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As Internet of Things (IoT) is extensively employed in diverse realistic areas, it is vital to effectively and timely analyze the data
collected by IoT devices. To cope with this problem, by integrating adjustable MG SF probabilistic rough sets (PRSs) with the
TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method, this paper explores a three-way
multi-attribute group decision-making (MAGDM) approach in the context of multigranulation (MG) spherical fuzzy (SF)
incomplete information systems (IISs) and further applies the presented method to the analysis of leg muscle data obtained
from Internet of Medical Things (IoMT) devices for Parkinson’s patients. First, the concept of MG SF IISs is established, and
the completion method is provided. Then, adjustable MG SF PRSs are proposed for information fusion. Afterwards,
considering the bounded rationality of decision-makers (DMs), a new three-way MAGDM method is designed by fusing
adjustable MG SF PRSs with the TODIM method. Finally, in the context of IoMT-based detecting abnormal knee joints in
Parkinson’s patients, the applicability and validity of the presented method are eventually verified.

1. Introduction

IoT refers to the collection of diverse types of information in
actual scenarios via various sensors, the intelligent analysis
of the collected data, and the connection of objects from
the network to achieve intelligent identification, positioning,
supervision, and other tasks. Due to the advantages of high
efficiency, accuracy, and security, IoT is now widely used
in various areas, such as health management [1], smart
home [2], intelligent logistics [3], smart parking [4], and
water treatment [5]. Thus, the application of IoT is wide-
spread and has great development prospects.

IoMT is the application of IoT in the medical area. The
application of IoMT is usually divided into digital hospital
construction and health management based on wearable
sensors, of which digital hospital construction is only appli-
cable to medical institutions, and the construction cost is

high; hence, the scope of its application is relatively limited,
whereas wearable sensors are widely used in individuals and
families with their advantages of low power consumption,
high reliability, and sensitivity. Wearable sensors can collect
personal health data in real time and can achieve monitoring
of physiological parameters such as blood sugar, blood oxy-
gen, blood pressure, heart rate, and electromyography.
Recently, many scholars have conducted meaningful
researches on IoMT. For instance, Wei et al. [6] proposed
an intelligent channel allocation algorithm in the context
of IoMT. Jain et al. [7] explored the combination of IoMT
with point-of-care testing devices to monitor infectious dis-
eases. Wei et al. [8] put forward an intelligent nonstatic rout-
ing determination scheme to improve the stability of IoMT.

One of the challenges in the current application of IoMT
devices is the effective analysis of the collected data. The
three-way MAGDM approach is a valid one to handle the
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uncertain and multilevel complex data obtained from IoMT
devices. Three-way decision (3WD) was initiated by Yao [9],
and this theory originates from the research of decision-
theoretic rough sets (DTRSs) [10, 11], which provides a
sound semantic expression for three domains in DTRS
models. Recently, Yao [12] investigated the “trisecting-
acting-outcome” model (TAO model), where “trisecting”
means to divide the domain into three parts, “acting” means
to apply the corresponding strategy to the three-parted
domains, and “outcome” means to evaluate and give feed-
back to the trisecting and acting. In view of the fact that
3WD is consistent with human thinking and cognitive char-
acteristics and can efficiently deal with diverse uncertainties
in practical decision-making, this paper selects the 3WD
model as the basic modeling framework for solving
MAGDM problems. In the past decade, 3WD has been
widely and deeply studied in several fields. Zhang et al.
[13] explored an MG 3WD rule in the hesitant fuzzy linguis-
tic background. Ye et al. [14] established a three-way
MAGDM method in an incomplete environment. In addi-
tion to the above works, there are many applications for
3WD [15–17].

In 2019, Gundogdu and Kahraman [18] proposed SFSs,
which are developed from intuitionistic fuzzy sets (IFSs)
[19], Pythagorean fuzzy sets (PFSs) [20], and neutrosophic
sets (NSs) [21], with the aim of further characterizing
diverse uncertainties of DMs in information depiction pro-
cesses. IFSs are the first tool to include the notion of non-
membership degrees, and the membership degree μðxÞ and
nonmembership degree νðxÞ satisfy the constraint 0 ≤ μðxÞ
+ νðxÞ ≤ 1. Thus, IFSs are more accurate in terms of infor-
mation depictions for uncertain information compared to
classic FSs. PFSs are further extensions of IFSs, and μðxÞ
and νðxÞ only need to satisfy 0 ≤ μ2ðxÞ + ν2ðxÞ ≤ 1; thus,
their membership functions own more flexibility. NSs add
the uncertainty degree to the IFSs, so that a DM can use
the membership degree, uncertainty degree, and nonmem-
bership degree to characterize diverse decision information.
SFSs are a further synthesis of the above three types of FSs,
with the advantage that the membership degree, nonmem-
bership degree, and hesitation degree can be, respectively,
formulated, which allows DMs to provide a valid depiction
of uncertain information. In summary, SFSs improve the
accuracy of information depictions in decision-making
problems and lay a solid foundation for subsequent informa-
tion fusion and analysis. Based on the above advantages in
information depictions, SFSs have been utilized to address
a series of intelligent decision issues in recent years
[22–26]. In addition, most of existing studies on SFSs are
under complete ISs, whereas IISs are common in real life;
thus, this paper is aimed at building MG SF IISs for handling
missing information.

When dealing with behavioral decision-making issues,
DMs are often bounded rationality rather than fully ratio-
nality, and they tend to pursue “satisfactory” solutions.
Due to the limited information available to DMs, the final
solution is often nonoptimal; hence, the psychological state
of DMs has a great influence on final decision conclusions.
The TODIM method [27] is a typical MAGDM method

that includes the behavior of DMs in light of the prospect
theory. For the sake of removing some subjective parame-
ters owned by the prospect theory, the TODIM method
concentrates on constructing a dominance function as a
measure of the dominance of each alternative over the
others, and the ranking results of all alternatives are finally
acquired by the total dominance. Recently, the TODIM
method owns a profound impact in the intelligent
decision-making area and has made many important
achievements. For instance, He et al. [28] investigated an
effect analysis model and improved failure mode by refer-
ring to the TODIM method and probabilistic linguistic
information for identifying the risks of wind turbine sys-
tems. Seker and Kahraman [29] put forward a brand-
new MAGDM method by virtue of TOPSIS and TODIM
methods. He et al. [30] explored a generalized TODIM
method in the shadowed set background for addressing
large-scale MAGDM. In addition to the above-stated
methods, there exist many more meaningful applications
of the TODIM method [31–33].

In light of the above analysis, the aim of this work is to
explore an effective three-way MAGDM method in SF IISs.
Since the traditional 3WD model does not consider the rel-
ative relationship of actions in different states, Jia and Liu
[34] introduced relative loss functions into 3WD and
explored a decision-making-driven 3WD model. Based on
this advantage, the paper explores the decision-making-
driven three-way MAGDM model in SF IISs by the TODIM
method. The primary study motivations of this work are
summed up below.

(1) Most of existing SF MAGDM methods are explored
under complete ISs, and there is a lack of research in
IISs. Therefore, in order to depict incomplete
MAGDM information, this paper proposes the con-
cept of MG SF IISs

(2) It is imperative to construct completion methods to
patch the missing values for IISs and also to con-
struct fusion strategies for MG information. There-
fore, this paper proposes adjustable MG SF PRSs
for information fusion

(3) The prevalence of finite rationality in MAGDM
makes it necessary to use the TODIM method in
MAGDM. In this paper, a combination of adjustable
MG SF PRSs with the TODIM method is explored in
the context of MG SF IISs for a three-way MAGDM
method

Based on the above study motivations, the following
innovation points of this paper are further summarized.

(1) The definition of MG SF IISs for a more comprehen-
sive description of incomplete decision-making
information is designed

(2) A completeness method is constructed for MG SF
IISs to obtain MG SF ISs. On this basis, a definition
of adjustable MG SF PRSs is given for multi-
granularity information fusion
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(3) A novel decision-making-driven three-way MAGDM
method is established via adjustable MG SF PRSs
and the TODIM method in the setting of MG SF ISs

The remainder of this work is listed below. Section 2
revisits fundamentals of SFSs, multigranulation probabilistic
rough sets (MGPRSs), decision-making-driven 3WD, and
the TODIM method. The notion of MG SF IISs is proposed,
and the completeness method is constructed in Section 3,
followed by the notion of adjustable MG SF PRSs for infor-
mation fusion. The decision-making-driven three-way
MAGDMmethod is established in Section 4 by using adjust-
able MG SF PRSs and the TODIM method. In Section 5, the
applicability and effectiveness of the presented three-way
MAGDM method are shown by a case study of IoMT-
based detection of abnormal knee joints in Parkinson’s
patients. The last section summarizes the entire work related
to this paper and provides a description of further study
topics.

2. Preliminaries

The current section primarily revisits several basic notions,
which include SFSs, MGPRSs, 3WD, and the TODIM
methods.

2.1. SFSs. SFSs enhance the accuracy of decision-making
issues in the stage of information depictions and make infor-
mation depiction processes more comprehensive. The fun-
damental definitions of SFSs are introduced below.

Definition 1 (see [18]). Let U be a finite universe of dis-
course. An SFS AS

~ on U is defined as follows:

AS

~
= x, μ

AS

~ xð Þ, ν
AS

~ xð Þ, π
AS

~ xð Þ
� �

x ∈Uj
� �� �

, ð1Þ

where μAS
~ðxÞ: U ⟶ ½0, 1�, νAS

~ðxÞ: U⟶½0, 1� and
πAS

~ðxÞ: U ⟶ ½0, 1� represent the membership degree, non-
membership degree, and hesitancy degree of x ∈U to AS

~,
respectively. For each x ∈U , 0 ≤ μ2AS

~ðxÞ + ν2AS
~ðxÞ + π2

AS
~ðxÞ

≤ 1 is satisfied. Moreover, rAS
~ðxÞ = ð1 − μ2AS

~ðxÞ − ν2AS
~ðxÞ

− π2
AS

~ðxÞÞ represents the refusal degree. In addition, aS
~

= ðμAS
~ðxÞ, νAS

~ðxÞ, πAS
~ðxÞÞ is named a spherical fuzzy

number (SFN). For the ease of descriptions, it is further
simplified to ðμAS

~ , νAS
~ , πAS

~Þ.

In order to use SFNs in the latter decision-making algo-
rithm, the basic operations for SFSs are described below.

Definition 2 (see [18]). Let U be a finite universe of discourse
and aS

~ and bS
~ be two SFNs. Then:

(1) ~aS
c = fν~AS

, μ~AS
, π~AS

g

(2) ~aS ⊕ ~bS = fðμ2~AS
+ μ2~BS

− μ2~AS
μ2~BS

Þ1/2, ν~AS
ν~BS

,

ðð1 − μ2~BS
Þπ2

~AS
+ ð1 − μ2~AS

Þπ2
~BS
− π2

~AS
π2
~BS
Þ1/2g

(3) ~aS ⊗ ~bS = fμ~AS
μ~BS

, ðν2~AS
+ ν2~BS

− ν2~AS
ν2~BS

Þ1/2,
ðð1 − ν2~BS

Þπ2
~AS
+ ð1 − ν2~AS

Þπ2
~BS
− π2

~AS
π2
~BS
Þ1/2g

(4) λ~aS = fð1 − ð1 − μ2~AS
ÞλÞ1/2, νλ~AS

,

ðð1 − μ2~AS
Þλ − ð1 − μ2~AS

− π2
~AS
ÞλÞ1/2g, λ > 0

(5) ~aS
λ = fμλ~AS

, ð1 − ð1 − ν2~AS
ÞλÞ1/2,

ðð1 − ν2~AS
Þλ − ð1 − ν2~AS

− π2
~AS
ÞλÞ1/2g, λ > 0

(6) ~aS ⊖ ~bS = fmax f0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jμ2~AS

− μ2~BS
j/1 − μ2~BS

q
g, min f1, ð

ν2~AS
/ν2~BS

Þg, min f1, ðπ2
~AS
/π2

~BS
Þgg

(7) ~aS⊘~bS = fmin f1, ðμ2~AS
/μ2~BSÞg, max f0,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jν2~AS
− ν2~BS

j/1 − ν2~BS

q
g, max f0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jπ2

~AS
− π2

~BS
j/1 − π2

~BS

q
gg

For the sake of conveniently obtaining the comparison
results among SFNs, the score and accuracy functions of
SFNs are introduced below.

Definition 3 (see [18]). Let aS
~ be an SFN. The score function

and accuracy function of aS
~ are defined as follows:

Score ~aSð Þ = μ~AS
− π~AS

	 
2
− ν~AS

− π~AS

	 
2
, ð2Þ

Accuracy ~aSð Þ = μ2~AS
+ ν2~AS

+ π2
~AS
: ð3Þ

For any two SFNs aS
~ and bS

~, if Scoreð~aSÞ < Scoreð~bSÞ,
then ~aS < ~bS; if Scoreð~aSÞ > Scoreð~bSÞ, then~aS > ~bS; if Score
ð~aSÞ = Scoreð~bSÞ and Accuracyð~aSÞ < Accuracyð~bSÞ,
then~aS < ~bS; if Scoreð~aSÞ = Scoreð~bSÞ and Accuracyð~aSÞ >
Accuracyð~bSÞ, then ~aS > ~bS; if Scoreð~aSÞ = Scoreð~bSÞ and
Accuracyð~aSÞ = Accuracyð~bSÞ, then ~aS = ~bS.

The distance measure plays a significant role in actual
decision-making processes. In order to efficiently describe
and analyze the complicated relationship between two SFNs,
the Euclidean distance between SFNs is presented below.

Definition 4 (see [18]). Let aS
~ and bS

~ be two SFNs. The
Euclidean distance between aS

~ and bS
~ is defined as follows:

dis ~aS, ~bS
	 


=
1
2

μ~AS
− μ~BS

	 
2
+ ν~AS

− ν~BS

	 
2
+ π~AS

− π~BS

	 
2� �� �1/2
:

ð4Þ

2.2. MGPRSs. MGPRS is an integration of multigranulation
rough sets (MGRSs) and probabilistic rough sets (PRSs); it
not only owns the advantages of sound performances in
the information fusion stage of MGRSs but also has the
advantages of greater error tolerance of PRSs. Therefore,
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MGPRS is widely used to address various intelligent
decision-making issues. The following part introduces the
basic definition of MGPRSs.

Definition 5 (see [35]). Let U be a finite universe of dis-
course, Riði = 1, 2,⋯,lÞ be a binary relation on U , and Pr be
a probability measure. For any X ⊆U , 0 ≤ β < α ≤ 1, the

lower approximation ∑l
i=1Riðα,βÞ

OðXÞ and upper approxima-

tion ∑l
i=1Riðα,βÞ

O
ðXÞ of optimistic MGPRSs are defined as

follows:

〠
l

i=1
Ri α,βð Þ

O Xð Þ = P X x½ �R1

���	 

≥ α∨P X x½ �R2

���	 

≥ α∨⋯∨P X x½ �Rl

���	 

≥ α x ∈Uj

n o
,

〠
l

i=1
Ri α,βð Þ

O

Xð Þ = P X x½ �R1

���	 

> β∧P X x½ �R2

���	 

> β∧⋯∧P X x½ �Rl

���	 

> β x ∈Uj

n o
:

ð5Þ

In light of the above definition, ð∑l
i=1Riðα,βÞ

OðXÞ,
∑l

i=1Riðα,βÞ
O
ðXÞÞ is called an optimistic MGPRS.

According to the formulation of two approximations of
optimistic MGPRSs, the following regions can be separated:

POSOα,β Xð Þ =〠
l

i=1
Ri α,βð Þ

O

Xð Þ,

NEGO
α,β Xð Þ =U −〠

l

i=1
Ri α,βð Þ

O

Xð Þ,

BNDO
α,β Xð Þ =〠

l

i=1
Ri α,βð Þ

O

Xð Þ −〠
l

i=1
Ri α,βð Þ

O

Xð Þ:

ð6Þ

Definition 6 (see [35]). Let U be a finite universe of dis-
course, Riði = 1, 2,⋯,lÞ be a binary relation on U , and Pr be
a probability measure. For any X ⊆U , 0 ≤ β < α ≤ 1, the

lower approximation ∑l
i=1Riðα,βÞ

PðXÞ and upper approxima-

tion ∑l
i=1Riðα,βÞ

P
ðXÞ of pessimistic MGPRSs are defined as

follows:

〠
l

i=1
Ri α,βð Þ

P

Xð Þ = P X x½ �R1

���	 

≥ α∧P X x½ �R2

���	 

≥ α∧⋯∧P X x½ �Rl

���	 

≥ α x ∈Uj

n o
,

〠
l

i=1
Ri α,βð Þ

P

Xð Þ = P X x½ �R1

���	 

> β∨P X x½ �R2

���	 

> β∨⋯∨P X x½ �Rl

���	 

> β x ∈Uj

n o
:

ð7Þ

In light of the above definition, ð∑l
i=1Riðα,βÞ

PðXÞ,
∑l

i=1Riðα,βÞ
P
ðXÞÞ is called a pessimistic MGPRS.

According to the formulation of two approximations of
pessimistic MGPRSs, the following regions can be separated:

POSPα,β Xð Þ =〠
l

i=1
Ri α,βð Þ

P

Xð Þ,

NEGP
α,β Xð Þ =U −〠

l

i=1
Ri α,βð Þ

P

Xð Þ,

BNDP
α,β Xð Þ =〠

l

i=1
Ri α,βð Þ

P

Xð Þ −〠
l

i=1
Ri α,βð Þ

P

Xð Þ:

ð8Þ

2.3. Decision-Making-Driven 3WD Methods. 3WD provides
a reasonable semantic interpretation for the positive, nega-
tive, and boundary domains in DTRSs, which is consistent
with the style of human thinking and cognitive characteris-
tics, and can efficiently handle various uncertainties in prac-
tical decision-making. The decision-making-driven 3WD
method is listed as follows.

In classic MAGDM models, it is assumed that the alter-
native set is U = fx1, x2,⋯,xmg, where xi represents the ith
alternative. The attribute set is V = fy1, y2,⋯,yng, where yj
represents the jth attribute. A DM evaluates all alternatives

via attributes and obtains the assessment matrix P =

ðqijÞm×n
∪
n

i=1
Xi, where qij denotes the assessment value of xi

on yj. For any qij, qij ∈ ðqjmin, q
j
maxÞ is true, where qjmin, q

j
max

denote the minimum and maximum values of the assess-
ment value on yj, respectively. In general, if qij is a fuzzy

number, then qjk ∈ ½0, 1�, qjmin = 0, and qjmax = 1. The weight
set of attributes is u = fu1, u2,⋯,ungT , where uj denotes the
weight value of the jth attribute and uj satisfies 0 ≤ uj ≤ 1
and ∑n

j=1uj = 1.
Yao [10] proposed the DTRS model with the help of the

Bayesian theory with sound interpretations of thresholds.
DTRS models usually contain three actions and two states,
as presented in Table 1.

In DTRS models, for a state set Ω = fX, Xcg, X and Xc,
respectively, represent belonging to set X and not belonging
to set X. For an action set A = faP, aB, aNg, aP, aB, and aN ,
respectively, represent x ∈ POSðXÞ, x ∈ BNDðXÞ, and x ∈
NEGðXÞ. λPP, λBP, and λNP denote the loss of conducting
actions aP, aB, and aN when x ∈ X is satisfied, whereas λPN ,
λBN , and λNN denote the loss of conducting actions aP, aB,
and aN when x ∈ Xc is satisfied, respectively.

Table 1: Loss functions.

X Pð Þ Xc Nð Þ
aP λPP λPN

aB λBP λBN

aN λNP λNN
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When the loss function satisfies ðλPP − λBNÞðλNP − λBPÞ
< ðλBP − λPPÞðλBN − λNNÞ and the threshold satisfies 0 ≤ β
< γ < α ≤ 1, then the following decision rules are true.

(P) if PrðXj½x�Þ ≥ α, then x ∈ POSðXÞ
(B) if β < PrðXj½x�Þ < α, then x ∈ BNDðXÞ
(N) if PrðXj½x�Þ ≤ β, then x ∈NEGðXÞ
where the threshold values α, β and γ refer to

α =
λPN − λBN

λPN − λBNð Þ + λBP − λPPð Þ ,

β =
λBN − λNN

λBN − λNNð Þ + λNP − λBPð Þ ,

γ =
λPN − λNN

λPN − λNNð Þ + λNP − λPPð Þ :

ð9Þ

In terms of the above 3WD models, let λBP′ = λBP − λPP,
λNP′ = λNP − λPP, λPN′ = λPN − λNN , and λBN′ = λBN − λNN ;
then, the loss function of Table 1 is transformed into the rel-
ative loss function [34], as presented in Table 2.

Based on the relative loss function in Table 2, the relative
loss function in terms of the evaluation value qij is obtained,
as presented in Table 3.

In Table 3, the parameter σ ∈ ½0, 0:5�, σ is the risk aver-
sion coefficient, which indicates a DM’s aversion to risk,
and the larger σ indicates a DM’s higher aversion to risk.
The thresholds of the loss function in Table 3 refer to

α =
1 − σð Þ 1 − qij

	 

1 − σð Þ 1 − qij

	 

+ σqij

,

β =
σ 1 − qij
	 


σ 1 − qij
	 


+ 1 − σð Þqij
,

γ = 1 − qij:

ð10Þ

2.4. The TODIM Method. The TODIM method [27] con-
structs the dominance degree function in light of the pros-
pect theory, which can better reflect the bounded
rationality and decision preferences of DMs. The concrete
steps of the TODIM method are summed up below.

Suppose that the alternative set is B = fB1,B2,⋯,Bmg, the
attribute set is C = fC1, C2,⋯,Cng, the weight set of attri-
butes is w = fw1,w2,⋯,wngT , and the evaluation value
matrix is T = ðtijÞm×n.

Step 1. The evaluation value matrix T is normalized via using
the following formula to obtain T ′ = ðxijÞm×n:

xij =
tij benefit attribute,

−tij cost attribute:

(
ð11Þ

Step 2. Based on the weight values of all attributes, the attri-
bute with the largest weight value is determined to be the

reference attribute Cr , and the relative weight of the attribute
Cj with respect to Cr is calculated according to the following
formula:

wjr =
wj

wr
, ð12Þ

where wr =max fwj, j = 1, 2,⋯,ng.

Step 3. Calculate the degree of dominance of alternative Bi
over the other alternatives Bk by using the following formula:

ϑ Bi, Bkð Þ = 〠
n

j=1
ςj Bi, Bkð Þ,

ςj Bi, Bkð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xij − xkj
� 

wjr

∑n
j=1wjr

s
xij > xkj,

0 xij = xkj,

−
1
θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xkj − xij
� 

∑n
j=1wjr

wjr

s
xij < xkj:

8>>>>>>>><
>>>>>>>>:

ð13Þ

where the parameter θ is the attenuation coefficient and a
smaller value of θ indicates a higher degree of risk aversion
of a DM.

Table 2: Relative loss functions.

X Pð Þ Xc Nð Þ
aP 0 λPN′
aB λBP′ λBN′
aN λNP′ 0

Table 3: Relative loss functions in terms of qij.

X Pð Þ Xc Nð Þ
aP 0 1 − qij

aB σqij σ 1 − qij
	 


aN qij 0

Table 4: Relative loss functions in the SF environment.

R Pð Þ Rc Nð Þ
aP 0 θij

c

aB σθij σθij
c

aN θij 0
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Step 4. Calculate the overall dominance ϕðBiÞ of each alter-
native Biði = 1, 2,⋯,mÞ.

ϕ Bið Þ =
∑m

k=1ϑ Bi, Bkð Þ −min
i

∑m
k=1ϑ Bi, Bkð Þf g

max ∑m
k=1ϑ Bi, Bkð Þf g −min

i
∑m

k=1ϑ Bi, Bkð Þf g : ð14Þ

Step 5. Rank all alternatives by virtue of ϕðBiÞ.

3. MG SF PRSs

In this section, the concept of MG SF IISs is firstly proposed,
and the completion methods for IISs are given. Finally, the
model of adjustable MG SF PRSs is established.

3.1. MG SF IISs. Given that most of the data have missing
values, it is necessary to establish an IIS. The following part
describes MG SF ISs and IISs.

Definition 7. An MG SF IS can be denoted as ðU ,V , R, SÞ,
where U = fx1, x2,⋯,xmg is the set of alternatives, V =
fy1, y2,⋯,yng is the set of attributes, u = fu1, u2,⋯,ungT
is the attribute weight set, w = fw1,w2,⋯,wlgT is a DM’s
weight set, R = fR1, R2,⋯,Rlg is the set of SF relations over
U ×V , and S is the standard evaluation set.

Definition 8. An MG SF IIS can be denoted as ðU ,V , Ri
∗, SÞ,

where U , V , and S have the same meaning as shown in Def-
inition 7. Ri

∗ is the set of SF relations over U ×V , Ti
∗ =

ðt jkÞm×n is the matrix of evaluation values in Ri
∗, t jk is the

evaluation value of xj on yk, and Ti
∗ contains missing values.

We denote these missing values by ∗.

3.2. The Completion Method. For the IISs defined above, this
section will propose a method based on average values for
processing. The details of this method are presented as
follows.

Definition 9. For an MG SF IISs ðU , V , Ri
∗, SÞ, suppose t jk ′

ðj = 1⋯m′, t jk ′ ≠ ∗Þ is an evaluation values on yk that is

not a missing value, m′ is the number of evaluation values.

tk
∗ is the missing value in the evaluation value on yk, then

for which tk
∗ is filled with the following equation:

tk
∗ =

∑m′
j=1t jk ′
m′ : ð15Þ

The above equation can transform an MG SF IIS ðU , V
, Ri

∗, SÞ into a complete IS ðU , V , Ri, SÞ; thus, the subsequent
algorithm is still established on the MG SF complete IS.

3.3. Adjustable MG SF PRSs. In this section, in light of the
above presented IISs and the completion method, the con-
cept of MG SF membership degrees and adjustable member-
ship degrees will be established to replace the conditional
probability in classic MGPRSs, and finally, the MG SF PRSs
model will be established.

Definition 10. Let ðU , V , Ri, SÞ be an MG SF complete IS. For
any xj ∈U and yk ∈ V , θ

Ri
S ðxjÞ is the MG SF membership

degree of xj with respect to Ri, which is defined as follows:

θ
Ri
S xj
� 

=
∑yk∈V

ukRi xj, yk
� 

S ykð Þ
∑yk∈V

ukRi xj, yk
� 

 !
: ð16Þ

Definition 11. Let ðU , V , Ri, SÞ be an MG SF complete IS. All
the membership degrees θ

Ri
S ðxjÞ are arranged in ascending

order to obtain that the ith ranked membership degree is

θ
RτðiÞ
S ðxjÞ, and θ

RτðiÞ
S ðxjÞ is called the adjustable MG SF mem-

bership degree of xj with respect to Ri.

Input. An MG SF IISs ðU ,V , Ri
∗, SÞ.

Output. Sorting results of all alternatives.
Step 1. Transform MG SF IISs into MG SF complete ISs by using the presented completion method in Section 3.2.
Step 2. Calculate the attribute weights and the weight of DMs.
Step 3. Calculate the MG SF membership degree of xj with respect to Ri.

Step 4. Determine the parameter η to obtain the adjustable MG SF membership degree θ
RτðiÞ
S ðxjÞ.

Step 5. Determine the parameter σ and calculate the relative loss function and the corresponding threshold for DMs.
Step 6. Calculate the weights of the threshold attributes.
Step 7. Integrate thresholds by using the TODIM method to obtain the optimal threshold.
Step 8. Separate the positive, negative, and boundary domains according to the optimal threshold, further classification of
alternatives.
Step 9. According to the principle of positive ≻ boundary ≻ negative, we calculate the score function values of the three domains,
respectively, and finally get the ranking results of all alternatives.

Algorithm 1

Table 5: Classification results of the presented method.

Domains Alternatives

POSα,η Sð Þ ∅

BNDα,β,η Sð Þ x1, x3, x17

NEGβ,η Sð Þ x2, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13,
x14, x15, x16, x18, x19, x20, x21, x22
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Based on the adjustable MG SF membership degree

θ
RτðiÞ
S ðxjÞ, the following adjustable model MG SF PRSs can
be established.

Definition 12. Let ðU , V , Ri, SÞ be an MG SF complete IS
with α and β as two thresholds and satisfying 0 ≤ β < α ≤ 1.
For any xj ∈U , the adjustable MG SF probability lower
and upper approximations of xj with respect to ðU , V , Ri, SÞ
are defined as follows:

〠
l

i=1
Ri

α,η

Sð Þ = θ
Rτ ið Þ
S xj
� 

≥ α xj ∈U
��n o

,

〠
l

i=1
Ri

β,η

Sð Þ = θ
Rτ ið Þ
S xj
� 

> β xj ∈U
��n o

:

ð17Þ

where the parameter η = i/l denotes the risk coefficient of a
DM and satisfies η ∈ ½1/l, 1�. If η = 1/l, then the risk attitude of a
DM tends to be a fully risk-averse attitude; if η = 1, then the risk

attitude of a DM tends to be a fully risk-seeking attitude. By
referring to the above definitions, adjustable MG SF PRSs on

ðU , V , Ri, SÞ can be further shown as ð∑l
i=1Ri

α,ηðSÞ,
∑l

i=1Ri

β,η
ðSÞÞ.

According to the region separation in the classic
MGPRSs, three regions of MG SF PRSs can be further
obtained below:

POSα,η Sð Þ =〠
l

i=1
Ri

α,η

Sð Þ,

NEGβ,η Sð Þ =U −〠
l

i=1
Ri

β,η

Sð Þ,

BNDα,β,η Sð Þ =〠
l

i=1
Ri

β,η

Sð Þ −〠
l

i=1
Ri

α,η

Sð Þ:

ð18Þ

4. MAGDM Based on MG SF PRSs and TODIM

In this section, a novel MAGDM method by referring to
adjustable MG SF PRSs and the TODIM method is con-
structed with MG SF IISs.

Suppose U = fx1, x2,⋯,xmg is the set of alternatives, uni-
verse V = fy1, y2,⋯yng is set of attributes, u =
fu1, u2,⋯,ungT is the set of attribute weights, w =
fw1,w2,⋯,wlgT is the set of DM weights, R∗ = fR1,⋯Ri

∗⋯,
Rlg is the set of SF relationships established by each region
on U ×V , and S is a standard evaluation set on V . Therefore,
an MG SF IIS ðU , V , Ri

∗, SÞ can be established.
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Figure 1: Ranking results of the presented method.

Table 6: Ranking results with different values of η.

η Ranking results

η = 1/3
x3 ≻ x16 ≻ x12 ≻ x17 ≻ x7 ≻ x11 ≻ x10 ≻ x4 ≻
x2 ≻ x15 ≻ x9 ≻ x5 ≻ x6 ≻ x19 ≻ x21 ≻ x8 ≻

x20 ≻ x13 ≻ x18 ≻ x22 ≻ x14 ≻ x1

η = 2/3
x1 ≻ x3 ≻ x17 ≻ x5 ≻ x13 ≻ x16 ≻ x7 ≻ x12 ≻
x15 ≻ x6 ≻ x9 ≻ x14 ≻ x19 ≻ x20 ≻ x21 ≻ x8 ≻

x10 ≻ x18 ≻ x11 ≻ x4 ≻ x2 ≻ x22

η = 1
x3 ≻ x1 ≻ x22 ≻ x17 ≻ x13 ≻ x9 ≻ x18 ≻ x10 ≻
x16 ≻ x21 ≻ x5 ≻ x12 ≻ x14 ≻ x6 ≻ x7 ≻ x19 ≻

x15 ≻ x8 ≻ x4 ≻ x2 ≻ x20 ≻ x11
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4.1. SF MAGDM. Given an MG SF IIS ðU , V , Ri
∗, SÞ, the

following attribute weights uik and DM weights wi are
first determined by using the deviation maximization
method.

uik =
∑m

j=1∑
m
l=1 dis Ri xj, yk

� 
, Ri xl, ykð Þ� � 

∑n
k=1∑

m
j=1∑

m
l=1 dis Ri xj, yk

� 
, Ri xl, ykð Þ� �  , ð19Þ

wi =
∑n

k=1∑
n
o=1 dis uRi

ik , u
Ri
io

	 
	 

∑l

i=1∑
n
k=1∑

n
o=1 dis uRi

ik , u
Ri
io

	 
	 
 : ð20Þ

In an MG SF IIS, the relative loss function in Table 3
can be transformed into the form of Table 4.

Accordingly, the threshold value can be further
expressed as follows:

αij =
1 − σð Þθijc

1 − σð Þθijc + σθij
,

βij =
σθij

c

σθij
c + 1 − σð Þθij

:

ð21Þ

The thresholds for the l DMs can be obtained from the
above equations, and these l DMs of thresholds are inte-
grated by the TODIM method. The weights for threshold
attributes need to be determined before using the TODIM
method, and here, the entropy weight method is used to cal-
culate them, with the following steps.

Let the threshold matrix be TH = ðthijðπÞÞq×m, where
thijðπÞ is the hesitancy degree in thij.

Step 1. Calculate the information entropy of each index with
the following formula.

Hj = −
1

ln q
〠
q

i=1
pij ln pij

	 

, ð22Þ

where pij = ðthijðπÞÞ/ð∑q
i=1thijðπÞÞ, and when pij = 0, let

pij ln ðpijÞ = 0.
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Figure 2: Ranking results with different values of η.

Table 7: Ranking results with different values of σ.

σ Ranking results

σ = 0
x1 ≻ x3 ≻ x17 ≻ x5 ≻ x13 ≻ x16 ≻ x7 ≻ x12 ≻
x10 ≻ x18 ≻ x15 ≻ x6 ≻ x9 ≻ x14 ≻ x19 ≻ x20 ≻

x21 ≻ x8 ≻ x11 ≻ x4 ≻ x2 ≻ x22

σ = 0:25
x1 ≻ x3 ≻ x17 ≻ x5 ≻ x13 ≻ x16 ≻ x7 ≻ x12 ≻
x10 ≻ x18 ≻ x15 ≻ x6 ≻ x9 ≻ x14 ≻ x19 ≻ x20 ≻

x21 ≻ x8 ≻ x11 ≻ x4 ≻ x2 ≻ x22

σ = 0:5
x1 ≻ x5 ≻ x3 ≻ x13 ≻ x16 ≻ x7 ≻ x12 ≻ x10 ≻
x18 ≻ x15 ≻ x6 ≻ x9 ≻ x14 ≻ x17 ≻ x19 ≻ x20 ≻

x21 ≻ x8 ≻ x11 ≻ x4 ≻ x2 ≻ x22
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Step 2. Calculate the entropy weight of each index, and the
formula is as follows.

wth−j =
1 −Hj

m −∑m
j=1 Hj

�  : ð23Þ

Step 3. Obtain the weights of all evaluation indexes wth =
ðwth−1,wth−2,⋯,wth−mÞT .

After obtaining the index weights, the thresholds can be
integrated by utilizing the TODIM method in Section 2.4.
First, normalize the threshold matrix TH = ðthijÞq×m, then
find the maximum weight and calculate the relative weight,
then calculate the dominance and overall dominance, and
finally rank the overall dominance to get the optimal
threshold.

The previous steps obtained the conditional probabilities
and optimal thresholds in 3WD. Next, we can separate the
regions for all alternatives according to the rules in 3WD
and separately calculate the score function values to obtain
the final ranking results.

4.2. The Model Algorithm. In this section, the method of
MAGDM in MG SF IISs is introduced, and its specific steps
are shown below.

Remark 13. For the above model algorithm, the time com-
plexity is shown below. In Step 1, the complexity is Oðq
nmÞ. In Step 2, the complexity is Oðqn2m2Þ. In Step 3,
the complexity is OðqnmÞ. In Step 4, the complexity is O
ðm log qÞ. In Step 5, the complexity is OðqmÞ. In Step 6,
the complexity is OðqmÞ. In Step 7, the complexity is Oðq2mÞ.
In Step 8, the complexity is OðmÞ. In Step 9, the complexity is

Oðm log mÞ. The overall time complexity of this algorithm is
the largest of all steps; thus, the overall time complexity is
Oðqn2m2Þ.

5. Illustrative Cases in IoMT Systems

This section presents a case study in the context of a UCI
data set (http://archive.ics.uci.edu/ml/datasets/Daphnet
+Freezing+of+Gait) of freezing of gait recognition of Parkin-
son’s disease patients by using IoMT devices and gives spe-
cific steps for SF MAGDM, and the results are presented
and analyzed through graphs and charts. Then, this section
concludes with a sensitivity analysis and a comparative anal-
ysis of the proposed method.

5.1. Case Descriptions. In the data set of freezing of gait rec-
ognition of Parkinson’s disease patients, there are 22 subjects
who performed three actions: walking, sitting, and standing,
and during the actions, data related to the vastus medialis,
semitendinosus, biceps femoris, and rectus femoris are
recorded. Based on the presentation of the above data set,
it is transformed into an MADGM problem; the aim of the
problem is to find the subjects most likely to have abnormal
knee joints.

Let U = fx1, x2,⋯,x22g be a set of alternatives, denoting
22 subjects. V = fy1, y2,⋯,y4g is four muscles, where y1 is
the rectus femoris, y1 is the biceps femoris, y1 is the vastus
medialis, and y1 is the semitendinosus. R∗ = fR1

∗, R2
∗,

R3
∗g is an SF relation on three different actions. S is a

standard evaluation set. According to the above state-
ments, we can establish ðU , V , R∗, SÞ.

For ðU , V , R∗, SÞ, we employ the completion method in
Section 3.2 to convert it into a complete IS ðU , V , R, SÞ.
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Figure 3: Ranking results with different values of σ.
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In order to facilitate the subsequent experiments, the
data set needs to be preprocessed. First, the original data
are processed by using the following normalization formula.

bij =

aij −min
i
aij

max
i

aij −min
i
aij

, benefit attribute,

max
i

aij − aij

max
i

aij −min
i
aij

, cost attribute:

8>>>>><
>>>>>:

ð24Þ

The above formula is processed to obtain bij, and all
attributes can be classified into benefit types. On this basis,
the original data in the data set is transformed into an
SFN ðbij, 1 − bij, min ðbij, 1 − bijÞÞ. In addition, the stan-
dard evaluation set S can be determined via the formula
below.

S = y1,
∑3

i=1∑
22
j=1bij1

22 × 3
,
∑3

i=1∑
22
j=11 − bij1

22 × 3
,
∑3

i=1∑
22
j=1min bj1, 1 − bij1

� 
22 × 3

 !* +
,

(

⋯, y4,
∑3

i=1∑
22
j=1bij4

22 × 3
,
∑3

i=1∑
22
j=11 − bij4

22 × 3
,
∑3

i=1∑
22
j=1min bij6, 1 − bij4

� 
22 × 3

 !* +
:

ð25Þ

Next, the decision is made according to the model
algorithm proposed in Section 4, which proceeds as
follows.

Step 1. The weights of four muscles and three actions are cal-
culated according to formulas (19) and (20), respectively.

Step 2. The MG SF membership degree is calculated by using
equation (15), based on which the MG SF membership

degree is ranked according to formulas (2) and (3); we can
obtain the adjustable MG SF membership degree.

Step 3. This paper takes a risk-neutral attitude; thus, the
parameter η = 2/3 is taken to obtain the final membership
degree in light of adjustable membership degree. The param-
eter σ = 0:25 is also taken and the relative loss function and
threshold based on the membership degree and the formula
that has been obtained.

Step 4. Use the entropy weight method to calculate the attri-
bute weights of the thresholds, and next, the TODIM
method is used to integrate the different thresholds of the
three actions to obtain the best thresholds.

Step 5. Compare the threshold values with the final member-
ship degrees obtained above and calculating the score func-
tion values of the threshold values and xj in the final
membership degrees, respectively. The 22 subjects xj are
classified via the score function values, and the classification
results are shown in Table 5.

Step 6. Obtain the final ranking result of all alternatives: x1
≻ x3 ≻ x17 ≻ x5 ≻ x13 ≻ x16 ≻ x7 ≻ x12 ≻ x10 ≻ x18 ≻ x15 ≻ x6 ≻
x9 ≻ x14 ≻ x19 ≻ x20 ≻ x21 ≻ x8 ≻ x11 ≻ x4 ≻ x2 ≻ x22, as shown
in Figure 1. Thus, the most likely of all subjects to have an
abnormal knee joint is subject 1.

5.2. Sensitivity Analysis. In this section, for the sake of veri-
fying the stability of the presented method, sensitivity analy-
sis is performed for the parameters η and σ involved. The
following Table 6 and Figure 2 and Table 7 and Figure 3
show the ranking results when the parameters η and σ are
taken to different values, respectively.

1.00

0.75

–0.75

0.50

–0.50

0.25

–0.25

0.00

0 5 10 15 20

Alternatives

�
e v

al
ue

SFWA
MG SF PRSs

x = 1

x = 1

Figure 4: Comparative analysis results in terms of the SFWA method.
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As can be seen in Table 6 and Figure 2, the final
results obtained differ when diverse values of parameter
n are taken, and the reason for this phenomenon is that
parameter nrepresents different degrees of risk preferences
in decision-making. When different risk preferences are
chosen, the resulting final decision results may be
different.

From Table 7 and Figure 3, it can be seen that when the
parameters σ are taken as 0, 0.25, and 0.5, the final results
obtained are all x = 1, whereas the overall ranking results

do not change; thus, the presented decision-making method
is stable for the parameter σ.

5.3. Comparative Analysis. This section provides a compara-
tive analysis with two types of MAGDM methods, which are
the SF aggregation operator method and the SF TODIM
method.

5.3.1. The SF Aggregation Operator Method. In this section,
SF arithmetic average aggregation operators (SFWA) and
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Figure 5: Comparative analysis results in terms of the SFWG method.
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SF geometric average aggregation operators (SFWG) in liter-
ature [18] are chosen to make comparative analysis in this
paper. The comparison results are shown in Figures 4 and 5.

As can be seen in Figures 4 and 5, although the ranking
results of SFWA, SFWG and this paper are not exactly the
same, the final result obtained is x = 1. This paper uses the
TODIM method to characterize the bounded rationality
problem in the decision-making process, whereas SFWA
and SFWG do not consider this scenario; hence, there is a
situation that the ranking results of these methods are not
exactly the same. It can be seen from Figure 6 that for 22
alternatives, the results of SFWG method are almost all the
same and almost indistinguishable, whereas this paper has
better differentiation for all alternatives.

5.3.2. The SF TODIM Method. In this section, the SF
TODIM method and the presented method are selected for
comparative analysis, and the final results are shown in
Figure 6. From Figure 6, it can be seen that both the SF
TODIMmethod and the method in this paper have obtained
the final result of x = 1, although the ranking results are not
exactly the same.

With the help of IoMT devices, this paper establishes an
MAGDM method by combining adjustable MGPRSs with
the TODIM method in the context of SFSs. In terms of
information representation, the use of SFSs makes the infor-
mation representation more accurate, which is conducive to
recording numerous complicated realistic information. In
terms of information fusion, this paper uses adjustable
MGPRSs, which have better fault tolerance because they
consider different risk preferences and set thresholds, which
is conducive to reducing decision risks when fusing multi-
source information. For information analysis, the TODIM
method is used to cope with the bounded rationality prob-
lem, which is conducive to modeling realistic decision sce-
narios owned by DMs. In sum, the presented MAGDM
method has sound performances in information representa-
tion, information fusion, and information analysis.

6. Conclusions

In the current work, we utilize the auxiliary detection data of
IoT in medicine for MAGDM problems, and we choose the
case of gait freezing recognition of Parkinson’s disease
patients, for which an SF 3WD MAGDM method based on
MGPRSs under bounded rationality is established. First, this
paper constructs an MG SF IIS. Then, this paper proposes a
completion method to obtain an MG SF complete IS. On
this basis, this paper establishes adjustable MG SF PRSs by
combining SFSs with MGPRSs. Afterwards, this paper con-
structs an MAGDM method in the context of SFSs by com-
bining adjustable MG SF PRSs with the TODIM method. At
last, the validity of the presented method is shown by a case
of gait freezing recognition of Parkinson’s disease patients in
the UCI database.

Future research topics will be divided into three aspects
as follows. First, further theoretical explorations in related
fields of MG SF PRSs are necessary, such as attribute reduc-
tions, topological properties, rule acquisitions, and uncer-

tainty measurements. Second, investigating new SF
MAGDM methods in terms of various data types is neces-
sary, such as multilabel data, shadowed sets, multiscale data,
and other complicated fuzzy data. Third, applying the
models and methods proposed in this paper to other broader
scenarios is necessary, such as fault diagnosis, human-job
matching, cloud models, mobile computing, mergers and
acquisitions for enterprises [36].
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