF. This algorithm receives the following inputs: the raw
trajectory Trajið0 ≤ i ≤ nÞ, a time threshold T and the
Pearson coefficient threshold δ. The output is the set of
subtrajectories, which can be denoted as ðsi ⋯ sj ⋯ skÞ.

4. Experimental Evaluation

To evaluate the effectiveness of the proposed algorithm, we
verify the proposed algorithm on two real datasets. This
section first details the datasets (Section 4.1) and the evalua-
tion metrics (Section 4.2). Then, the parameter settings and
experimental results are introduced in Section 4.3 and
Section 4.4, while a comparative analysis with other algo-
rithms is presented in Section 4.5.

4.1. Trajectory Datasets. The first dataset is the vessels per-
forming fishing activities on the coast of Brazil. It contains
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Figure 2: The change of the value of ρFi ,F j:
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5190 trajectory points and 122 segments. Our purpose is to
partition the trajectories of fishing and not fishing. Generally,
in Brazil, the captain must report the position (such as lati-
tude and longitude) in real-time and record the status of fish-
ing vessels (such as fishing and not fishing). The entire

dataset was created using data from four vessels that perform
the same types of fishing activities on Brazil’s northeast coast.
Figure 4 (left) shows the trajectory of the four fishing vessels.

The second dataset is a subset of the geolife dataset
containing 12,955 trajectory points and 181 segments. The

Input: The raw trajectory Trajið0 ≤ i ≤ nÞ, time threshold T , Pearson coefficient threshold δ
Output: Segment point sequence Seg
1: pcc⟵ Calculate the Pearson coefficient of all adjacent trajectory points
2: Seg⟵ add p0 and pn to Seg
3: n⟵ the sum of the num of points with ρFi ,F j

< δ

4: for i = 0⟶ n − 1 do∗time complexity is OðnÞ ∗
5: ρFl−1,Fl

, pl ⟵ the minimum value of ρFl−1,Fland the corresponding points

6: pleft, pright ⟵ the adjacent segmentation points of pl in the SegPoint
7: Tlef t ⟵ Time interval between pl and pleft
8: Tright ⟵ Time interval between pl and pright
9: if Tlef t < T andTright < T then
10: add pl to Seg
11: end if
12: end for
13: return Seg

Algorithm 1: Trajectory segmentation algorithm based on the Pearson coefficient.

l⊥1
2 + l⊥2

2

l⊥1 + l⊥2
d⊥ =

d𝜃 = ||li|| . sin𝜃

L (H) = log2 (len(p1p5))
L (D|H) = log2 (d⊥ (p1p5, p1p2) + d⊥ (p1p5, p2p3) + d⊥ (p1p5, p3p4)

p3
p4

p5

p2

p1

𝜃

l⊥2l⊥1

li

+ d⊥ (p1p5, p4p5)) + log2 (d𝜃(p1p5, p1p2) + d𝜃(p1p5, p2p3) +
d𝜃(p1p5, p3p4) + d𝜃(p1p5, p4p5))

Figure 3: Schematic diagram of calculating the vertical distance, the angular distance of the line segment, and the LðHÞ and LðD ∣HÞ of the
subtrajectory

Input: The raw trajectory Trajið0 ≤ i ≤ nÞ, Segment point sequence SegPoint
Output: The set of sub-trajectories ðsi ⋯ sj ⋯ skÞ
1: ðs0 ⋯ si ⋯ skÞ⟵ Segment the raw trajectory Traji by SegPoint
2: k⟵ The number of sub-trajectories
3: for i = 0⟶ k do
4: si, si+1 ⟵ The si and its next sub-trajectory
4: stotal ⟵ Mergers si and si+1 into stotal
5: costsi , costsi+1 , coststotal ⟵ Calculate the value of the loss function of si, si+1 and stotal
6: if ðcostsi + costsi+1Þ > coststotal then
7: merges si and si+1 from the local perspective
8: end if
9: end for
10: return The set of sub-trajectories ðsi ⋯ sj ⋯ skÞ

Algorithm 2: Trajectory merging method.
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geolife dataset has a mix of behaviors, such as car, bus train,
and walk. Figure 4 (right) shows the part trajectory of
geolife.

From these trajectories, we extracted the information of
time, longitude, latitude, fishing, speed, and angle collected.
We computed some trajectory features for all the points in
this dataset, including mean speed and acceleration. The
data description is shown in Table 2.

4.2. Evaluation Metrics. In this work, the harmonic mean
(H) of average purity �P and average coverage �C is used
to evaluate the proposed algorithm. Scholars firstly pro-
posed the concepts of coverage and purity in [23] and
used the harmonic mean (H) to evaluate the trajectory
segmentation algorithm in [19].

The segment purity is the ratio of the sum of the most
frequent label in the segment and the sum of all the trajec-
tory points. For example, suppose a segmented trajectory
has k points, and the number of trajectory points with the
most same label is d, then, the segment purity C is d/k.
The average of purity values for all segments is called as �P.
Coverage is to evaluate the completeness of the segmenta-
tion algorithm. For example, suppose that the raw trajectory
segment τ is divided into τ1, τ2, τ2 is the larger one, and the
coverage C is defined as τ2/τ. The average for coverage of all
segments is called as �C. Since the two metrics of purity (P)
and coverage (C) are designed to be orthogonal, i.e., when
one index increases, the other index decreases. Therefore,

the harmonic mean of the purity and coverage is used to
evaluate the performance of TS-MF. Equation (6) gives the
formulation of the harmonic mean [19]. When the har-
monic mean is the highest, the purity and coverage of the
segmented trajectory reach a good compromise, and the seg-
mentation of subtrajectories is the best.

H =
2 ∗ �P ∗ �C
�P + �C

: ð6Þ

4.3. Parameter Settings. In the segmentation process, the
threshold of Pearson coefficient, that is, σ is employed to
find the segmentation point. In general, when ρFi ,F j

≥ 0:8,
the two variables of features are highly positively correlated,

Input: The raw trajectory Trajið0 ≤ i ≤ nÞ, a time threshold T , the Pearson coefficient threshold δ
Output: The set of sub-trajectories ðsi ⋯ sj ⋯ skÞ
1: SegPoint⟵ Segmentation method (Traji, T , δ)
2: ðsi ⋯ sj ⋯ skÞ⟵merging method (Traji, Seg)
3: return The set of sub-trajectories ðsi ⋯ sj ⋯ skÞ

Algorithm 3: Trajectory segmentation based on multiple motion features (TS-MF).

Figure 4: The fishing trajectory (left) and the part trajectory of geolife (right)

Table 2: Data description.

Field name Field description Sample data

Lng Longitude -34.9

Lat Latitude 0.861

Time Timestamp 1082199600

Label Operation status Fishing

Speed Speed 4.5

Angle Angle 358.3155

Accel Accelerated 0.000139

Avg Mean speed 4.502692

7Wireless Communications and Mobile Computing



0:6 ≤ ρFi ,F j
< 0:8, the two variables of features are moderately

positive correlated; 0:4 ≤ ρFi ,F j
< 0:6, the two variables of fea-

tures can be low correlation; 0 ≤ ρFi ,F j
< 0:4, the two vari-

ables of features may be irrelevant, and ρFi ,F j
< 0 suggests

that two variables of features are negatively correlated.
Therefore, the TS-MF can make δ = 0:4 to extract segmen-
tation points. In addition, the segmentation process also
utilizes the threshold of T to remove outlier points. Since
it is difficult to know the specific duration of each state
of the moving object and the purpose of setting the T is
only to remove the part outlier points, the T can be set
to the minimum value of the duration of each movement
state. The duration of fishing activities of fishing vessels is
6 hours on the coast of Brazil, which is mentioned in [33],
and the shortest duration of the walk generally is 30min.
Therefore, the T = 6 hours for the vessels performing fish-

ing activities on the coast of Brazil and T = 0:5 hours for
the geolife.

4.4. Experiment Result and Analysis. The experiment result
and analysis are detailed in this section. In this experiment,
the segmentation method and TS-MF are evaluated on the
fishing dataset and geolife dataset. In addition, to observe
the impacts of δ and demonstrate the feasibility of δ = 0:4,
it is tested under different δ. Figures 5–8 show the result of
the experiment.

The results are shown in Figures 5–8, which display the
value of the sum of subtrajectories, �P, �C, and H under differ-
ent σ on different datasets.

The results of the segmentation method are shown in
Figures 5–6. The results display that with the increase of δ,
the sum of subtrajectories increases, the �P increases, the �C
decreases, and the H increases.
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TS-MF is an extension of the segmentation method, that
is, there is one more merging method. The mergence part
merges the local subtrajectory by the segmentation method.
The results of TS-MF are as shown in Figures 7–8. Compare

the results of the segmentation method, we can observe the
num of subtrajectory is lower and the �C and H is better.
We also can discover that in the mergence part, the num
of merged subtrajectories on the fishing dataset is more than
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geolife dataset. The reason is that when fishing vessels
engage in fishing, the speed generally is 4miles per hour,
and the heading angle is constantly changing. This condition
leads to the value of the Pearson coefficient being lower and
the segmentation method may add many outlier points into
segmentation points. Geolife collected trajectory data of 182
users, which includes various motion states. The difference
of features of different motion states is large while the same
motion state is small. Therefore, the segmentation method
can accurately discover the segmentation points, that is,
the outlier points in segmentation points is less.

Overall, the results of TS-MF are better and the greater
of δ, the segmentation method can extract more segmenta-
tion points and leads to the �C and H becomes lower. But it
does not mean that the lowest δ is the best selection. As
shown in Figures 7–8, when the δ = 0:3, the sum of subtra-
jectory is very low, that is, many segmentation points are lost
of TS-MF. The results also indicate that it is the feasibility of
δ = 0:4.

4.5. Comparing TS-MF with Other Baseline Algorithms. In
this section, the experiment is repeated in the same environ-
ment, and TS-MF was compared with the other four trajec-
tory segmentation algorithms (CB-SMoT, GRASP-UTS,
SPD, and SWS) on the fishing dataset and geolife dataset.
The results are reported in Figure 9. As shown in Figure 9,
we can discover that the value of harmonic average is
90.1% and 94.28% on different datasets, and TS-MF achieves
the highest harmonic average of purity and coverage. The
results also demonstrate the feasibility of TS-MF.

5. Conclusions

It is envisioned that future wireless communications will be
more data-driven. It is possible to obtain the high-accuracy
and long-term trajectory of a moving object by mobile edge
cloud, beamforming, and artificial intelligence techniques.
But the long-term location data need huge computing
resources to process and loses a lot of information. The
segmentation algorithm designed for location data is the
basic step to develop the location-based application. This
study proposes an unsupervised trajectory segmentation
algorithm, named TS-MF, which employs the Pearson coef-
ficient to find the segmentation points and minimum cost
function to merge the oversegmented subtrajectory. We
compared our proposed segmentation algorithm against
GRASP-UTS, SPD, CB-SMoT, and SWS; the results show
that the proposed algorithm reaches the best harmonic mean
of purity and coverage on the fishing dataset and geolife
dataset. Furthermore, the TS-MF algorithm requires no
labeled data and its time complexity is OðnÞ, which means
it is computation efficient and thus most suitable for the seg-
mentation of large trajectory datasets.

However, there is one limitation of TS-MF. It is that
when the features are similar in the different movement
states, the proposed segmentation algorithm may not find
the qualified segmentation points for the raw trajectory.

As future work, we plan to extend this work in other
directions. First, we would analyze the trajectory motion pat-

tern and predict the subtrajectory state, semantic enhance-
ment for raw trajectory. Second, we would like to apply the
segmentation algorithm (TS-MF) to more wireless position-
ing data, which facilitates more artificial intelligence technol-
ogy are used to mine valuable information.
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