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Achieving maximum network coverage with a limited number of sensor nodes is key to node deployment of wireless sensor
network (WSN). This paper proposes an improved marine predator algorithm (IMPA) for 3D surface wireless sensor network
deployment. A population evolution strategy based on random opposition-based learning and differential evolution operator is
proposed to enrich the population diversity and improve the global search capability of the algorithm. The grouping idea of
the Shuffled Frog Leaping Algorithm (SFLA) is then introduced. A local search strategy based on the SFLA is proposed to
replace the FADs effect of MPA and enhance the ability of the algorithm to escape from the local optimum. A quasireflected
opposition-based learning strategy is also presented to improve the optimization accuracy, accelerate the convergence speed of
the algorithm, and improve the quality of the solution. Fifteen benchmark functions are selected for testing. The results are
compared with seven different algorithms. The results show that the improved algorithm has excellent optimization
performances. Finally, the IMPA is applied to optimize WSN coverage on 3D surfaces. The experimental results show that the
proposed IMPA has good terrain adaptation and optimal deployment capabilities. It can improve the coverage of the network,
reduce the deployment cost, and extend the network life cycle.

1. Introduction

Wireless sensor network (WSN) is a type of network com-
posed of sensor nodes deployed in the monitoring area
through self-organization and multihop, which can sense,
process, and transmit the information of the perceived
region in real-time. WSN has been widely applied to military
action, space exploration, environmental science, smart
home, fine agriculture, emergency rescue, and other fields
[1–5]. The coverage problem is the first fundamental issue
faced by WSN configuration. The sensor nodes may be arbi-
trarily distributed in the configuration area, which reflects
the status of a certain area of the WSN being monitored
and tracked. And it involves communication quality, net-
work life, and other issues. So, it directly affects the service
quality of the entire network [6]. The sensor has a very lim-
ited battery due to the size of the sensor itself. Especially in

the harsh deployment area, it is not feasible to replenish
the energy of the sensors by manual means. Under certain
coverage conditions, it is necessary to reasonably utilize the
energy of the nodes to extend the network life cycle. As a
result, achieving maximum network coverage with a limited
number of sensor nodes becomes a key within the sensor
node deployment.

At present, the coverage optimization algorithms for tradi-
tional 2D planes are very well developed. However, they cannot
meet realistic and complex environments [7–12]. Compared
with the 2D deployment environment, the 3D sensor node
deployment is more complex and the network maintenance is
more difficult. In addition, the existing 2D coverage methods
cannot be directly applied in the 3D environment, otherwise
a large number of coverage holes will be generated. Thus, the
problem of WSN node deployment based on the 3D environ-
ments has become a vital research [13–15]. WSN node
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deployment for 3D environments can be divided into two cat-
egories. One category is node deployment in 3D space, such as
smart cities [16], smart factories [17], and underwater wireless
networks [18]. The other category is node deployment of
WSNs on 3D surfaces, such as node deployment onmountains
[19]. TheWSN coverage of 3D surfaces as a particular coverage
scenario for the 3D environments has been little studied in this
aspect. However, there are still many scholars who have pro-
posed appropriate coverage methods.

Swarm intelligence algorithm is an effective method for
solving many practical problems [20–22], and it has been
used by many scholars to solve the 3D surface coverage opti-
mization problem. The marine predator algorithm (MPA) as
a swarm intelligence algorithm was proposed by Faramarzi
et al. [23] in 2020. The MPA was proposed to simulate the
predatory behavior of marine organisms. Their research
was inspired by the different hunting methods of ocean life
and the speed of movement between predator and prey.
Although the MPA has significant advantages in optimiza-
tion problems and engineering applications, it still has some
disadvantages such as the low solution accuracy, the slow
convergence, and the poor local exploitation capability. In
order to maximize the 3D surface WSN coverage and
prolong the network life cycle, aiming at the defects of the
MPA, this paper proposes a multistrategy integrated
improved marine predator algorithm called IMPA. In the
case of fewer sensor nodes, it can effectively improve the net-
work coverage and extend the network life cycle.

This algorithm introduces a random opposition-based
learning strategy and differential evolution operator to
enrich the population diversity and expand the population
search range. A grouping idea of the Shuffled Frog Leaping
Algorithm (SFLA) is proposed to improve the exploitation
ability of the algorithm. The global information and local
search within the group are employed to guide the worst
individual to approach the optimal individual. It can
accelerate the convergence of the algorithm and reduce the
risk of falling into the local optimum issues. To further speed
up the convergence of the algorithm, a quasireflected
opposition-based learning (QOBL) mechanism is proposed.
And the boundary strategy is improved to enhance the
quality of the solution. The algorithm is compared with the
MSIMPA [24], the MPA, the Enhanced Sparrow Search
Algorithm (ESSA) [25], the Improved Grey Wolf Optimizer
(IGWO) [26], the Whale Optimization Algorithm (WOA)
[27], the Particle Swarm Optimization (PSO) [28], and the
Differential Evolution Algorithm (DE) [29] on 15 bench-
mark functions. The comparisons verify a strong optimiza-
tion performance of the proposed algorithm. Finally, the
proposed algorithm is applied to the WSN coverage optimi-
zation of two 3D terrains. The simulation results show that
the IMPA can effectively improve the coverage of nodes,
save the deployment cost of the network, and improve the
network life cycle, which further verifies the practicability
and effectiveness of the algorithm. In this study, the main
contributions can be summarized as follows:

(1) Most researchers calculate coverage using a 0-1 percep-
tion model, which is overly idealized in 3D environ-

ment. Therefore, this paper proposes a probabilistic
coverage model suitable for 3D surfaces

(2) A population evolution strategy based on random
opposition-based learning and differential evolution
operator is proposed to enrich the population diver-
sity while improving the global search ability of the
algorithm

(3) A local search strategy based on SFLA is proposed to
replace the local search mechanism of the MPA to
enhance the algorithm’s local exploitation capability
and the ability to jump out of the local optimum

(4) A novel 3D surface WSN coverage optimization tech-
nique based on multistrategy integrated improved
marine predator algorithm is presented. Simulation
experiments are conducted in two 3D terrains and
the method has higher coverage and longer life cycle
compared to other four algorithms

The rest of the paper is organized as follows. Section 2 pre-
sents the current research status and related work on 3D sur-
face coverage and MPA algorithms. Section 3 introduces the
relevant models for WSN node deployment on 3D surfaces.
Section 4 describes the proposed IMPA algorithm in detail.
Section 5 compares and analyzes the algorithms on the bench-
mark test functions. Section 6 presents the application of
IMPA for WSN coverage in two 3D terrains. Finally, Section
7 concludes and proposes future research.

2. Related Work

At present, the research on WSN coverage control in 3D
environment is a hot topic. For the WSN coverage optimiza-
tion problem on 3D surfaces, some scholars use traditional
techniques to improve coverage and ensure network service
quality. For example, Anand et al. proposed a node coverage
method applicable to 3D surfaces based on the terrain
segmentation method of the Voronoi diagram [30]. Their
simulation results demonstrated improvement in the
algorithm’s efficacy. A 3D deployment method based on
the virtual force algorithm was proposed [31]. The simula-
tion results show that the algorithm can be adapted to all
types of surfaces and achieve full coverage while maintaining
network connectivity. Kim [32] introduced a mobile sensor
network for the coverage problem in mountainous terrain
and proposed a 3D coverage method by considering the
physical characteristics such as slopes in mountainous ter-
rain. Simulation experimental results show that the method
is significantly improved in terms of network coverage and
coverage time. Full coverage of the monitoring area can be
achieved by deploying an appropriate number of sensors.
However, the method is not applicable in large-scale node
deployment scenarios. These traditional techniques have
provided important solutions and valuable research results
for solving the coverage optimization problems of WSN,
but there are some shortcomings. For example, the struc-
ture of some algorithms is too complex, which makes it
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difficult to meet the service requirements of users in
practical deployment.

Since the swarm intelligence optimization algorithm has
shown excellent results in various optimization problems
and engineering applications, it opens up a new path for
the research of coverage optimization of WSN, many
researchers have utilized the swarm intelligence algorithm
to optimize the WSN coverage of 3D surfaces [33–35]. For
example, Li et al. [34] proposed a Modified Parallel Tunicate
Swarm Algorithm (MPTSA) based on the improved tradi-
tional parallel strategy and applied it to the 3D surface cov-
erage optimization. Their simulations and experimental
results show the MPTSA can effectively improve the cover-
age. However, this method does not consider the lifetime
of the network. Literature [36] proposed an innovative
method for determining the 3D surface perception blind
area for the 3D spatial target coverage problem. A differen-
tial evolution algorithm was employed to solve the 3D sur-
face nodes deployment problem to realize full coverage of
the monitoring area with the least number of nodes. How-
ever, the proposed method for judging the 3D perception
blind area ignored the limitations where both sensing nodes
and monitoring points are located on the terrain surface.
Wang and Xie [37] proposed a more comprehensive method
for determining the 3D surface perception blind area based
on the mentioned limitations of perceptual blind area deter-
mination. They also innovatively enhanced the grid method
commonly used in 2D WSN coverage to make it applicable
to the coverage calculation of 3D surfaces. Moreover, an
Enhanced Grey Wolf Optimizer (EGWO) using a hybrid
inner and outer layer location update strategy was proposed
and employed to the deployment optimization of 3D sur-
faces. The experimental results show that the EGWO has
excellent deployment ability. However, the coverage percep-
tion model of this work is a binary perception model, which
is too ideal in complex 3D terrain.

Currently, the research on MPA focuses on improving
and applying the algorithm itself. Houssein et al. [38]
proposed a MPAOBL-GWO algorithm incorporating the
opposition-based learning and the Grey Wolf Optimizer
(GWO). The GWO was applied as the local search method
of MPA. It improved the exploitation capability of the algo-
rithm and avoided falling into the local optimum issues.
However, the convergence speed of the algorithm still needs
to be improved. Abdel-Basset et al. [39] proposed an
improved marine predator algorithm (IMPA) by using the
improved population strategy based on the population’s
average fitness. This strategy enhanced the performance
and convergence speed of the algorithm. However, the risk
of falling into the local optimum searching for individuals
while reducing the population diversity was increased. Liter-
ature [40] introduced a differential evolution operator into
the MPA. It proposed an enhanced marine predator algo-
rithm (EMPA) for identifying static and dynamic photovol-
taic model parameters. The EMPA maintained the diversity
of the population in the search process and increased the
probability of the algorithm away from the local optimum.
However, the enhancement of the optimization accuracy of
the improved algorithm was very limited. In literature [24],

a multistrategy improved marine predator algorithm
(MSIMPA) was proposed. It employed the chaotic mapping
and opposition-based learning strategy to improve the
population’s generation quality within the initial stage.
Moreover, a grouping learning strategy to crossover the pop-
ulation operations was proposed to improve the algorithm’s
optimization accuracy and convergence speed. The simula-
tion results show that the algorithm could effectively
improve the deployment coverage of the 2D WSN.

Based on the above related works, some achievements
have been achieved in the study of WSN coverage optimiza-
tion for 3D surfaces and the improvement of the MPA
algorithm. However, there are some shortcomings in these
studies. For example, the coverage perception model is a
binary model, which is too idealized in practical applica-
tions. In addition, since the 3D surface is more complex
compared to the 2D plane, the coverage of some algorithms
still needs to be further improved. Therefore, a lot of
research is still needed for coverage optimization of 3D
surface WSN to achieve higher coverage while obtaining a
longer network life cycle using fewer sensor nodes. To
address the above issues, this paper proposes a coverage
optimization method based on multistrategy integrated
improved marine predator algorithm.

3. 3D Surface WSN Coverage
Model Description

3.1. Perceptual Model of Sensor Nodes. In WSN, suppose that
the nodes of a wireless sensor are a set S = fs1, s2,⋯, sng
where the 3D coordinate of sj is denoted by ðxj, yj, zjÞ that
j = 1, 2,⋯, n. The set of the monitored nodes within the
monitoring area is M = fm1,m2,⋯,mng, where the 3D
coordinate of mk is denoted by ðxk, yk, zkÞ that k = 1, 2,⋯,
n. The sensing and communication radiuses of each node
are Rs and Rc, respectively. The Euclidean distance between
node sj and node mk can be defined by

dis sj,mk

À Á
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj − xk
À Á2 + yj − yk

� �2
+ zj − zk
À Á2r

: ð1Þ

The common 0-1 perception model is mainly used in the
WSN coverage of the 2D environment. In the 3D surface envi-
ronment, it is necessary to establish a coverage model that is
closer to the real world. Therefore, this paper adopts the prob-
abilistic perception model. The probability of the monitoring
node mk can be perceived by the node sj in the following:

Pcov sj,mk

À Á
=

1
1 + α ∗ dis sj,mk

À ÁÀ Áβ , dis sj,mk

À Á
≤ Rs,

0, dis sj,mk

À Á
> Rs,

8>><
>>:

ð2Þ

where α and β are type parameters related to the physical
characteristics of the sensor. Usually, the value of β is from 1
to 4 and α is an adjustable parameter.
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Therefore, the joint perception probability of all nodes in
the set S to monitor node mk can be evaluated by

PC sall,mkð Þ = 1 −
Yn
i=1

1 − Pcov sj,mk

À ÁÀ Á
, ð3Þ

where sall denotes all the nodes of the sensor within the
monitoring range.

3.2. Judgment of 3D Perception Blind Area. There are often
many obstacles in the deployment of sensor nodes in the real
world. These obstacles will block the sensing signals of the
sensor nodes, causing a substantial reduction in the effective
monitoring area of the nodes.

As shown in Figure 1, even though nodes A, B, and C are
all located in the perception range of node S, the monitoring
points A and B are not sensed by the node S because the
node signals are blocked by the obstacle (the shaded area
in Figure 1). The lack of sensing causes the formation of a
particular area for the 3D surface node deployment, which
is called the 3D perception blind area [41].

For instance, the general method of the 3D perception
blind area which is monitored from point B can be deter-
mined by the following procedure. Assuming that the coor-
dinate of node S is ðxs, ys, zsÞ, the coordinate of point B is
ðxb, yb, zbÞ, the spatial surface equation is z = f ðx, yÞ, and
point B is in the sensing range of node S. The line segment
SB is obtained by connecting both points S and B, and then
the equation of the straight spatial line SB can be created. As
shown in Equation (4), the simultaneous equations of the
spatial line SB and the spatial surface z. It can obtain the
number η of solutions to Equation (4) under conditions
x ∈ ðxs, xbÞ and y ∈ ðys, ybÞ.

x − xs
xb − xs

=
y − ys
yb − ys

=
z − zs
zb − zs

z = f x, yð Þ
:

8<
: ð4Þ

The determination of the 3D perception blind area
between node S and point B depends on the value of η,
which can be divided into the following two situations.

If η = 0, there is no perception blind area between node S
and point B. It defines that the surface does not intersect
with the line segment SB, which means the point B is cov-
ered by the node S.

If η ≥ 1, there is a perception blind area between node S
and point B, which means that the point B is not covered by
the node S. Figure 1 intuitively shows that the surface inter-
sects with the line SB, so the node S cannot monitor the
point B.

The procedure mentioned above is an effective method
to determine the existence of blind areas. However, there
are some limitations. For instance, Figure 1 shows that the
line segment AS has no intersection with the surface, but
there is an obstacle between the point A and the node S.
Therefore, the node S cannot cover the point A. For this sit-
uation, a determination rule is added in the following.

Suppose the midpoint of the line segment AS is
Q1ðxq, yq, zqÞ. If the value for the z-axis of the point Q1 is
smaller than the value of the function corresponding to the
surface equation z = f ðx, yÞ, then there would be a perceptual
blind area between both points, which means node S cannot
monitor the point A. The condition of the method is pre-
sented in the following:

Pcov S, Að Þ =
0 if zq ≤ f xq, yq

� �
,

1 otherwise:

8<
: ð5Þ

It summarizes that a monitoring point should be per-
ceived by the node S when the following three conditions
are satisfied. First, the evaluated value of Equation (2) not
equal to 0; second, Equation (4) has no solution, and finally,
the evaluated value of Equation (5) becomes 1.

3.3. Coverage Description. It is not easy to divide the moni-
toring region into small regions of equal areas when solving
the problem of 3D WSN coverage. Besides, it is not also nec-
essary to do this division. A surface division based on the
grid method was proposed [37]. The method gave a reason-
able error condition for the number of grid divisions. The
basic idea is to project the surface vertically into a two-
dimensional plane. Then, the projection region is divided
into several small grids with equal areas. The area of the
small surface corresponding to each small grid can be calcu-
lated by the calculus idea and usage of the surface with the
integral surface formula. The summation of the areas of
the small surfaces corresponding to all small grids would
be the total area of the whole surface. The calculation
method of the surface area is shown in

z = f x, yð Þ,

SF =∬
Dxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

dz
dx

� �2
+

dz
dy

� �2
s

dxdy,

8>><
>>: ð6Þ

where SF denotes the area of the surface and Dxy is the inte-
gration region consisting of x and y.

A
B

C

Q1

Q2

S

Figure 1: Schematic diagram of the 3D perception blind area.
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In this paper, the grid method is employed to calculate
the coverage of the 3D surface. First, the projection area of
the surface F mapped to the 2D plane is divided into l ∗w
grids, where l represents the number of grids in the x-axis
direction, and w represents the number of grids in the y-axis
direction. That is to say, the target area is divided into
several cube grids of equal size. Consider the set SF = fsF1 ,
sF2 ,⋯, sFng represents the area of the small surface, where
n = l ∗w. The projection region is divided into several small
grids of equal area and locates the monitoring point at the
center of the small surface corresponding to the small grid.
If the monitoring point can be perceived by the node S, it
means that the node S could cover the small surface where
the monitoring point is located. The final coverage area can
be obtained by accumulating the areas of all the small sur-
faces which can be monitored. Therefore, the coverage CF
of the 3D surface can be described as follows:

CF =
1
SF

〠
l

x=1
〠
w

y=1
PC sall,mw⋅ x−1ð Þ+y
� �

× sFw⋅ x−1ð Þ+y, ð7Þ

where sall denotes all the sensors deployed in the target area,
the subscript wðx − 1Þ + y is used to calculate the index of the
grid, that is, the index of the monitoring point. Equation (7)
is the proposed objective function which is optimized by the
algorithm presented in this research.

4. Improved Marine Predator Algorithm

4.1. Marine Predator Algorithm. The marine predator algo-
rithm [23] is a novel metaheuristic algorithm that simulates
the foraging strategy of marine organisms. It updates the
position of predator and prey by switching between the Lévy
flight and the Brownian motion. Both predator and prey are
solution candidates, since each prey in the ecosystem is a
potential predator. Like most metaheuristic algorithms,
MPA generates the initial population randomly in the search
space. The mathematical model is described as follows:

X0 = rand Xmax − Xminð Þ + Xmin, ð8Þ

where rand is a random number that obeys a uniform distri-
bution of ½0, 1� and Xmin and Xmax denote the lower and
upper limits of the search space, respectively.

In MPA, the location of the prey can be represented by a
matrix. The corresponding mathematical expression is
described as follows:

Prey =

X1,1 ⋯ X1,d

⋮ ⋱ ⋮

Xn,1 ⋯ Xn,d

2
664

3
775
n×d

, ð9Þ

where n denotes the number of populations and d is the
dimension of the search space. Xi,j denotes the current posi-
tion of the i-th prey in the j-th dimension. The individual
with the best fitness value is called the top predator. It is used
to construct the Elite matrix, whose size is the same as the

Prey matrix. The mathematical expression of the Elite
matrix is presented in the following:

Elite =

XI
1,1 ⋯ XI

1,d

⋮ ⋱ ⋮

XI
n,1 ⋯ XI

n,d

2
664

3
775
n×d

, ð10Þ

where XI represents the top predator vector. The Elite
matrix is obtained by replicating this vector n times. The
searching procedure of the MPA algorithm can be separated
into three stages in accordance with the speed variation of
marine biological predation, which is described as follows.

4.1.1. High-Speed Ratio Phase. This phase occurs in the first
third of the number of iterations, when the population is in
the exploration phase. At this time, the speed of the predator
is greater than that of the prey, and the mathematical model
of prey position update is described as follows:

While t ≤
1
3
tmax, i = 1, 2,⋯, n, ð11Þ

stepsizei = RB ⊗ Elitei − RB ⊗ Preyið Þ, ð12Þ
Preyi = Preyi + P × R ⊗ stepsizei, ð13Þ

where t and tmax denote the current and the maximum num-
ber of iterations, respectively. RB is a vector of random num-
bers obeying the normal distribution used to represent the
Brownian motion. The symbol ⨂ denotes the entry-wise
multiplication, R is a random number between 0 and 1,
and P = 0:5 is a constant.

4.1.2. Unit-Speed Ratio Phase. This phase occurs between
one-third and two-thirds of the number of iterations and
gradually indicates the population’s transition from explora-
tion to exploitation. At this phase, the predator and the prey
movement speed are equal. In this stage, the first half of the
population is used for the exploration, and the movement
strategy of the prey is the Lévy motion. The remaining half
of the population would then be used for the exploitation
where the movement strategy of the predator would be the
Brownian motion. The mathematical model of this phase is
described as follows:

While
1
3
tmax < t <

2
3
tmax, i = 1, 2,⋯, n/2, ð14Þ

stepsizei = RL ⊗ Elitei − RL ⊗ Preyið Þ, ð15Þ
Preyi = Preyi + P × R ⊗ stepsizei, ð16Þ

While
1
3
tmax < t <

2
3
tmax, i = n/2,⋯, n, ð17Þ

stepsizei = RB ⊗ RB ⊗ Elitei − Preyið Þ, ð18Þ

CF = 1 −
t

tmax

� � 2t/tmaxð Þ
, ð19Þ
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Preyi = Elitei + P × CF ⊗ stepsizei, ð20Þ
where RL is a vector of random numbers based on the Lévy
distribution and CF is an adaptive parameter that controls
the movement step of the predator.

4.1.3. Low-Speed Ratio Phase. A late iteration phase occurs in
the last remaining third of the whole iteration. At this phase,
the predator moves slower than the prey within a Lévy’s
motion, which adopts the population into a local exploita-
tion strategy. The mathematical model of this phase is
described as follows:

While t ≥
2
3
tmax, i = 1, 2,⋯, n, ð21Þ

stepsizei = RL ⊗ RL ⊗ Elitei − Preyið Þ, ð22Þ

Preyi = Elitei + P × CF ⊗ stepsizei: ð23Þ
4.1.4. Eddy Formation and FADs Effect. The formation of
eddies or Fish Aggregation Devices (FADs) affects the
foraging behavior of the marine predators. This strategy
mainly improves searching for individuals to escape the local
optimal solutions. Its mathematical model is described as
follows:

Preyi =
Preyi + CF Xmin + RL ⊗ Xmax − Xminð Þ½ � ⊗U r ≤ Pf ,

Preyi + Pf 1 − rð Þ + r½ � Preyr1 − Preyr2ð Þ r > Pf ,

(

ð24Þ

where U is a binary vector containing 0 and 1 and Pf = 0:2
represents the probability of influence on the optimization
process. r is a random number in the range ½0, 1�, and the
subscripts r1 and r2 represent the random index values of
the prey matrix. In addition, the MPA algorithm has mem-
ory storage to remember the history of the best-reached
position, which is similar to an essential greedy strategy.
During the algorithm iteration, the fitness value of each indi-
vidual in the current iteration is compared with the optimal
solution of the previous iteration. The previous solution will
then be replaced if the current’s fitness is better.

4.2. Population Evolution Strategy Based on the Random
Opposition-Based Learning and Differential Evolution
Operator. The optimization process in each phase of MPA
is highly depends on the prey matrix (described in section
4.1). The MPA algorithm randomly initializes the popula-
tion and then relies only on the Brownian or Lévy motion
strategies to update the individual positions. The late itera-
tion of the algorithm will reduce population diversity, nar-
row search range, reduce exploration ability, and tends to
stagnate in the local optimum. Usually, in the optimization
process of swarm intelligence algorithms, when the searched
individual is close to the optimal solution, the population
will quickly approach the direction of the optimal solution
and accelerate the convergence of the algorithm. On the con-
trary, the convergence rate becomes slower.

To solve this problem, opposition-based learning [42]
(OBL) provides a search strategy that considers both the
current solution and its corresponding inverse solution,
expanding the search range and avoiding stagnation of the
current solution. The research shows that the probability of
the opposite solution of the population close to the global
optimal solution is greater than that of the random solution.
Therefore, many researchers have attempted to use OBL to
improve both the quality of the population and the perfor-
mance of the algorithm [43–48].

To enhance the diversity of the population further, Long
et al. [49] proposed a random opposition-based learning
(ROL) strategy based on OBL, which could effectively
improve the ability of the algorithm to jump out of the local
optimum. Suppose a feasible solution of a d-dimensional
space is X = ðx1, x2,⋯, xdÞ, where x1, x2,⋯, xd ∈ R and
xj ∈ ½lbj, ubj�. The random opposite solution of X would

be X̂r = ðx̂r,1, x̂r,2,⋯, x̂r,dÞ and its calculation formula can
be presented as follows:

x̂r,j = lbj + ubj − R1 × xj j = 1, 2,⋯, d, ð25Þ

where R1 ∈ ð0, 1Þ is a random number.
Given the effectiveness of the ROL strategy for the

improvement of algorithm performance and inspired by
the mutation, crossover, and selection operators in the dif-
ferential evolution algorithm (DE), this paper proposes a
population evolution strategy based on ROL and differential
evolution operator (RDES) to generate a higher quality
population.

First, the ROL population of the initial population is
evaluated by Equation (25). Because the positions of all indi-
viduals in the ROL population may not be better than those
of the initial individuals, both the initial and ROL popula-
tions are merged to expand the population searching range.
Then, the differential evolution operator is considered based
on the merged population to enrich the population’s diver-
sity further. The specific operations are as follows:

(1) Mutation Operation. Since the mutation operator in
the DE has a significant influence on the algorithm,
it is essential to choose an effective individual muta-
tion method. This paper used the DE/current-to-
best/1 mutation operator [29] to perform mutation
operation on the merged population, as shown in
the following formula:

Vi tð Þ = Xi tð Þ + F ⋅ Xbest tð Þ − Xk tð Þ + Xm tð Þ − Xn tð Þ
� �

, ð26Þ

where F is scaling factor, XiðtÞ denotes the i-th
individual of the current generation, XbestðtÞ denotes
the optimal individual of the current population.
XkðtÞ, XmðtÞ, and XnðtÞ denote three different indi-
viduals randomly selected except the current individ-
ual, where the k,m, n ∈ 1, 2,⋯, 2 ∗N are not equal
to each other, and N represents the population size.
Equation (26) reveals that the mutation operator uses
the individuals’ local information and the population’s
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global optimal information to lead the population to
find an optimal solution. It expands the diversity of
the population and accelerates the searching speed of
the algorithm simultaneously

(2) Crossover Operation. The original individual XiðtÞ
and the new generated individual ViðtÞ are cross-
operated after the differential mutation according to

Ui,j tð Þ =
Vi,j tð Þ, rand ≤ Pc,

Xi,j tð Þ, otherwise,

(
ð27Þ

where Ui,jðtÞ represents the value of the j-th gene of
the current i-th individual, rand is a random number
uniformly distributed in ½0, 1�, and Pc represents the
crossover probability. The algorithm would keep the
gene value of Vi,jðtÞ if rand < Pc, otherwise, it
replaces the corresponding gene value with Xi,jðtÞ

(3) Selection of Operation. If the crossover operation
results in a new individual with a better fitness value
than the original individual, the original individual

1: Initialize the population with N individuals
2: For i ≤N do
3: Using Eq. (25) to generate the ROL population
4: End for
5: Merge initialization population and ROL population
6: For i ≤ 2N do
7: Execute the mutation operation by Eq. (26)
8: If rand < Pc then
9: Execute the crossover operation by Eq. (27)
10: End if
11: Using Eq. (28) to execute the selection operation
12: End for
13: Select the top N fitness individuals from the merged

Population as the initial Prey matrix

Algorithm 1: Pseudocode of the RDES.

1: Initialization parameters: The number of groups m; the number of iterations within the group tm;
2: For i = 1 : m do
3: For j = 1 : tm do
4: Record Pw, Pb, Pg

5: Update the worst Prey using Eq. (29)
6: If f itnessðPnewÞ < fitnessðPwÞ then
7: Pw = Pnew
8: Else
9: Update the worst Prey using Eq. (30)
10: f itnessðPnewÞ < fitnessðPwÞ then
11: Pw = Pnew
12: Else
13: Update the worst Prey using Eq. (32)
14: End if
15: End if
16: End for
17: End for

Algorithm 2: Pseudocode of the local search strategy.

(Pg + Pb)/2

OptimumPnew

Pnew

PnewPw

Pb

Pg

Newposition of Pw

Figure 2: Schematic diagram of the position update of the worst
individual (the black dashed line represents the guidance
direction of the population information, and the solid blue line
represents the trajectory of the worst individual position update).
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would be substituted. This process can be described
as follows:

Xi t + 1ð Þ =
Ui tð Þ, f Ui tð Þð Þ ≤ f Xi tð Þð Þ,
Xi tð Þ, otherwise:

(
ð28Þ

Finally, the fitness values of all individuals in the merged
population are calculated and sorted. The top N individuals

with the best fitness value are selected to construct the prey
matrix using the greedy strategy.

Based on the above descriptions, the mainframe of the
RDES is given in Algorithm 1.

4.3. Local Search Strategy Based on Improved SFLA. SFLA is a
swarm intelligence algorithm proposed by Eusuff et al. [50].
They simulated the population’s mechanism of information
sharing and communication during the frog foraging. The
algorithm combines the advantages of theMemetic Algorithm

… …

Select the better fitness positions
from Prey and Preyqr

Original population

Search space

QOBL population

Prey1
qrPrey1 Prey

n

qrPrey
n

Figure 3: Schematic diagram of population selection based on QOBL.

Input: Number of population N , the maximum number of iterations tmax, the crossover probability Pc, the number of groups m, the
number of iterations within the group tm, the dimensions of each individual d, and search range ½lb, ub�
Output: Optimal fitness
1: Initialize the population of Preys with N individuals
2: While t ≤ tmax do
3: Execute RDES to generate a high-quality population (Algorithm 1)
4: Calculate the fitness and build the Elite matrix
5: If t ≤ tmax/3 then
6: Update Prey using Eq. (13)
7: Else if tmax/3 < t < 2 ∗ tmax/3
8: For the first half of the population (i = 1, 2,⋯,N/2)
9: Update Prey using Eq. (16)
10: For the remained half of the population (i =N/2,⋯,N)
11: Update Prey using Eq. (20)
12: Else if t ≥ 2 ∗ tmax/3
13: Update Prey using Eq. (23)
14: End if
15: Complete memory saving and Elite update
16: Execute the local search strategy (Algorithm 2)
17: For i = 1 : N do
18: Calculate the QOBL position according to Eq. (33)
19: Select the better individual according to Eq. (35)
20: End for
21: Complete memory saving and Elite updating
22: Next iteration t = t + 1
25: End while

Algorithm 3: The proposed IMPA.
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(MA) [51] and the PSO [28]. Moreover, it benefits few control
parameters, is an easy implementation, and has a strong global
searching ability. Therefore, some researchers have hybridized
SFLA with other algorithms to improve the optimization per-
formance of the algorithm. For instance, in [52], an improved
ant colony algorithm was combined with SFLA for solving the
path planning problem, which accelerated the convergence of
the algorithm. In [53], in order to improve the local search
capability of the PSO, SFLAwas integrated with PSO and used
for the detection of sonar images.

The MPA uses the FADs effect (Equation (24)) to sup-
port individuals’ searching for escape from the local opti-
mum trap. This method lacks the guidance of population
information to update the individuals’ position and limited
the local development capability. Finding a more optimal
solution becomes complicated once the population falls into
the local optimum. The SFLA divides the whole population
into several groups based on its unique grouping operator.
The evolution of the individual is guided by the local optimal
solution in the group and the global optimal solution of the
population. It realizes the information sharing and commu-
nication between individuals. Therefore, the algorithm
would not easily fall into the local optimum and would be
more conducive to find the global optimal solution [22]. In
this paper, by considering the grouping idea of SFLA, both
MPA and SFLA algorithms are combined, and a local search
algorithm based on the improved SFLA is proposed. The
proposed local search algorithm replaces the FADs effect to
improve the local development ability of MPA.

The main idea of the SFLA is described in the following.
First, all the population individuals are arranged in descend-
ing order according to their fitness values and divided intom
groups. The first individual is assigned to the first group, the
second to the second group, until the m-th to the m-th
group. The ðm + 1Þ-th individual is then assigned to the first
group, the ðm + 2Þ-th to the second group, and so on, until
assigning the last one. Then, the positions of the worst indi-
vidual Pw are updated according to Equations (29)–(31).
The specific update method is as follows:

Pnew = Pw + s × rand × Pb − Pwð Þ, ð29Þ

Pnew = Pw + s × rand × Pg − Pw

À Á
, ð30Þ

Pnew = lb + rand × ub − lbð Þ, ð31Þ
where Pnew denotes the updated position of the worst indi-
vidual, Pb and Pw denotes the best and worst individuals in
the group, rand is a random number between ½0, 1�, Pg rep-
resents the position of the globally optimal individual for the
entire population, s is a constant representing the step size
factor and that its value can be adjusted according to the
problems, and ub and lb are the upper and lower bounds
of the search space, respectively.

Since the third location update method (as shown in
Equation (31)) of the basic SFLA algorithm is relatively ran-
dom, it lacks the guidance of population information, and
consequently, the searching speed is slow. Therefore, this

StartInitialize the parametersGenerate random
population

Execute RDES
(Algorithm 1)

Calculate the fitness and
build the Elite matrix

Complete memory
saving and Elite update

Execute the local search
strategy (Algorithm 2)

Calculate the QOBL position
according to Eq.(33) and

select the better individual
according to Eq.(35)

Update Prey using
Eq.(13)

Update Prey using
Eq.(16) or Eq.(20)

Update Prey using
Eq.(23)

Return optimal fitness End

t++

No

Yes

No

Yes

No

Yes

Multi-strategy

Update prey positiont < tmax

t ≤ tmax/3

tmax/3 < t <
2 ⁎ tmax/3 

Figure 4: IMPA flow chart.
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paper considers the usage of the local information of the
group and the global information of the population to guide
the algorithm for strengthening the ability of further search.
A new location update method is proposed, as shown in

Pnew = Pw + rand ×
Pg + Pb

2
− Pw

� �
: ð32Þ

The mainframe of the improved local search strategy is
shown in Algorithm 2. First, the prey population is divided
into m groups according to the grouping strategy which
was introduced above. After the completion of grouping,
the worst position of an individual would be updated using

Equation (29). The original position is then replaced if the
new position includes a better fitness value. Otherwise, the
new position would be evaluated by Equation (30). If neither
of the above two methods can generate a better position, the
position of the worst individual in the group would be
updated by Equation (32).

Figure 2 depicts the three updating methods for the posi-
tion of the worst individual in each group. As it can be seen
in Figure 2, Equation (29) means the best individual in the
group guides the worst individual to move towards it. Equa-
tion (30) indicates that the worst individual approaches the
global optimal individual, and Equation (32) represents that
the population approaches the middle position between the
global optimal and the intragroup optimal.

Table 1: Benchmark test functions.

Function Dim Interval Min

F1 xð Þ = 〠
n

i=1
x2i 30/100 [-100, 100] 0

F2 xð Þ = 〠
n

i=1
xij j +

Yn
i=1

xi 30/100 [-10, 10] 0

F3 xð Þ = 〠
n−1

i=1
100 xi+1 − x2i
À Á2 + xi − 1ð Þ2

h i
30/100 [-30, 30] 0

F4 xð Þ = 〠
n

i=1
xi + 0:5½ �ð Þ2 30/100 [-100, 100] 0

F5 xð Þ =maxi xij j, 1 ≤ i ≤ nf g 30/100 [-100, 100] 0

F6 xð Þ = −20 exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
x2i

s !
− exp

1
n
〠
n

i=1
cos 2πxið Þ

 !
+ 20 + e 30/100 [-32, 32] 0

F7 xð Þ = 1
4000

〠
n

i=1
x2i −

Yn
i=1

cos
xiffiffi
i

p
� �

+ 1 30/100 [-600, 600] 0

F8 xð Þ = 〠
n

i=1
ix4i + random 0, 1½ Þ 30/100 [-1.28, 1.28] 0

F9 xð Þ = 〠
n

i=1
− xi sin

ffiffiffiffiffiffiffi
xij j

p� �
30/100 [-500, 500] -418.98n

F10 xð Þ = π/nð Þ 10 sin πy1ð Þ + 〠
n−1

i=1
yi − 1ð Þ2 1 + 10 sin2 πyi+1ð ÞÂ Ã

+ yn − 1ð Þ2
( )

+ 〠
n

i=1
u xi, 10, 100, 4ð Þ

yi = 1 + xi + 1ð Þ/4ð Þ

u xi, a, k,mð Þ =
k xi − að Þm xi > a

0 −a < xi < a

k −xi − að Þm xi<−a

8>><
>>:

30/100 [-50, 50] 0

F11 xð Þ = x1 + 2x2 − 7ð Þ2 + 2x1 + x2 − 5ð Þ2 2 [-10, 10] 0

F12 xð Þ = 〠
7

i=1
X − aið Þ X − aið ÞT + ci

h i−1
4 [0, 10] -10.4029

F13 xð Þ = −〠
4

i=1
ci exp −〠

3

j=1
aij xj − pij
� �2 !

3 [0, 1] -3.8628

F14 xð Þ = 1:5 − x1 + x1x2ð Þ2 + 2:25 − x1 + x1x
2
2

À Á2 + 2:625 − x1 + x1x
3
2

À Á2
2 [-4.5, 4.5] 0

F15 = sin2 3πx1ð Þ + x1 − 1ð Þ2 1 + sin2 3πx2ð ÞÂ Ã
+ x2 − 1ð Þ2 1 + sin2 2πx2ð ÞÂ Ã

2 [-10, 10] 0
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The improved local search method transmits the infor-
mation according to the population grouping. It effectively
combines the global information of the population and the
local search. It also improves the exploitation ability of the
population. In addition, the position of the worst individuals
in the group is only updated each time after grouping, which
reduces the computation time and increases the convergence
rate of the algorithm. The fitness value of the population is
inevitably improved accordingly when the individuals of all
groups are remixed into the population. Therefore, it leads
the population towards the optimal solution.

4.4. Dynamic Learning Mechanism. Ergezer et al. proposed a
variant of OBL called quasireflected opposition-based learn-
ing (QOBL) [54]. They proved that the probability of the
QOBL solution is closer to the optimal solution than the
general OBL solution is 11/16. This paper proposes a QOBL
strategy for the prey population to improve the optimization
accuracy and accelerate the convergence speed of the algo-
rithm further. The QOBL position (Preyqri ) of the prey in
the generation can be described as follows:

Preyqri tð Þ = rand Preyi, cið Þ, ð33Þ

ci =
min Preyið Þ +max Preyið Þ

2
, ð34Þ

where Preyi represents the position of the i-th prey and ci
represents the midpoint of the dynamic boundary. Unlike
the fixed boundary, the dynamic search boundary adjusts
the maximum and minimum values in all dimensions of
the current i-th individual as the upper and lower bounds
of the search space. This method can further reduce the pos-
sibility of stagnating the population in the local optima,
enhance the exploitation capability of the algorithm, and
increase the convergence speed [55].

Finally, the elite strategy is employed to retain the indi-
viduals who carry better fitness value. If the fitness value of
the QOBL position’s fitness value is superior to the current
individual, the new position would be assigned to the cur-
rent individual. The strategy is modeled as follows:

Preyi t + 1ð Þ =
Preyqri tð Þ if f Preyqri tð ÞÀ Á

< f Preyi tð Þð Þ,
Preyi tð Þ otherwise:

(

ð35Þ

Figure 3 shows the process of applying the dynamic learn-
ing mechanism based on QOBL to the MPA algorithm. First,
the QOBL population of the prey population is evaluated.
Then, the fitness values of both initial prey and the QOBL
populations would be calculated separately. Finally, the indi-
viduals with better fitness values are retained for constructing
new prey populations according to the Equation (35).

4.5. IMPA Algorithm. In this paper, a multistrategy
integrated improved marine predator algorithm (IMPA) is
proposed to increase both accuracy of solution and conver-
gence speed and prevent falling into the local optimum of
MPA. The pseudocode of IMPA is given in Algorithm 3,

and the main framework of the algorithm is demonstrated
in Figure 4.

4.6. Algorithm Validity Test. In this section, the Schwefel2.26
Function is selected to test the validity of the three improved
strategies. The population distribution maps of IMPA and
MPA algorithms are drawn. The initial and final distribu-
tions of both algorithms are shown in Figures 5 and 6 while
the population size and the maximum number of iterations
are 50 and 20, respectively.

Figures 5(b) and 6(b) show that the population distribu-
tion of MPA is relatively scattered after 20 iterations and the
convergence speed is low. Moreover, most individuals gather
near the local optimum, which means that the MPA would
not easily jump out of the local optimum when dealing with
multidimensional complex functions. In contrast, all indi-
viduals in the IMPA converge to the global optimum
quickly, proving the effectiveness of the proposed strategies.

4.7. Time Complexity Analysis. Time complexity is an essen-
tial indicator for predicting the performance of an algorithm.
Suppose that N is the size of populations, D is the dimension
of individuals, and T is the maximum number of iterations.
The time complexity of the MPA is evaluated OðN∙D∙TÞ.
The proposed IMPA algorithm would not change the struc-
ture of individual position updates in the three phases of the
basic MPA algorithm. The analysis of the time complexity is
explained in the following.

The increased complexity of the ROL population while
performing the RDES (Algorithm 1) is OðNÞ, where this
evaluation becomes Oð2∙N∙DÞ while performing the DE
evolution operation. While executing the local search
strategy (Algorithm 2), the evaluated complexity is related
to the number of the groups m and the number of iterations
tm, where m ≤N/2. Therefore, in the worst case, the increased
complexity of this part would beOðNÞ. The increased complex-
ity while computing the QOBL population would be OðNÞ.
Finally, the evaluated time complexity of IMPA would be OðT
ðN + 2∙N∙D +N +NÞÞ, which results in OðN∙D∙TÞ. It con-
cluded that the improved strategies proposed in this study
would not increase the time complexity of the proposed IMPA.

4.8. Global Convergence Analysis of IMPA. The convergence
analysis of the three phases within the optimization process

Table 2: Parameter Settings for the comparing optimization
algorithms.

Algorithm Parameters

IMPA P = 0:5, Pc = 0:5, m = 8, tm = 3, s = 2

MSIMPA FADs = 0:2, P = 0:5

MPA FADs = 0:2, P = 0:5

ESSA ST = 0:8, SD = 0:2

IGWO a = 2⟶ 0ð Þ
WOA a = 2⟶ 0ð Þ, b = 1

PSO ω = 0:5, c1 = 1:3, c2 = 2:8

DE Pc = 0:8, F = 0:5
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Table 3: Comparison of benchmark function optimization results (30-dimension and fixed-dimension).

Function Algorithm Best Ave Std Rank
Running
time (s)

F1

IMPA 0 0 0 1 0.2197

MSIMPA 0 0 0 1 0.4990

MPA 3.249e-25 5.6984e-23 6.8011e-23 6 0.1168

ESSA 3.626e-273 1.0578e-28 5.2877e-28 4 0.0929

IGWO 3.6013e-30 2.0879e-28 3.8839e-28 5 0.3297

WOA 7.8706e-85 1.2859e-72 4.9154e-72 3 0.0208

PSO 8.3500e-08 3.9739e-02 1.4805e-01 7 0.1687

DE 9.1636e-05 1.4571e-01 7.6655e-01 8 0.0705

F2

IMPA 0 0 0 1 0.2553

MSIMPA 0 0 0 1 0.5151

MPA 2.0622e-14 2.1332e-13 1.9902e-13 6 0.1194

ESSA 0 5.0428e-17 2.3574e-16 5 0.0940

IGWO 1.6695e-18 8.3521e-18 5.7087e-18 4 0.3340

WOA 2.2386e-57 5.2527e-51 1.755e-50 3 0.0226

PSO 2.9933e-03 7.9203e-02 1.6586e-01 8 0.1731

DE 3.6882e-03 1.0604e-02 6.1972e-03 7 0.0716

F3

IMPA 2.2747e+01 2.3184e+01 2.0370e-01 3 0.2810

MSIMPA 2.3646e+01 2.4331e+01 2.9350e-01 4 0.6913

MPA 2.4583e+01 2.5351e+01 4.3584e-01 6 0.1373

ESSA 2.2796e-19 2.4733e-05 4.5664e-05 1 0.1161

IGWO 2.3720e+01 2.4335e+01 8.5325e-01 5 0.3542

WOA 2.6976e+01 2.7968e+01 4.7406e-01 7 0.0312

PSO 2.6555e-05 4.1230e-01 1.3376e+00 2 0.1801

DE 2.6727e+01 7.7838e+01 5.1636e+01 8 0.0808

F4

IMPA 0 0 0 1 0.2494

MSIMPA 1.2009e-09 7.5903e-09 5.2053e-09 3 0.4986

MPA 1.4150e-08 1.2359e-04 6.4591e-04 4 0.1213

ESSA 2.0396e-13 3.0063e-09 4.9969e-09 2 0.1020

IGWO 3.3595e-05 3.7862e-02 8.6222e-02 6 0.3391

WOA 8.0338e-02 3.8291e-01 2.2480e-01 8 0.0215

PSO 9.3274e-06 3.0549e-01 1.2967e+00 7 0.1721

DE 1.0879e-04 5.0759e-04 3.1912e-04 5 0.0715

F5

IMPA 0 0 0 1 0.2440

MSIMPA 0 0 0 1 0.4935

MPA 5.3530e-10 3.9982e-09 2.4312e-09 4 0.1151

ESSA 0 2.7442e-14 1.4981e-13 3 0.0934

IGWO 7.7868e-07 1.1347e-05 1.2372e-05 5 0.3325

WOA 4.4745e+00 4.1640e+01 2.7544e+01 8 0.0209

PSO 2.5094e-04 5.8164e-02 2.6117e-01 6 0.1698

DE 5.7486e+00 1.5239e+01 6.1165e+00 7 0.0707

F6

IMPA 8.8818e-16 8.8818e-16 0 1 0.2431

MSIMPA 8.8818e-16 8.8818e-16 0 1 0.5607

MPA 1.7852e-13 1.3499e-12 8.3401e-13 6 0.1242

ESSA 8.8818e-16 1.1428e-14 4.6812e-14 4 0.1093

IGWO 4.3521e-14 6.4126e-14 1.2392e-14 5 0.3395

WOA 8.8818e-16 4.6777e-15 2.4567e-15 3 0.0254
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Table 3: Continued.

Function Algorithm Best Ave Std Rank
Running
time (s)

PSO 4.1938e-04 4.3581e-02 1.2346e-01 8 0.1841

DE 2.8525e-03 6.6528e-03 3.7812e-03 7 0.0804

F7

IMPA 0 0 0 1 0.2934

MSIMPA 0 0 0 1 0.7127

MPA 0 0 0 1 0.1413

ESSA 0 0 0 1 0.1215

IGWO 0 3.7034e-03 5.9281e-03 6 0.3616

WOA 0 3.7007e-18 2.0270e-17 5 0.0331

PSO 6.5533e-06 4.0149e+00 7.8970e+00 8 0.1906

DE 3.7623e-04 7.4684e-03 2.1069e-02 7 0.0865

F8

IMPA 9.4248e-06 1.0125e-05 6.7652e-05 1 0.4376

MSIMPA 3.4548e-06 7.6693e-05 7.7777e-05 2 1.6014

MPA 3.6961e-04 1.2423e-03 5.8351e-04 4 0.2326

ESSA 2.3136e-05 6.1201e-04 5.7285e-04 3 0.1838

IGWO 9.4534e-04 2.5539e-03 1.3054e-03 5 0.4462

WOA 2.4683e-05 2.5666e-03 2.9612e-03 6 0.0752

PSO 5.9669e-03 4.8591e-02 3.7271e-02 8 0.2317

DE 1.6948e-02 3.9809e-02 1.5271e-02 7 0.1256

F9

IMPA -11977.2949 -10958.0172 374.2614 2 0.2557

MSIMPA -11412.6515 -10955.865 297.9579 3 0.7244

MPA -9904.4343 -8861.0457 465.2646 4 0.1415

ESSA -11029.4511 -8172.1176 1117.5627 6 0.1118

IGWO -11351.2906 -7855.7735 1753.1443 7 0.3589

WOA -12567.8533 -10576.3502 1797.3658 4 0.0332

PSO -12569.4866 -12066.0615 1024.5383 1 0.1825

DE -10862.8222 -8053.8889 1609.6519 8 0.0859

F10

IMPA 1.5705e-32 1.5705e-32 5.5674e-48 1 0.7041

MSIMPA 3.4698e-10 1.3188e-09 9.3011e-10 3 1.3146

MPA 1.5317e-09 4.1000e-05 2.2287e-04 5 0.4124

ESSA 4.9661e-15 2.4918e-10 4.1901e-10 2 0.2997

IGWO 2.7700e-06 2.9326e-04 1.2520e-03 6 0.6210

WOA 6.1646e-03 2.3879e-02 2.0913e-02 7 0.1618

PSO 6.2733e-08 1.8325e-05 2.6361e-05 4 0.3174

DE 2.1047e-05 2.1863e-01 2.9378e-01 8 0.2135

F11

IMPA 0 0 0 1 0.1037

MSIMPA 0 0 0 1 0.1860

MPA 0 9.1953e-25 3.0168e-24 5 0.0553

ESSA 0 2.6295e-32 1.4403e-31 4 0.0869

IGWO 1.4018e-27 1.5287e-22 5.675e-22 6 0.2465

WOA 5.4848e-06 9.8198e-04 1.0474e-03 7 0.0146

PSO 3.0552e-04 4.1497e-01 8.0658e-01 8 0.1467

DE 0 0 0 1 0.0560

F12

IMPA -10.4029 -10.4029 1.3194e-16 1 0.2139

MSIMPA -10.4029 -10.4029 5.9774e-13 3 0.3531

MPA -10.4029 -10.4029 2.3540e-11 4 0.1048

ESSA -10.4029 -10.4029 7.3759e-16 2 0.1252
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for the basic MPA algorithm has been extensively discussed
[23]. It approved that the MPA is a convergent algorithm.
The conclusion of the mentioned study is reviewed in the
following.

Assuming that fPreyðtÞg is a random sampling sequence
of MPA, the MPA eventually converges to an Elite matrix
(globally optimal position) consisting of the top predators,
which is lim

t⟶∞
PreyðtÞ = Elite.

The global convergence of the hybrid optimization algo-
rithm was analyzed, and several sufficient conditions for the
global convergence of the hybrid optimization algorithm
were approved [56]. The approved relevant theorems of
the mentioned research are represented below.

Lemma 1. f f ng is a monotonically nonincreasing sequence
with a lower limited bound in which lim

t⟶∞
f n = inf f f ng [56].

Lemma 2. If an algorithm satisfies both following conditions
(properties), the optimal sequence will converge globally
according to a probability equal to 1 [56].

Condition 3. The greedy strategy is used to retain the elite
while comparing with the historical optimal solution during
the iteration. The mentioned strategy is represented in the
following:

f bestt+1 =
f Xð Þ, f Xð Þ < f bestt ,

f bestt , otherwise,

(
ð36Þ

where f bestt is the optimal fitness value found after t times of
comparisons which retained to the moment t, and X is the
solution used for ðt + 1Þ-th comparison with f bestt .

Condition 4. The probability of transitioning from any non-
global optimal point (might be set to X∗) to the correspond-
ing level set LðX∗Þ = fXj f ðXÞ < f ðX∗Þ, X ∈ Sg is not 0, where
S represents the entire search space.

Theorem 5. The proposed IMPA algorithm converges globally
according to the probability equal to 1.

Table 3: Continued.

Function Algorithm Best Ave Std Rank
Running
time (s)

IGWO -10.4029 -10.4029 2.3253e-08 5 0.3106

WOA -10.4029 -7.4326 3.0665e+00 8 0.0338

PSO -10.4028 -10.3154 2.6727e-01 6 0.1729

DE -10.4029 -10.0045 1.5274e+00 7 0.0771

F13

IMPA -3.8628 -3.8628 2.6662e-15 4 0.1102

MSIMPA -3.8628 -3.8628 2.6684e-15 5 0.2435

MPA -3.8628 -3.8628 2.3715e-15 1 0.0765

ESSA -3.8628 -3.8628 2.4184e-15 2 0.1033

IGWO -3.8628 -3.8628 2.4795e-15 3 0.2701

WOA -3.8628 -3.8582 0.0065032 7 0.0233

PSO -3.862 -3.8465 4.6015e-02 8 0.1550

DE -3.8628 -3.8628 2.7101e-15 6 0.0651

F14

IMPA 0 0 0 1 0.1241

MSIMPA 0 3.5595e-30 1.3958e-29 3 0.1955

MPA 3.4592e-28 3.0451e-22 1.5159e-21 5 0.0588

ESSA 0 2.8995e-24 1.1012e-23 4 0.0891

IGWO 7.4237e-21 7.1524e-17 1.4177e-16 6 0.2510

WOA 1.4198e-13 1.0161e-01 2.6348e-01 8 0.0161

PSO 1.2304e-04 1.3578e-03 9.7707e-04 7 0.1463

DE 0 0 0 1 0.0575

F15

IMPA 1.3498e-31 1.3498e-31 6.6809e-47 1 0.1196

MSIMPA 1.3498e-31 1.3498e-31 6.6809e-47 1 0.1903

MPA 7.2938e-27 6.392e-23 1.3055e-22 6 0.0567

ESSA 1.3498e-31 1.3498e-31 6.6809e-47 1 0.0890

IGWO 7.8004e-30 6.2979e-26 2.7686e-25 5 0.2485

WOA 2.2215e-09 8.1541e-06 1.6292e-05 7 0.0154

PSO 1.2427e-07 1.6901e-03 2.9564e-03 8 0.1472

DE 1.3498e-31 1.3498e-31 6.6809e-47 1 0.0561
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Table 4: Comparison of benchmark function optimization results (100-dimension).

Function Algorithm Best Ave Std Rank
Running
time (s)

F1

IMPA 0 0 0 1 0.4799

MSIMPA 0 0 0 1 1.7578

MPA 2.0936e-20 2.0131e-19 1.8807e-19 5 0.2724

ESSA 1.3162e-215 7.4533e-31 4.0189e-30 4 0.1457

IGWO 3.4070e-13 2.7008e-12 2.0152e-12 6 0.5957

WOA 4.056e-82 1.6867e-71 8.8984e-71 3 0.0481

PSO 2.5648e-06 3.4789e-01 1.4948e+00 7 0.2561

DE 6.8945e+02 1.2783e+03 5.3839e+02 8 0.1209

F2

IMPA 0 2.5048e-297 0 2 0.5490

MSIMPA 0 0 0 1 1.9195

MPA 1.2682e-13 1.418e-11 1.0044e-11 5 0.2828

ESSA 4.6552e-62 2.6374e-14 1.4083e-13 4 0.1475

IGWO 7.0279e-09 1.5616e-08 5.995e-09 6 0.6088

WOA 5.5313e-61 2.3061e-49 9.5159e-49 3 0.0489

PSO 4.8680e-03 3.9462e-01 4.8301e-01 7 0.2833

DE 1.2305e+01 1.9098e+01 3.7135e+00 8 0.1235

F3

IMPA 9.2984e+01 9.3322e+01 1.7465e-01 3 0.6006

MSIMPA 9.4100e+01 9.4491e+01 1.7690e-01 4 2.4819

MPA 9.5854e+01 9.7101e+01 7.8353e-01 5 0.3002

ESSA 8.5565e-09 3.6629e-04 5.9162e-04 1 0.1675

IGWO 9.4975e+01 9.7472e+01 1.1160e+00 6 0.6292

WOA 9.7476e+01 9.8149e+01 2.5179e-01 7 0.0606

PSO 6.1575e-04 7.9545e+01 4.3079e+02 2 0.2824

DE 3.7089e+05 1.5227e+06 1.0087e+06 8 0.1382

F4

IMPA 0 0 0 1 0.5204

MSIMPA 7.3420e-02 5.7584e-01 3.4773e-01 3 1.6146

MPA 3.0751e+00 3.9660e+00 6.4026e-01 4 0.2583

ESSA 8.1256e-11 6.5052e-07 1.3268e-06 2 0.1420

IGWO 5.4614e+00 7.8873e+00 1.0375e+00 6 0.5740

WOA 1.6505e+00 4.1532e+00 9.5339e-01 5 0.0437

PSO 3.0226e-07 3.4222e+01 1.3481e+02 7 0.2539

DE 5.8683e+02 1.0714e+03 3.8677e+02 8 0.1172

F5

IMPA 0 0 0 1 0.4683

MSIMPA 0 0 0 1 1.4869

MPA 6.3693e-08 2.25e-07 1.1712e-07 4 0.2249

ESSA 4.8795e-81 4.7458e-15 2.3905e-14 3 0.1178

IGWO 1.1614e+00 4.6770e+00 2.8552e+00 6 0.5037

WOA 2.3009e+01 8.6982e+01 1.6871e+01 7 0.0388

PSO 3.4590e-04 9.5632e-03 1.0224e-02 5 0.2272

DE 8.3771e+01 8.7385e+01 1.4535e+00 8 0.1050

F6

IMPA 8.8818e-16 8.8818e-16 0 1 0.5018

MSIMPA 8.8818e-16 8.8818e-16 0 1 1.8198

MPA 1.2297e-11 5.5801e-11 4.2214e-11 5 0.2448

ESSA 8.8818e-16 1.4803e-15 1.3467e-15 3 0.1498

IGWO 6.1236e-08 1.7033e-07 6.0547e-08 6 0.5292

WOA 8.8818e-16 4.6777e-15 2.6279e-15 4 0.0486
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Assume that the objective function f of the IMPA algorithm
optimization is set to find the minimum value, f f ng is the ran-
dom sampling sequence, f f bestt g is the optimal sequence of sam-
pling points, and f gbest is the global optimal solution. As shown
below, Theorem 5 can be proved by Lemma 1 and Lemma 2.

Proof. Because the three proposed improved strategies and the
marine memory storage procedure in the IMPA algorithm all
use the greedy strategy to retain the optimal solution of the
population, the IMPA algorithmwould satisfy Condition 3.

According to Lemma 1, the limit of the optimal sequence
f f bestt g exists. Let lim

t⟶∞
f bestt = f bestn , and f bestn ≠ f gbest. Because

f gbest is the global optimal solution, therefore f bestn > f gbest.
Since lim

t⟶∞
f bestt = inf f f bestt g = f bestn , it follows that for

∀t ∈ Z+, f bestt ≥ f bestn . Let X∗ be the sampling point corre-
sponding to f bestn , so, f bestn = f ðX∗Þ. X∗ is obviously a nonglo-
bal optimal solution. Because the IMPA uses the same update
operation as well as the MPA algorithm in the high-, unit-,
and low-speed ratio phases, the convergence of the popula-
tion sequence of IMPA would be consistent with that of the
MPA and will eventually converge to the Elite matrix, lim

n⟶∞

f n = Elite = f gbest. That is, the nonglobal optimal point X∗

can converge to the Elite matrix (global optimal point).
Therefore, when the X assigns value to a sufficiently small

Table 4: Continued.

Function Algorithm Best Ave Std Rank
Running
time (s)

PSO 3.1384e-04 5.8055e-02 1.8421e-01 7 0.2642

DE 4.7890e+00 6.2446e+00 8.0832e-01 8 0.1407

F7

IMPA 0 0 0 1 0.5311

MSIMPA 0 0 0 1 2.6065

MPA 0 0 0 1 0.2776

ESSA 0 0 0 1 0.1679

IGWO 2.7289e-13 2.9180e-03 6.3530e-03 6 0.5641

WOA 0 0 0 1 0.0631

PSO 7.2014e-07 1.4439e+01 4.1840e+01 8 0.2778

DE 5.0666e+00 1.3019e+01 6.3009e+00 7 0.1553

F8

IMPA 3.0053e-06 1.8797e-05 1.4073e-04 1 0.9748

MSIMPA 2.2357e-06 7.5344e-05 6.8927e-05 2 2.0507

MPA 3.8496e-04 1.8048e-03 5.9696e-04 4 0.5977

ESSA 3.3627e-05 7.2115e-04 7.7153e-04 3 0.3942

IGWO 0.0054203 1.5155e-02 4.5389e-03 6 0.8735

WOA 2.6318e-05 5.3274e-03 5.2580e-03 5 0.2172

PSO 4.9434e-03 6.7585e-02 4.1483e-02 7 0.4266

DE 1.4769e+00 3.0316e+00 1.0210e+00 8 0.2811

F9

IMPA -40708.7689 -33742.442 2302.8291 3 0.5864

MSIMPA -35220.1185 -33533.4499 895.5147 4 1.9733

MPA -26300.7559 -24710.3869 907.3275 5 0.2990

ESSA -28921.6901 -23487.2937 2711.1244 6 0.1623

IGWO -26070.9887 -16182.5565 6433.3800 7 0.5971

WOA -41895.7857 -34167.7492 5693.4744 2 0.0678

PSO -41898.2886 -40509.5626 3560.7589 1 0.2540

DE -10149.0836 -60561.6508 2047.6199 8 0.1443

F10

IMPA 4.7116e-33 4.7116e-33 1.3918e-48 1 1.8984

MSIMPA 2.1453e-03 6.4522e-03 3.3446e-03 4 3.7580

MPA 3.1036e-02 4.6095e-02 8.6771e-03 5 1.0844

ESSA 1.0014e-15 4.9800e-09 1.0483e-08 2 0.7149

IGWO 1.3000e-01 2.2248e-01 5.3100e-02 7 1.4428

WOA 1.9735e-02 5.3398e-02 2.6769e-02 6 0.4637

PSO 6.4788e-09 2.0935e-05 6.6560e-05 3 0.6519

DE 1.4390e+04 4.3132e+05 5.7432e+05 8 0.5338
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neighborhood around the elite matrix, PfLðX∗Þg = PfXj f ðXÞ
< f ðX∗Þ, X ∈ Sg ≠ 0, the Condition 4 is satisfied.

In summary, the IMPA algorithm satisfies both condi-
tions of Lemma 2. Therefore, the IMPA algorithm converges
globally according to the probability equal to 1.

5. Function Test and Result Analysis

In this study, 15 benchmark functions are selected for testing
to verify the performance of the proposed IMPA algorithm.
The results are compared with the seven algorithms of
MSIMPA, MPA, ESSA, IGWO, WOA, PSO, and DE. The
information of all the 15 test functions are shown in
Table 1, where F1-F5 are complex unimodal functions,
F6-F10 are multidimensional multimodal functions, and
F11-F15 are fixed-dimensional multimodal functions. The

population size of all algorithms and the maximum number
of iterations are set to 30 and 500, respectively. The multidi-
mensional functions (F1-F10) are tested in 30 and 100
dimensions, respectively. The main parameters of each algo-
rithm are set as shown in Table 2. Each of the six algorithms
is run 30 times independently. The best fitness value (Best),
the average best fitness value (Ave), the standard deviation
of the best fitness value (Std) results, and the average running
time are recorded. To intuitively observe the performance
difference of each algorithm, the algorithms are ranked
according to the average best fitness value. If the average best
fitness values are equal, the algorithms would then be ranked
according to the best standard deviation value.

5.1. Numerical Analysis. Tables 3 and 4 revealed that the
IMPA algorithm has a significant advantage over other
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algorithms in the average best fitness and standard deviation
values within the operation of both 30 and 100 dimensions.
The IMPA algorithm ranks the best optimization perfor-
mance over the other seven algorithms. Table 3 revealed that
the IMPA algorithm could evaluate the theoretical optimum

for F1-F2, F4-F5, F7, and F11-F14, the algorithm shows a
strong global search capability. Although the IMPA could
not assess the theoretical optimum for the F6, F8, F9-F10,
and F15, it achieves the highest optimization accuracy over
the other seven algorithms. None of the six algorithms in

Table 5: The p value of the Wilcoxon rank sum test on 15 benchmark functions (30-dimension and fixed-dimension).

Function
MSIMPA MPA ESSA IGWO WOA PSO DE
p value S p value S p value S p value S p value S p value S p value S

F1 N/A= 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+

F2 N/A= 1.212e-12+ 4.574e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+

F3 3.020e-11+ 3.020e-11+ 3.020e-11+ 3.020e-11+ 3.020e-11+ 5.573e-10+ 3.020e-11+

F4 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+

F5 N/A= 1.212e-12+ 4.574e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+

F6 N/A= 1.212e-12+ 4.191e-02+ 1.031e-12+ 1.163e-09+ 1.212e-12+ 1.212e-12+

F7 N/A= N/A= N/A= 6.617e-04+ 3.337e-01- 1.212e-12+ 1.212e-12+

F8 4.515e-02+ 3.020e-11+ 3.081e-08+ 3.020e-11+ 7.739e-06+ 3.020e-11+ 3.020e-11+

F9 9.117e-01- 3.020e-11+ 1.777e-10+ 6.722e-10+ 9.941e-01- 3.256e-07+ 3.020e-11+

F10 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+ 1.212e-12+

F11 N/A= 4.574e-12+ 3.337e-01- 1.212e-12+ 1.212e-12+ 1.212e-12+ N/A=

F12 2.758e-11+ 1.449e-11+ 8.435e-06+ 1.449e-11+ 1.449e-11+ 1.136e-11+ 7.338e-03+

F13 3.128e-01- 9.452e-09+ 3.568e-07+ 2.119e-05+ 1.720e-12+ 1.720e-12+ 3.337e-03+

F14 2.19e-06+ 1.212e-12+ 1.657e-11+ 1.212e-12+ 1.212e-12+ 1.212e-12+ N/A=

F15 N/A= 1.212e-12+ N/A 1.212e-12+ 1.212e-12+ 1.212e-12+ N/A=
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Figure 8: The flow chart of the IMPA applied in WSN.
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F3 could evaluate the optimal value, but the ESSA achieves
the highest optimization accuracy, exceeding five orders of
magnitude. The optimization accuracy and stability of the
MSIMPA algorithm, as well as the IMPA, show good opti-
mization performance on the multiple functions. The opti-

mization performance of the MPA in F13 ranks the best
with good optimization ability and stability. However, the
IMPA and MPA show a slight difference in the terms of
standard deviation value. It indicates that the IMPA could
not reduce the optimization capability of the algorithm.
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Table 6: Comparison of average coverage of undulating terrain.

Algorithm
Average coverage (%)

30 nodes 40 nodes 50 nodes 60 nodes 70 nodes 80 nodes

WOA 61.94 69.46 77.58 79.01 84.1 88.98

ESSA 64.07 71.76 79.48 81.39 84.84 87.13

MPA 70.15 80.79 86.61 90.28 94.37 94.8

MSIMPA 72.21 81.37 87.67 91.63 94.77 95.33

IMPA 74.19 83.2 90.05 93.6 96.59 96.81
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Figure 10: MPA optimized deployment on undulating terrain (50 nodes).
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The IMPA can still maintain a high solution accuracy in the
100-dimensional test. For instance, all the six algorithms fall
into the local optimum in F10. However, the average optimi-
zation accuracy of the IMPA is at least 24 times greater than
the magnitude of other algorithms. It shows a stronger capa-
bility to escape the local optimal. Moreover, it proves the
effectiveness of the local search strategy based on the
improved SFLA.

5.2. Convergence Analysis. In this paper, the average conver-
gence curves of the algorithms are selected to evaluate the

convergence ability of the optimization algorithms.
Figure 7 shows each algorithm’s 30-dimensional average
convergence curves on the 15 benchmark test functions.
The IMPA has excellent convergence speed and convergence
accuracy on the remaining 14 test functions except for the
F3. In F1, F2, F5, and F7, both IMPA and MSIMPA con-
verge to the theoretical optimum quickly. In F12 and F13,
the optimization precision and convergence speed of the
IMPA improved a little over the other seven algorithms. It
is worth mentioning that the DE can quickly converge to
the global optimal value in F11, F14 and F15, which shows
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Figure 11: IMPA optimized deployment on undulating terrain (50 nodes).
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excellent optimization ability. In addition, it can be seen
from Tables 3 and 4 that the running time of the proposed
IMPA algorithm on most test functions is about twice that
of MPA, but the optimization accuracy of IMPA has been
greatly improved. Therefore, it is worth sacrificing a little
time to obtain a higher quality of the solution. IMPA can
solve the issues of low optimization accuracy and low con-
vergence rate of MPA and shows significant improvements
in the convergence speed and solution accuracy. These
improvements are due to the implementation of the popula-
tion evolution strategy and the dynamic learning mecha-
nism, which effectively enhance the algorithm’s ability for
the global searching while enriching the diversity of the
population.

5.3. The Wilcoxon Rank Sum Test. Only relying on the com-
parison of mean and standard deviation values, the superior-
ity of the IMPA cannot be approved entirely [57]. Therefore,
it needs to be tested at the statistical level. In this paper, to
distinguish the significant differences in the optimization
performance of the IMPA over the other seven algorithms,
Wilcoxon statistical tests are performed. Test results of 30-
dimension and fixed-dimension on the benchmark func-
tions at the significant level of p = 5% are obtained. The test
results are shown in Table 5. When p < 5%, the zero hypoth-
esis considers a rejection, indicating that there is a significant
difference between both algorithms. When p > 5%, it indi-
cates that the difference between both algorithms is not sub-
stantial. Since the best algorithm on a benchmark function
cannot be compared with itself, the best algorithm on each
benchmark function is marked as N/A, indicating that the
performance is comparable and optimal between the two.

“S” represents the saliency judgment result, and the symbols
“+”, “-”, and “=,” respectively, indicate that the performance
of IMPA is better than, worse than, and equivalent to the com-
parison algorithm. As shown in Table 5, most of the p values
are less than 5%, indicating that the IMPA algorithm is signif-
icantly different in most of the test functions among the other
seven algorithms. For F1, F2, F5-F7, F11, and F15, the perfor-
mance of IMPA and MSIMPA are comparable, and all can
obtain the best value. In general, the IMPA algorithm shows
significant advantages over the other seven algorithms.

6. Application of 3D Surface WSN Coverage
Based on IMPA

In this section, simulation of the performed experiments is
conducted under two kinds of 3D terrains named undulating
and rugged terrains. The flow chart of the proposed IMPA
algorithm applied to 3D surface WSN coverage optimization
is shown in Figure 8. The three-dimensional maps of both
terrains are shown in Figure 9. In this research, to simplify
the problem model, both terrains are simulated using the
surface equation of the function. And the simulation results
for IMPA, MSIMPA, MPA, ESSA, and WOA are compared.

6.1. Undulating Terrain Simulation Experiment. The surface
equation of the simulated undulating terrain is z = xe−x

2−y2 .
The length and width of the mapped surface into the 2D
plane are set to 4m. The sensing radius of the sensor nodes
is 0:5m. The population size and iterations set to 30 and
1000, respectively. The experiments are independently run
20 times for each group to obtain the average result. The sur-
face is divided into 400 sections using the grid division
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Figure 12: Convergence comparison in undulating terrain (50 nodes).
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method, and deployed with f30, 40,⋯, 80g nodes. The sim-
ulation results are as shown in Table 6.

Table 6 revealed that the average coverage increases with
the increase of sensor nodes. Under the same conditions, the
network coverage of sensor nodes optimally deployed by the
IMPA algorithm proposed in this paper is the largest. The
coverage optimization ability of WOA and ESSA is poor,
and there is a big gap compared with the other three algo-
rithms. When the number of nodes is 50, the average cover-

age of the IMPA algorithm is 3.44% greater than that of the
MPA and 12.47% higher than the WOA. When the number
of nodes is 80, the average coverage of the IMPA reaches to
96.81%. The average coverage of the IMPA does not increase
significantly after 70 nodes. It is mainly due to the redun-
dancy of nodes in the network, weakening the algorithm’s
performance.

Figures 10 and 11 show the optimized deployment
results of the MPA and IMPA at 50 nodes, respectively. As
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shown in Figure 10(b), in order to understand the distribu-
tion location and coverage areas of the nodes, we map the
3D coverage results into a 2D plane. The red dots indicate
the deployment locations of the sensor nodes and the blue
areas indicate the coverage areas. Figure 12 shows the cover-
age iteration curves of the five algorithms.

Figures 10(b) and 11(b)show that the sensor nodes
deployed by the IMPA are more uniform, and the coverage
area is larger. Figure 12 shows that the convergence rate of
the IMPA is more rapid compared to the MPA. At about
the 200-th generation, the coverage rate of the IMPA reaches
to 88%, while the MPA algorithm is only about 72%, a differ-
ence of about 16% between the two. This shows that the pro-
posed improved strategy can speed up the optimization
speed of the algorithm.

6.2. Rugged Terrain Simulation Experiment. Simulations
using more complex rugged terrain are conducted to further
validate the deployment capabilities of the IMPA algorithm.
The simulated surface equation of the rugged terrain is z =
cos ðxÞ sin ðyÞ. The length and width of the mapped surface
into the 2D plane are adjusted to 10m. The sensing radius of
the sensor nodes is 1m. The population size and iterations
are set to 50 and 300, respectively. The simulations are inde-
pendently run 20 times for each group to obtain the average
value. In this simulation, the number of sensor nodes is
adjusted to 100 because the rugged terrain is complex, and
the 3D perception blind area is larger. The surface is also
divided into 400 sections. The results of the optimized
deployment of the IMPA are shown in Figure 13.

Figure 13 shows that the optimized nodes by the IMPA are
uniformly deployed on the surface. The coverage area signifi-
cantly becomes greater while comparing to the initial deploy-
ment. However, deploying nodes in the convex region of the
3D surface due to the existence of the 3D perception blind area
would be difficult. It results in a relatively concentrated cover-
age hole which is shown in the blank area of Figure 13(b).
Figure 14 illustrates the coverage convergence curves of both

algorithms in rugged terrain. It shows that the convergence
rate of the IMPA is very high within the early stages. Around
the 200-th generation, the coverage quickly reaches to 87.5%
where its final coverage rate is optimized to 92.57%. The
results indicate that the final coverage for the IMPA is 6.82%
greater than the MPA (85.75%). It shows that the IMPA algo-
rithm integrating the three proposed improved strategies of
this research could maintain good deployment performance
within the complex rugged terrain. Moreover, the IMPA algo-
rithm shows good terrain adaptability.

In summary, by comparing both simulation results for
the different terrains, the IMPA could effectively improve
the coverage while solving the coverage problem for the
complex 3D surface WSN. The nodes could be deployed
more uniformly and have more robust adaptability to the
different terrains. Finally, it verifies the improvement and
effectiveness of the proposed strategies.

6.3. Network Life Cycle Comparison. The control of energy
consumption is very important to the network life of WSN
and is directly related to the life cycle of the entire network.
Under the same conditions, the smaller the energy con-
sumption of WSN, the longer the life cycle of the network.
The LEACH protocol is a low-energy routing algorithm
commonly used in WSN. The basic idea is to distribute the
energy load of the entire network evenly to each sensor node
by randomly and cyclically selecting the cluster head node,
thereby reducing the energy consumption of the network
and improving the overall survival time of the network. In
this paper, the LEACH protocol is used for data transmis-
sion, and the specific energy consumption model is shown
in the literature [58]. Reference [59] uses the death time of
the last node to represent the life cycle of the network.
Therefore, this paper also uses the death time of the last
node to test the network life cycle.

The comparison of different algorithms in undulating
terrain is shown in Figure 15. It can be seen from the figure
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that the network lifetime increases as the number of
deployed sensor nodes increases and the proposed IMPA
algorithms all obtain the highest network life cycle. Interest-
ingly, the MSIMPA is able to achieve a higher coverage than
the MPA, but his network life cycle is shorter than MPA.
The comparison of the network life cycle of rugged terrain
is shown in Figure 16. It can be seen that the network life
cycle optimized by IMPA is the highest, reaching 4333
rounds, followed by the WOA algorithm, but the network
coverage rate optimized by WOA is not ideal. Overall, the
WSN optimized by the proposed IMPA algorithm can
achieve higher network coverage and longer life cycle.

7. Conclusion and Future Work

This study proposed a multistrategy integrated improved
marine predator algorithm (IMPA) for coverage optimiza-
tion of WSN on the 3D surfaces. The fusion of the random
opposition-based learning strategy and the differential evo-
lution operator was employed to expand the search range
and improve the diversity of the population to enhance the
global search ability. Furthermore, the improved SFLA strat-
egy, as a local search algorithm, was employed to replace the
original FADs effect of MPA, reducing the blind search of
individuals and improving the algorithm’s local exploitation
ability. Moreover, a dynamic learning mechanism based on
quasireflected opposition-based learning was proposed to
improve the algorithm’s convergence speed and optimiza-
tion search accuracy. The IMPA algorithm is compared with
the other seven algorithms in 15 benchmark test functions.
The results show that IMPA has significant advantages in
solution accuracy and convergence speed in both 30 and
100 dimensions. Finally, IMPA is applied to the node
deployment of WSN on two 3D surfaces. The simulation
results show that the nodes optimized by IMPA are more
uniform, have higher coverage, longer network life cycle,
and have faster convergence speed. It also shows that the
IMPA has strong adaptability to the two 3D simulated ter-
rains and has certain practicability and effectiveness.

Because of the complexity of the 3D surfaces and the
existence of 3D perception blind area, it is difficult to ensure
the connectivity of the deployed networks. In the future, we
will study appropriate methods to ensure the connectivity of
WSN deployed on 3D surfaces.
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