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With the development of society and the accelerated industrialization, the problem of water pollution has become increasingly
prominent. In order to stop the gathering and diffusion of harmful substances in water bodies, leading to further deterioration of
water quality and more serious environmental problems, environmental management departments have developed a series of
pollutant discharge standards to prevent water pollution in real time. Common testing methods are the colorimetric method and
TDS (total dissolved solids) value testing method, which are mostly through water bodies that contain acid, alkali, salt, and other
indicators of the concentration test, to produce an assessment of water quality. However, the traditional methods of water quality
testing, whether in the measurement time or in the accuracy of the test, are certain defects. In order to be able to quickly detect the
concentration of water quality indicators in water bodies, timely response and treatment of highly polluted water bodies are urgently
needed. In this paper, we propose a water quality detection classification model based on multimodal machine learning algorithm.
Firstly, we preprocessed and analyzed the collected water quality dataset and determined the reasonable and perfect water quality
classification influencing factors. Then, we successively built 15 kinds of classification models based on machine learning algorithms
for water quality detection. At the same time, we evaluated the performance of each model. From the four evaluation indexes of
precision, recall rate, F1 value, and accuracy, respectively, the real value is compared with the predicted value of each model. The
experimental results show that sulfate, pH, solids, and hardness are the important influencing factors to perform water quality
testing. And the three models XGBoost (Extreme Gradient Boosting), CatBoost (Categorical Boosting), and LGBM (Light Gradient
Boosting Machine) have better performances in conducting water quality testing. Finally, we further optimized the classification
models based on XGBoost, CatBoost, and LGBM by using two major tools: cross-validation and hyperparameter tuning.

1. Introduction

Water is an important environmental resource that has a vari-
ety of uses. For example, water is indispensable for irrigation of
crops, and drinking water is indispensable for our daily life.
However, with the global climate change, urbanization, and
industrialization, a large amount of domestic sewage and
industrial wastewater is discharged into natural water bodies,
and the pollutants in natural water bodies are continuously
enriched, and the available water resources are under serious
threat. Therefore, how to solve the pollution of water bodies
and use relevant technologies to control it has become an

increasing concern of scholars and governmental and corpo-
rate sectors. To control the concentration and discharge of
toxic and harmful pollutants, we need to first introduce various
water quality influencing factors, and most of these factors are
related to chemical substances. For example, according to the
Guidelines for Drinking-Water Quality released by World
Health Organization (WHO) in 2011, a certain range of
sodium, iron, manganese, and other chemicals will lead to poor
water quality, thus affecting the taste of drinking. The Food and
Agriculture Organization (FAO) of the UnitedNations has also
published data showing that many inorganic salts can affect the
growth of crops when they exceed the prescribed levels.
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The manual water quality testing process is labor-
intensive and time-consuming. This traditional testing has
many shortcomings, but the safety of human water and the
balance of aquatic ecosystems are such important and urgent
issues that we need to solve. Therefore, we propose the use of
machine learning models to efficiently and rapidly detect
and monitor water quality in real time.

In the traditional water quality analysis, regression anal-
ysis is often used to determine the correlation between vari-
ables. For example, some scholars have used regression
analysis to process data on the relationship between activity
ratios of 234U and 238U and TDS in Saudi groundwater
[1]; Mamun and Kwang-Guk also used regression analysis
to evaluate the water quality of Yeongsan River in Korea
with pollution source analysis and found that the river can
be influenced by other systems [2]. Due to the existence of
uncertain and nonlinear factors in the data, neural network
has become a very popular water quality prediction method
with its own good nonlinear mapping ability. For example,
in the research on water quality by Liu and Wang, they
established a water quality prediction model based on LSTM
(long short-term memory) network under big data in com-
bination with in-depth learning method [3]; some scholars
have also established a data-driven model based on BP neu-
ral network to predict and analyze water quality in time and
space, providing a basis for decision-making and disposal of
sudden water pollution events [4]. With the rapid develop-
ment of computer vision-related theory and application
research, some researchers have found that the important
index of water turbidity that determines whether tap water
can be drunk can be detected by using image processing
technology. A convolution neural network turbidity detec-
tion system based on embedded platform is designed. Com-
pared with the traditional turbidity identification method,
this scheme not only has lower cost, but also has strong
real-time performance, And it has high accuracy. Therefore,
the new detection method has good application value [5].

However, traditional analysis methods have limitations
in solving large-scale dynamic problems. And since the con-
text of the problem is relatively simple, using deep learning
techniques is too complex and does not offer significant
advantages. This has led to the introduction of machine
learning theory for improvement. Early researchers have
developed automated machine learning (AutoML) models
that use multivariate statistical analysis and water quality
indices to automate the assessment of water body pollutant
migration transformations over time and space. This saves
time and reduces development costs [6]; similarly, it has
been proposed that AutoML models can be used to define
controlling factors in water bodies and explain changes in
alpha and beta in the aggregate. It is also emphasized that
AutoML models can be used to process datasets with differ-
ent geological and hydrological conditions [7]. Varol et al.
used cluster analysis, factor analysis, and principal compo-
nent analysis to iteratively analyze data with less polluted,
severely polluted, and seriously polluted water and found
that soluble salts, organic pollution, and nutrients were the
main factors responsible for water quality changes [8]. In
addition, support vector machines (SVM) have also been

proposed to have broad research prospects in monitoring
water quality indicators. For example, Yu et al. used support
vector machines (SVM) to perform multicomponent spec-
troscopy on four drugs with similar fluorescence properties
that could not be distinguished and found that the error in
predicting the concentration in the components using fluo-
rescence spectroscopy was less than 0.1% [9]. When we
encounter complex samples with high variance and low bias,
the variance can be reduced by using a random forest model
for drug effectiveness. For example, Fang et al. used the
random forest method to construct a lake response model
with anthropogenic nutrient inputs, hoping to identify the
sources of factors that have a critical impact on water quality
and respond to reduce their discharge [10]. In Al-Mukhtar’s
study of suspended matter in the Diglis River, random for-
est, support vector machine, and artificial neural network
methods were applied simultaneously to predict sediment
content, resulting in effective reduction of sediment content
in the river water [11]. The integrated learning algorithm has
a great advantage over other algorithms in terms of accu-
racy. In addition to the random forest algorithm mentioned
above [12, 13], XGBoost algorithm [14], CatBoost algorithm,
and other integrated learning algorithms are also widely
used in studies about water bodies. For example, J. H. Lee
et al. analyzed the short-term prediction of urban water
quality by using decision tree, random forest, and XGBoost
algorithms to model the variation of dissolved oxygen
(DO) and found that electrical conductivity, cumulative pre-
cipitation, total nitrogen, and water temperature are the key
factors limiting DO [15].

As we can see, water quality testing has been a headache
for public administrators due to the backwardness of tradi-
tional methods. Thus, in this paper, we have established an
effective water quality testing model for real-time and repet-
itive testing tasks by introducing a machine learning
approach. In terms of the cost of use, the labor-intensive
process and time of manual labor are greatly reduced [16].
Specifically, our contributions are as follows.

(1) We built three efficient machine learning frame-
works, namely XGBoost, CatBoost, and LGBM for
water quality and obtained excellent classification
accuracy

(2) We introduced 12 additional basic machine learning
models as a benchmark for comparative evaluation,
which objectively and realistically reflects the effec-
tiveness of our adopted models

(3) We performed hyperparameter optimization for the
existing model and used cross-validation to deter-
mine multiple sets of optimal parameters, which
substantially improved the robustness and generali-
zation ability of the model

The remaining chapters of this paper are organized as
follows: Chapter two gives a detailed description of the data-
set and discusses our model work. Chapter three is about our
experiments and discussion section. The last chapter pro-
vides the corresponding summary.
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2. Related Work

The quality of water bodies has a great impact on people’s
production and life. In the natural environment, water
resources are easily affected due to the lack of supervision
of sewage discharge, resulting in the overall quality of water
bodies declining. Therefore, real-time and accurate testing of
water quality is of great practical importance. In this chapter,
we will first provide a brief introduction to the water quality
detection dataset. Then we will focus on the explanation of
the three major machine learning methods, XGBoost,
CatBoost, and LGBM.

2.1. Dataset Introduction

2.1.1. Dataset Collection. In this paper, we used the open-
source water quality testing dataset on the kappa platform.
The data includes 3,276 water quality data collected under
different water quality conditions. The attribute values, i.e.,
water quality influencing factors, are pH, hardness, total dis-
solved solids (TDS), chloramine, sulfate, electrical conduc-
tivity, organic carbon, trihalomethanes (THM), turbidity,
and potability. Details of these ten influencing factors are
as follows.

(1) pH is an important indicator of the acidity and
alkalinity of a water body. It is also an indicator of
the acidic or alkaline conditions of the water state.
WHO recommends a maximum permissible limit
of pH of 6.5 to 8.5. The current range of investiga-
tion is 6.52-6.83, which is in line with WHO
standards

(2) Hardness is mainly caused by calcium and magne-
sium salts. These salts are dissolved from the geolog-
ical deposits through which the water passes. The
length of time that the water is in contact with the
hardness-producing material helps to determine the
hardness in the raw water. Hardness is initially
defined as the total amount of calcium and magne-
sium ions in the water body

(3) Water is capable of dissolving a variety of inorganic
and some organic minerals or salts such as
potassium, calcium, sodium, bicarbonate, chloride,
magnesium, and sulfate. These minerals produce
unwanted flavors and dilute the color in the appear-
ance of the water. This is an important parameter for
water use. High mineralization of water with TDS
indicates high mineralization of water. In drinking
water, the optimum concentration of TDS in water
is 500mg/L, and the maximum limit is 1000mg/L

(4) Chloramines and chlorine are widely used in
public disinfection due to their ability to produce
reactive chlorine species, which are very powerful
oxidizers. Chloramines are usually formed when
ammonia is added to chlorine to treat drinking
water. Chlorine levels of up to 4 milligrams per
liter (mg/L or parts per million (ppm)) in drinking
water are considered safe

(5) Sulfates are naturally occurring substances found in
minerals, soils, and rocks. Groundwater, air, plants,
and food all contain large amounts of sulfate. The
main commercial use of sulfate is in the chemical
industry. The concentration of sulfate in seawater is
about 2700 milligrams per liter (mg/L). In most
freshwater supplies, the concentration ranges from
3 to 30mg/L, although much higher concentrations
(1000mg/L) are found in some geographic locations

(6) Pure water is not a good conductor of electric cur-
rent but a good insulator. Usually, the amount of dis-
solved solids in the water determines the electrical
conductivity. Electrical conductivity (EC) actually
measures the ionic processes in a solution that allow
it to transmit current. According to WHO standards,
the EC value should not exceed 400μS/cm

(7) Total organic carbon (TOC) in source water is
derived from decaying natural organic matter
(NOM) and synthetic sources. TOC is a measure of
the total amount of carbon in organic compounds
in pure water. According to the United States Environ-
mental Protection Agency (US EPA), the TOC con-
tent in treated/drinking water should be <2mg/L,
and the TOC content in source water used for treat-
ment should be <4mg/L

(8) THMs are chemicals that may be found in chlorine-
treated water. The concentration of THMs in drink-
ing water depends on the amount of organic matter
in the water, the amount of chlorine required to treat
the water, and the temperature of the water being
treated. THM levels of up to 80 ppm in drinking
water are considered safe

(9) Turbidity of water depends on the amount of solid
matter in suspension. It is a measure of the luminous
properties of water, and the test is used to indicate
the quality of the wastewater discharge in relation
to colloidal substances. The average turbidity value
for the Wondo Genet Campus (0.98 NTU) is below
5.00 NTU recommended by WHO

2.1.2. Dataset Description. We divided the 3,276 water qual-
ity data into high-quality water bodies and polluted water
bodies according to drinking water standards. 0 indicates
high-quality water bodies and 1 indicates polluted water
bodies. As shown in Figure 1, 61.0% of the water bodies
are of high quality, and 39.0% are of polluted water bodies,
which is also in line with the good to bad ratio of water
bodies in our actual scenario.

Then, we visualize the distribution of each feature for
type 0 and type 1 separately. The results are shown in
Figure 2.

We found that the factors affecting water quality are nor-
mally distributed. Then we performed outlier detection on
the characteristic distributions of type 0 and type 1 data,
respectively. The results are shown in Figure 3.

The data itself has obvious outlier points for all the
influencing factors except for the distribution of three
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indicators of electrical conductivity, organic carbon, and
turbidity.

Finally, we conducted a correlation analysis of the statis-
tical characteristics of the water quality data. The correlation
matrix was obtained as in Figure 4.

From the results, it can be seen that the correlations
among the 9 variables are small and relatively independent
from each other. Therefore, all 9 feature data are used as
the input of the machine learning model in the experiment
part of this paper.

2.1.3. Dataset Splitting. This is an important step in running
the model. Splitting the dataset into a training set and a test
set are the key to start the model. Next, the machine learning
model is trained, and the stability of the system is improved
by testing the model. The data is split into training and test
sets in a ratio of 3 : 1. Thus, out of the 3,276 data, 2,457 data
were used as training set, and 819 data were used as test set.

2.2. Water Quality Classification Model. Classification algo-
rithms and regression algorithms are the two common super-
vised learning algorithms; the difference between them is
whether the type of variables output is continuous or not.
Classification algorithms output continuous variables, while
regression algorithms output discrete variables [17]. The water
quality monitoring process is a classification process and can
be handled using classification algorithms. In the subsections,
we will focus on the algorithmic process of the three main-
stream artifacts XGBoost, CatBoost, and LGBM as classifica-
tion models in the framework of GBDT (gradient boosting
decision tree) algorithm. All these methods are an improved
implementation in the framework of GBDT algorithm.

2.2.1. XGBoost Algorithm. The XGBoost algorithm is trans-
formed from the Boost algorithm framework and belongs
to the integrated learning algorithm in machine learning. It
is an efficient classification algorithm that can be applied to
unbalanced datasets. In the algorithm, different classification
trees are aggregated together, and the predicted values are
obtained by summing each tree [18].

As shown in Figure 5, this algorithm is significantly
superior in terms of speed and fault tolerance due to the
clustering of multiple weak classifiers into one strong
classifier in the algorithm, so that the weak classifiers can
compensate each other’s deficiencies. At the same time, to
avoid data loss, we use a leftward growing strategy when
growing the tree [19].

First, after extracting all the relevant variables related to
water quality monitoring as feature vectors, we get the dataset
D, which is defined as fðxi, yiÞ, i = 1⋯ n, xi ∈ Rm, yi ∈ Rg,
where n denotes the number of samples and m denotes the
number of features for each sample, assuming that there are
K regression trees in XGBoost, the model can be defined as

ŷi = 〠
K

k=1
f k xið Þ, f k ∈ F: ð1Þ

The role of each node of the tree in the XGBoost model is
to do feature splitting, so the metric of the number of times a
feature is selected as a split feature can be used as a criterion
for judging the importance of the feature for the water quality
detection classification task.

2.2.2. CatBoost Algorithm. Gradient boosting decision trees
(GBTD) are often used in many different types of big data
processing, and it has also been widely studied in recent
years. In April 2017, Yandex developed a CatBoost model
based on GBTD. The model mainly has the following
advantages: it enriches the dimensionality of data process-
ing by combining category-based features during data pro-
cessing; the introduction of the leaf node method can
reduce overfitting.

The main steps of the CatBoost algorithm are (1) binari-
zation of the data, (2) conversion of categorical data into
numerical data, and (3) splitting and combining of feature
combinations according to the “greedy strategy.” In addi-
tion, the tree is constructed by first determining the struc-
ture of the tree, then determining the leaf node values and
splitting them, and selecting the best splitting scheme
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according to the calculated leaf node values. The best split-
ting scheme is selected according to the calculated leaf node
values [20].

Among them, in terms of processing deviations, the Cat-
Boost algorithm completes the tree construction in two
steps: first, the tree structure is selected, and the values of
the leaf nodes are calculated after the tree structure is fixed;
second, different splitting methods are enumerated, and the
obtained tree is scored by calculating the values of the leaf
nodes to select the best split.

CatBoost achieves simultaneous processing of the train-
ing dataset and the processing dataset, which effectively
improves the shortage of feature processing efficiency of
the GBTD model; at the same time, it generates a random
arrangement of the training set and uses nonrepeated data
to train the model, which reduces overfitting [21].

2.2.3. LGBM Model. Commonly used machine learning
algorithms, such as neural networks, can be trained in a
minibatch fashion, and the size of the training data is not
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limited by memory. GBDT, on the other hand, needs to tra-
verse the entire training data several times during each itera-
tion. If the entire training data is loaded into memory, it will
limit the size of the training data; if it is not loaded into mem-
ory, repeatedly reading and writing the training data will con-
sume a lot of time. Especially in the face of industrial-grade
massive data, the ordinary GBDT algorithm cannot meet the
demand. Therefore, in order to solve the problems encoun-
tered by GBDT in massive data and make GBDT better and
faster to be used in industrial practice, LGBM was invented.

LGBM model is an optimization model based on deci-
sion tree, which mainly includes one-sided decision process
and feature bundling process. The GOSS (Gradient-Based

One-Side Sampling) algorithm is used to reduce the dimen-
sionality of the sample data in the unilateral decision pro-
cess; and the EFB algorithm is also introduced to reduce
the high-dimensional feature data elements and reduce the
complexity of data processing. Compared with the tradi-
tional boosting method, the LGBM model can show higher
accuracy and computing speed when dealing with a large
amount of high-dimensional data [22].

3. Experiments and Analysis

In the previous chapters, we have introduced the classifica-
tion model for water quality detection based on machine
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learning. Next, in this chapter, we will use the collected water
quality detection dataset to test the identification performance
of each model. Here, in addition to our previous introduction
of the GBDT algorithm framework under the three main-
stream artifacts of XGBoost, CatBoost, and LGBM as classifi-
cation models, we also built a 12 additional common
machine learning water quality detection classification models
such as Bayesian and SVM to assist in the model evaluation.

3.1. Experiment Environment. The experiment environment
for this paper is configured with an i5-8300H 2.30GHz

processor and NVIDIA GTX 1050Ti graphics card, and
the experiments were conducted under Python 3.6 and
PyCaret 1.0.0.

3.2. Evaluation Indicators of Experiments. In order to com-
prehensively evaluate the performance of the classification
model for water quality testing, four metrics of precision,
recall rate, F1 value, and accuracy were chosen as the judging
criteria in this paper. Table 1 shows the confusion matrix
composed of the labels of the true and predicted results.
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Among them, the four classification criteria indica-
tors of water quality testing are calculated as shown in
equations (2)–(5).

The precision rate is calculated by the formula:

P = TP
TP + FPð Þ : ð2Þ

The accuracy rate is calculated by the formula:

Acc = TP + TN
TP + TN + FP + FN

� �
: ð3Þ

The recall rate is calculated by the formula:

R = TP
TP + FNð Þ : ð4Þ

The F1 score is the summed average of the precision and
recall rates:

F1 = 2 × P × R
P + R

: ð5Þ

Among them, ACC can be understood as the probability
of correct prediction. Its defect is that when the proportion
of positive and negative samples is very uneven, the category
with a large proportion will affect acc. If 99% of the abnor-
mal points are nonabnormal points, we will regard all sam-
ples as nonabnormal points, and the ACC will be very
high; P can be understood as how many predicted things
are of interest to users; R can be understood as how many
things users are interested in are predicted. Generally speak-
ing, P and R are a pair of contradictory measures. In order to
better characterize the performance measurement of the
learner in P and R, we can also introduce F1 value. Further,
this paper compares the accuracy differences between water
quality detection classification models by the magnitude of
the area under the ROC curve. The area under the ROC
curve is denoted as AUC, which can be used to evaluate
the performance of the classifier model, and is calculated as

AUC = ∑n0
i=1r − n0 × n0 + 1ð Þ/2

n0 × n1
: ð6Þ

3.3. Experimental Comparison of Data Balancing. In order to
deal with unbalanced data, either upsampling or downsam-
pling methods are generally used. Since, the downsampling
method is prone to data loss and the upsampling method
is prone to overfitting, the SMOTE (Synthetic Minority

Oversampling Technique) algorithm is chosen in this paper
to accomplish the task of expanding the dataset.

This is an upsampling method, and the main idea of the
algorithm is as follows:

(1) Compute all negative class samples xi to all samples
K-nearest neighbors of similar samples

(2) For each minority class samples, the nearest neigh-
bor sample x̂i is selected

(3) For x̂i and negative class samples xi, take random
distances and construct new minority class samples.
The main idea is shown in Figure 1

The coordinates f1 and f2 in Figure 6 represent the sam-
ple space, xi represents the ith minority class sample value
selected, and x̂i represents the nearest neighbor sample
selected. The SMOTE algorithm is beneficial to expand the
data for better machine learning training but has some
drawbacks of its own. During the calculation of the algo-
rithm, the number of nearest neighbor K values needs to
be defined manually by the trainer, and the upper limit of

f2

f1

xi

⌃xi

Figure 6: The principle of SMOTE algorithm.

Table 2: Classification results before data balancing.

Precision Recall F1 score Support

0 0.84 0.74 0.79 510

1 0.65 0.77 0.70 309

Accuracy 0.75 819

Macro avg 0.75 0.76 0.75 819

Weighted avg 0.77 0.75 0.76 819

Table 3: Comparison results after data balancing.

Precision Recall F1 score Support

0 0.78 0.90 0.84 510

1 0.78 0.59 0.67 309

Accuracy 0.78 819

Macro avg 0.78 0.75 0.76 819

Weighted avg 0.78 0.78 0.78 819

Table 1: Confusion matrix.

True results
Forecast results

Positive Negative

Positive TP FN

Negative FP TN
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K values can only be trained and tested according to the
training value characteristics.

We used Gradient boosting algorithm as an example of
water quality detection model to classify the original water
quality detection data and got the results as shown in
Table 2.

After we use the SMOTE algorithm to upsample the
water quality detection data, the task of balancing the data
and data expansion of the dataset is completed. Next, the
classification results obtained by the water quality detection
classification model using the equalized data are shown in
the following Table 3.

When we can compare the results, we can see that the
data can achieve a high accuracy for both type 0 and type
1 after data balancing, while the model has a large accuracy
difference for the classification of the two types of water
quality before data balancing.

3.4. Performance Comparison of Different Algorithms. In this
paper, we propose to use the AutoML technique and have
conducted a related study using the PyCaret third library,
and the experimental results are shown in Table 4.

We obtained the results of 15 different machine learning
models on balanced training data, and comparing the
results, we can find that three models, CatBoost, LGBM,
and XGBoost, have the highest accuracy rates. It also further
validates the reasonableness of our model selection. In the
later chapter, we will optimize the hyperparameters of these
three models to obtain the optimal model and use 10-fold
cross-validation to demonstrate the applicability and model
robustness for this task.

3.5. Fine-Tuning and Optimization of Model Parameters.
The performance of a water quality detection classification
model will also depend on our choice of hyperparameters.

Table 4: Performance analysis of classification models for water quality detection based on common machine learning.

Model Accuracy AUC Recall Prec. F1

0 CatBoost classifier 0.78730 0.8869 0.76710 0.78100 0.77360

1 Light gradient boosting machine 0.77790 0.8789 0.76160 0.76810 0.76450

2 Extreme gradient boosting 0.75570 0.8604 0.76950 0.72940 0.74850

3 Gradient boosting classifier 0.75110 0.8581 0.76240 0.72610 0.74340

4 Random Forest classifier 0.74700 0.8266 0.66780 0.76870 0.71420

5 Extra trees classifier 0.71910 0.7927 0.62560 0.74060 0.67760

6 Decision trees classifier 0.70560 0.7052 0.69720 0.68790 0.69190

7 Ada boosting classifier 0.69840 0.7954 0.69310 0.67860 0.68510

8 Quadratic discriminant classifier 0.64640 0.6998 0.50560 0.66890 0.57500

9 K neighbors classifier 0.63670 0.6791 0.64300 0.61040 0.62560

10 Naive Bayes 0.56400 0.5905 0.38860 0.55850 0.45670

11 Ridge classifier 0.53840 0.0000 0.29090 0.52550 0.37320

12 Logistic regression 0.53800 0.5249 0.29090 0.52470 0.37300

13 Linear discriminant analysis 0.53800 0.5249 0.29090 0.52470 0.37300

14 SVM—linear kernel 0.50490 0.0000 0.35290 0.46800 0.38630

Table 5: CatBoost 10-fold cross-validation.

Accuracy AUC Recall Prec. F1

0 0.8158 0.9004 0.7857 0.8182 0.8016

1 0.7895 0.8798 0.8095 0.7612 0.7846

2 0.7669 0.8806 0.7460 0.7581 0.7520

3 0.7970 0.8783 0.7460 0.8103 0.7769

4 0.7331 0.8468 0.7143 0.7200 0.7171

5 0.8120 0.9080 0.8175 0.7923 0.8047

6 0.8075 0.8894 0.8080 0.7891 0.7984

7 0.7774 0.8759 0.7840 0.7538 0.7686

8 0.7396 0.8609 0.7222 0.7280 0.7251

9 0.7698 0.8771 0.7460 0.7642 0.7550

Mean 0.7809 0.8797 0.7679 0.7695 0.7684

SD 0.0275 0.0167 0.0357 0.0310 0.0293
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However, in general, due to the large search space of hyper-
parameters, we usually have little time and computational
cost to try every possible case, and even with automated
hyperparameter tuning methods such as grid search and
Bayesian optimization, their practicality is still not strong.
Therefore, we combine practical empirical methods for
fine-tuning parameters, both in terms of reducing the time
spent on finding parameters and in terms of computational
cost overhead. In this subsection, we expect to find the opti-
mal hyperparameters of the machine learning-based water
quality detection model by fine-tuning and optimizing the
parameters of the model.

3.5.1. CatBoost. The results of hyperparameter optimization
and 10-fold cross-validation of the CatBoost model are
shown in Table 5.

From the table, it can be seen that the average accuracy
of the model can reach more than 78%, and the standard
deviation of accuracy is small, which has a good classifica-
tion performance.

Then we analyzed the factors that affect the model out-
put and find out the factors that are more correlated with
the output, as shown in Figure 7.

We experimentally found that Sulfate, pH, Solids and
Hardness are important influencing factors for conducting
water quality tests.

3.5.2. LGBM. Similarly, the results of our hyperparametric
optimization and 10-fold cross-validation of the LGBM
model are shown in Table 6.

The analysis results show that the accuracy of the model
varies became less in ten cross-validations and the final
accuracy reaches 78%.

Then we analyzed the factors that affect the output of the
model to find out the factors that are more correlated with
the output, as shown in Figure 8.

Similarly, we obtained the conclusion that sulfate, pH,
solids, and hardness are important influencing factors for
conducting water quality tests.

We plot the ROC curve of model classification. The
closer the curve is to the upper left corner, the higher the
prediction accuracy. The plotted results are shown in
Figure 9.

From this, we can find that the area under each curve is
larger, indicating that the prediction accuracy is also higher.
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Figure 7: Visualization of important features.

Table 6: LGBM 10-fold cross-validation.

Accuracy AUC Recall Prec. F1

0 0.8083 0.8902 0.7937 0.8000 0.7968

1 0.7632 0.8754 0.7778 0.7368 0.7568

2 0.7857 0.8724 0.7778 0.7717 0.7747

3 0.7970 0.8773 0.7381 0.8158 0.7750

4 0.7444 0.8455 0.6984 0.7458 0.7213

5 0.8045 0.8973 0.8095 0.7846 0.7969

6 0.8038 0.8877 0.8160 0.7786 0.7969

7 0.7774 0.8753 0.7600 0.7661 0.7631

8 0.7509 0.8731 0.7143 0.7500 0.7317

9 0.7585 0.8642 0.7460 0.7460 0.7460

Mean 0.7794 0.8758 0.7632 0.7695 0.7659

SD 0.0227 0.0137 0.0372 0.0244 0.0258
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3.5.3. XGBoost. Finally, we perform hyperparameter optimi-
zation and 10-fold cross-validation of the XGBoost model,
and the results are shown in Table 7.

From the table, it can be seen that the hyperparametric
optimized XGBOOST model achieves 3% higher accuracy
than the preoptimized model, which verifies the effectiveness
of hyperparametric optimization. From the above results, it
can be seen that the optimized XGBoost has the highest clas-
sification accuracy and the smallest standard deviation of
accuracy, and the model has the best stability.

Next, we visualized the important features, and the
results are shown in Figure 10.

We obtained that sulfate, pH, solids, and organic_carbon
are the important basis for the classification of water quality
testing. From the figure, we found that organic_carbon is
more similar to hardness. Therefore, in the results of the
analysis of the important characteristics of the three types
of models, we can conclude that sulfate, pH, solids, and
hardness are important influencing factors for water quality
testing. Therefore, in the subsequent research work, we
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Figure 9: LGBM-ROC curve.
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Figure 8: Visualization of important features.
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should mainly collect the data of the above features and fur-
ther explore the depth information of the features.

4. Conclusion

In this paper, the open-source water quality test dataset with
the attributes of pH value, hardness, total dissolved solids
(TDS), chloramine content, sulfate content, conductivity,
organic carbon, trihalomethane (THM), turbidity, and
drinkability is studied. 15 mainstream machine learning
water quality detection algorithms based on XGBoost,
CatBoost, RF, Naive Bayes, and LGBM are designed, respec-
tively, and the real values are compared with the predicted
values of various models from the four evaluation indexes
of accuracy, recall, F1 value, and accuracy. The experimental
results show that sulfite, pH, solids, and hardness are
important influencing factors for water quality detection.
And XGBoost, CatBoost, and LGBM have good perfor-
mance in water quality detection. Finally, we further opti-
mize the classification model of water quality detection
based on XGBoost, CatBoost, and LGBM by means of

cross-validation and super parameter optimization. The
widely used models have proved that XGBoost, CatBoost,
and LGBM models have good treatment effects on water
quality indicators and can be applied to water quality detec-
tion on a large scale.
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The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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