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Implementation of robust routing is very critical in network communication. Connecting devices like routers maintain databases
for the whole network topology in the routing table. Each router needs to keep these tables updated with the best possible routes so
that an efficient communication can always take place in nondelay tolerant intelligent networks that include military and tactical
systems, vehicular communication networks, underwater acoustic networks, and intelligent sensor networks. The fast
construction of shortest-path tree (SPT) is important to devise an efficient routing in a nondelay tolerant networks. That is
why a simple and efficient algorithm is the need of the time. A robust routing solution SPT with OðV + EÞ time complexity is
proposed to supersede the existing landmark.

1. Introduction

Network routing is a backbone of intelligent communication
networks specifically nondelay tolerant networks that
include military and tactical systems, vehicular communica-
tion networks (VCNs), underwater acoustic networks
(UANs), and intelligent sensor networks (ISNs) to send the
communication data between vertices in a certain network.
For the purpose, every router maintain routing tables. These
tables manage routes of various network destinations. This
network routing process is generally accomplished based
on these routing tables and routes defined in them. This
makes the formation, written in a memory of these routers,
critically important for successful and efficient routing.
There exist many graph theoretic solutions of this routing

problem. In a network, the vertex of a graph represents a
router, and edge/link which connect these vertices represents
physical links between the routers.

The needs for broadband Internet applications have
increased rapidly in today’s Internet. Which makes high
speed routing inevitable and has become the key at open
shortest-path first (OSPF). As a result of topological changes
that take place due to due to an unavoidable circumstances
at the OSPF, these algorithms update the routing table to
handle the new topological changes. For example, if some
link fails in a network, then there is no way but to recalculate
these paths [1]. In such scenarios, these shortest paths are
regenerated by running the algorithms again [2].

We can formally define shortest-path problem as
follows:
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Let G = ðV , EÞ, where V = fv1, v2, v3, v4,⋯, vng and E
= fe1, e2, e3, e4,⋯, emg.

G is an undirected nonnegative weighted connected
graph (in this scenario, it will be representing the routing
network). G has a vertex “s” designated as source and
another vertex, “t,”, designated as destination, such that s, t
∈ V . We need to find simple path(s) from s to t with mini-
mum incurred cost.

[3] presented a hybrid model with local and global
modes. A fixed graph model is used to present the local
mode connections. In the paper, they denoted graph by a
unit-disk graph UDG(V): for any u, v ∈ V , {u,v} ∈ UDG(V)
if and only if distance between u and v is less than 1. For
the local mode, in each round, node u can send a message
of Oðlog nÞ bits to node v. For the global mode, they used
a variant of the node-capacitated clique (NCC) model pre-
sented in [4] that describes salient features of overlay net-
works. In [5], the authors explain the SPSN approach
including route object modeling, capacity-oriented search,
and possible route organization procedures. Prototype
assessments presented significant support that SPSN is bet-
ter than the legacy CGR in more than an order of magnitude
in contact plans comprising thousands of contacts.

The shortest-path tree (SPT) problem is one of the most
well-known problems in graph theory [6]. Since 1959, most
of the advances in SPT for general graphs, directed and
undirected, are based on Dijkstra’s algorithm. There exist
lots of applications of SPT problems like computer systems,
transportation networks, and vehicle routing [7]. Time com-
plexity of the basic algorithm of Dijkstra [8] is calculated as
OðV2 + EÞ (where V is number of vertices and E is number
of edges) if linear search is applied to find the minimum
[9]. [10, 11] introduced a new data structure, heap, to find
the minimum. This new data structure improved the time
complexity to OðE log VÞ. Fibonacci heap improved this
bound further [12]. Authors of [12] used comparison model
for the optimal implementation of Dijkstra’s algorithm as
Dijkstra’s algorithm traverses vertices in ascending order.

In [13], with the use of optimal structure of the data,
heap data structure provides the complexity of O ðE log VÞ
with implementation of Dijkstra and Fibonacci heap gives
the complexity of O ðE +V log VÞ with the implementation
of Dijkstra. For the stochastic decision-making problem in
[14], the stochastic dynamic programming solution is
required. The generalized elementary shortest-path problem
in [15] shows that two-phase heuristic graphs by including
negative cycles can improve the average gap of 0.3% if
compared with the best known solutions if number of verti-
ces N are set to 100. The solution in [16] suggests that these
algorithms can be implemented in all kind of networks with
complexity of Dijkstra O ðV2 + EÞ, Bellman O ðVÞ3, and
Floyd O ðVEÞ. The paper [17] suggests a solution with O ðkV
log ðkVÞ + kEÞ complexity for a fast delivery problem. The
complexity of Bellman isO ðVÞ3, and the complexity of Dijkstra
is O ðVÞ2 if the network is fully connected or near to the fully
connected [18].

Invent of fusion trees and its application in Dijkstra’s
algorithm make randomized bound of time complexity,

OðEðlog VÞ1/2 Þ. Later, the invention of atomic heaps
improved this time bound to OðE + n log ðv/log ðlog VÞÞÞ
bound and OðE +Vðlog V + εÞ1/2Þ [12]. Afterwards, in
[6, 19, 20], priority queues improved to OðE log ðlog ðVÞÞ
and OðE +V log V1+∈Þ1/2. These worst-case time bounds
are randomized supposing linear space are prerequisite.
The researcher of [21] further improved it to OðE +V
ðlog V log log VÞ1/2Þ which was improved by the authors
of [16], next year, using randomized bound to O
ðE +V log V1+∈Þ1/3.

[2] presented priority queue, which improved single
source shortest-path cost to O ðE +Vðlog CÞ1/2 where C is
the cost of the most heavy edge. This bound was further
improved by [22] to OðE +Vð3 log CloglogCÞ1/3Þ expected
time, and [23] presented a further improvement to OðE +
Vðlog CÞ1/4+∈Þ. The authors of [24] claimed that the algo-
rithm they have presented will outclass Dijkstra algorithm.

In [25], the authors presented an exact adjacency-based
primal algorithm to resolve the SPT problem with high
resources. Their algorithm explored solution space itera-
tively using path adjacency-based partition. They claimed
optimal convergence with good path in lesser cost. Authors
of [26] introduced a multiobjective (time and cost)
shortest-path tree problem for connected directed graphs.
Every edge was having two cost values. They proved that
uncertainty MSPP reduced the total travel time and cost.

[27] used a dual evolutionary algorithm while analyzing
the problem of clustered shortest-path tree. Their first algo-
rithm (N-LSE) targeted the minimization of search space
with fewer vertices. The second algorithm named M-LSE
using N-LSE creates smaller and multiple intercluster edges.
[28] solved the dynamic SP problem to solve time-
dependent TSP. In logistic planning where traffic data is rich
enough, time-dependent path optimization techniques give
considerable benefits. Dynamic shortest-path solution con-
tains no length k cycles and resolves the complexity problem
when compared to acyclic graph-based methods.

In [29], the author reviewed many popular algorithms
for solving the SPT problem in weighted graphs. He pro-
posed two variants of Dijkstra’s algorithm. He presented
asymptotic comparison different variants of Dijkstra’s algo-
rithm on expanded graphs. He presented OðE′ + V ′ lg V ′Þ
time algorithm where E′ = E + C−

maxC
+
max and V ′ =VðC−

max
+ C−

maxÞ. They used color-in and color-out scheme.

2. Concept

This work presents a novel algorithm of finding shortest-
path routes in intelligent networks. This algorithm is based
on bidirectional search where first search is starting from
source vertex, and its target is destination vertex, while sec-
ond search starts from the destination vertex, and its target
is source vertex. It is analogous to two robots looking for
each other from two distinct points. First robot, RA, starts
its search from its current position, and let us call it PA,
and second robot, RB, starts its search from its current posi-
tion, and let us call it PB. RA explores all possible paths, in
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BFS fashion, looking for PB or RB. In the same way, RB will
be exploring all possible paths, simultaneously, looking for
either PA or RA. Following are the three possible situations
that can rise, in this bidirectional search.

(i) RA will find PB

(ii) RB will find PA

(iii) RA and RB meets at position, PM

Situation i is the simplest one. Let PathA be the path that
RA has explored and has vertices a1, a2, a3,⋯, ax, where ax is
PB.

Required path = PathA = 〠
x−1

i=1
eai ,ai+1 : ð1Þ

In situation ii, RB has found PA. It means that path is
found but in reverse order. Let RB has explored the vertices
in sequence b1, b2, b3,⋯, by, where by is PA.

PathB = 〠
y−1

i=1
ebi ,bi+1 : ð2Þ

The reverse of this will generate the required path. See
the following equation:

Required path = 〠
1

i=y
ebi ,bi−1 : ð3Þ

In situation iii, it is little complex than the previous two.
Two paths—PathA and PathB, need to be concatenated. Let
PathA be the path that RA has explored and has vertices a1
, a2, a3,⋯, ax. PathB is the path that RB has explored and
has vertices b1, b2, b3,⋯, by, where ax and by are the same
vertices as PM and a1 and b1 are PA and PB, respectively.
The required path will be having vertices in the sequence
a1, a2, a3,⋯, ax , by−1, by−2, by−3,⋯, b1, as given in equation
(3).

Required path = 〠
x−1

i=1
eai ,ai+1 + 〠

2

i=y
ebi ,bi−1 : ð4Þ

3. Proposed Algorithm

The proposed algorithm targets only those graphs in which
on two paths, from source, Pi and Pj, to fulfil the following
property:

Len Pi s,wð Þð Þ > Len Pj s,wð Þ�
, ð5Þ

〠
k−1

i=0
for Pi

wxi ,xi+1 > 〠
l−1

i=0
for Pj

wyi ,yi+1 , ð6Þ

where k ≠ l and x0 = y0 = s and xk = yk =w and Pi and Pj are
paths from s to w such that Pi = fx1, x2, x3,⋯, xkg and Pj

= fy1, y2, y3,⋯, ylg:
The search is executed, parallel, from both ends—source,

s, and destination, t. Vertices are explored level by level. Best
paths are calculated by concatenating the new edge with pre-
viously explored best path, and cost is calculated by adding
the cost of all edges in that path from source.

Each vertex during the execution goes through three
states, being represented by three colors—green, yellow,
and red. The definitions of these colors can be seen in
Table 1

Initially, all vertices, i.e., v1, v2, v3,⋯, vn , are initialized
with

SPCostvi⟵∞,
πvi

⟵∅,
Cvi

⟵ green:

8
>><

>>:
ð7Þ

Starting from s and t, independently and simultaneously, the
current vertex, let us call it vcur, will explore its neighbors.
Every neighbor, i.e., vnbr, is updated with shortest-path cost,
and let us call it SPCost, parent, i.e., π and color, i.e., C.

SPCostvnbr = min SPCostvcur +wvcur,vnbr , SPCostvnbr
� �

, ð8Þ

πvnbr
= vcur if SPCostvnbr is updated, ð9Þ

Clrvnbr = yellow if SPCostvnbr is updated: ð10Þ

Update will be effective if new SPCostvnbr reflects
improvement over previously stored one.

Initially all vertices have green status. As soon as a vertex
is explored during the search, its status is updated to yellow.
As soon as any vertex completes its exploration (i.e., all its
neighbors are explored, and their status is changed to yel-
low), its status is updated to red.

Exploration takes place, strictly, level by level. No next
level vertex is explored until all the previous level yellow ver-
tices’ status is change to red. As soon as one level is com-
pleted, the control is switched to the other part of the
algorithm to proceed and it also performs the identical steps.

During the search of any side if some red (light or dark)
vertex is explored by the counterpart search, then two short-
est paths are calculated and stored. If some shortest path has
already been stored, then the path will less cost will be kept.

The algorithm terminates when the status of all vertices
is updated to red (light or dark). In worst case, depending
upon the type of the graph, it finishes in OðV + EÞ time. If
graph is totally disconnected, even then loop in line number
4 of ShortestPath will execute for OðVÞ times. If graph is
connected and is having E, then combined effect of line
number 4 of ShortestPath and line number 2 of SPfrom-
Source or SPfromDestination would be “all adjacents of all
vertices” will cost OðEÞ which will make it OðV + EÞ.
Detailed algorithm can be seen in Algorithm 1.
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4. Working Example of the Algorithm

All vertices are initialized using equation (7) (see Figure 1).
Both sources—A and P, are colored yellow and their SPCosts
are marked 0 (see Figure 1(a)). All vertices are enqueued.
Main subroutine (named ShortestPath) of the algorithm calls
the two replicated subroutines (named SPfromSource and
SPfromDestination) one by one until queue has any vertex.

The subroutine SPfromSource dequeues a vertex, it
would be source, and here in this example, it is A. Algorithm
then explores all its neighbors—B, F, and E, one by one.

Equations (8)–(10) are used to update the values of
SPCost, π, and Clr. In the same way, SPfromDestination
dequeues a vertex, it would be destination, and here in this
example, it is P. Algorithm then explores all its
neighbors—L and K , one by one. Equations (8)–(10) are

Table 1: Definitions of colors that represent the state.

Color Definition

Green Unseen: the vertex is yet virgin, no neighboring vertex has yet seen/explored it and considered it to be the part of the shortest path

Yellow Seen: some neighboring vertex has seen/explored it and considered it to the part of shortest path

Red Visited: this vertex has played its part and has explored all its neighbors, making them yellow

ShortestPath(s, t, G)
1. Queue1.enQueue(s)
1. Queue2.enQueue(t)
2. InitializeDoubleSource(SPCost, Pi, Clr, s, t, G)
3. Flag ← 0
4. While (Queue1 <> Null OR Queue2 <> Null) AND Flag = 0
5. Do SPfromSource(SPCost, Pi, Clr, G)
6. SPfromDestination(SPCost, Pi, Clr, G)
SPfromSource(G)
1. while u ← Queue1.deQueue() <> Green
2. for each v belongs to Adj[u]
3. do if Clrv = Green OR LightYellow OR LightRed
4. then Clrv ← LightYellow
5. SPCostv ← min(SPCostu +W(u,v), SPCostv)
6. If SPCost is updated
7. Then Piv ← u
8. If Clrv = Green OR LightRed
9. Then Queue.enQueue(v)
10. If Clrv = DarkRed
11. Then Concatinate two paths and store
12. CPCost ← min(CPCostu + CPCostv + w(u,v), CPCost)
13. If Clrv = DarkYellow
14. then skip
15. Clru ← LightRed
SPfromDestination(G)
1. while u ← Queue2.deQueue() <> Green
2. for each v belongs to Adj[u]
3. do if Clrv = Green OR DarkYellow OR DarkRed
4. then Clrv ← DarkYellow
5. SPCostv ← min(SPCostu +W(u,v), SPCostv)
6. If SPCostv is updated
7. Then Piv ← u
8. If Clrv = Green OR DarkRed
9. Then Queue.enQueue(v)
10. If Clrv = LightRed
11. Then Concatinate two paths and store
12. SPCostv ← min(SPCostu + SPCostv + w(u,v), SPCostv)
13. If Clrv = LightYellow
14. then skip
15. Clru ← DarkRed

Algorithm 1.
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used to update the values of SPCost, π, and Clr. A and P are
colored red after all explorations. New updated status can be
seen in Figure 1(b).

In the same way, SPfromDestination dequeues a vertex,
and it would be path, equations (9) and (10). Figures 1(c),
1(d), and 2(a) explain these iterations one by one.
Figure 2(b) shows that a red vertex is explored from the
other side. It generates case 3 (i.e., “RA and RB meet at posi-
tion, PM”). Path from both sides along with currently updat-
ing edge is concatenated to form a path using equation (7).
This path is stored.

This process of dequeuing, exploring, and generating
new path continues until both queues have no vertices.
New paths are generated and compared with the stored
one and is discarded if old one is better Figure 2(c). But if
new path is better than the old one, it is replaced with the
old one. The process ends with the shortest possible path.

5. Discussion

The main advantage of this algorithm is due to the nature of
the networks in which it is not possible that indirect distance

(a) (b) (c) (d)

Figure 1: Explaining the process of the algorithm for simplification weights and other details are skipped: (a) initialization: (b) source and
destination explored their neighbors; (c) neighbors of neighbors of source and destinations are explored one by one; (d) neighbors of
neighbors of source and destinations are explored one by one.

(a) (b) (c)

Figure 2: (a) Extract one vertex from queue from both sides and explore their neighbors; (b) explore a red vertex; applying case 3, path is
calculated and stored; (c) repeat until all vertices change their color to red, and if new path is shorter, then it is stored and old one is skipped.
Finally, the shortest path is obtained.
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can be smaller than direct distance between two vertices.
Since Dijkstra invented his SPT algorithm, the research
community has worked mostly in the similar direction:
choose a node to propagate in nondecreasing order and
manage and update neighboring vertices through it. To
select vertices in a nondescending order, the half-explored
vertices must be sorted, or on each selection, the minimum
distance must be calculated from the remaining vertices,
which again is equivalent to sort [29].

The main bottleneck of these algorithms is the interme-
diary sorting algorithm. Most researchers have worked to
surmount this bottleneck. New data structures like tree,
heap, and priority queue were designed to improve the time
bounds. One of these is Fibonacci heap [30] that resulted in
the best known asymptotic bound of Dijkstra’s algorithm
[31]. However, this bound is also criticized by researchers
due to the heavy processes of Fibonacci heap [32–37]. This
algorithm is beating this bound of Dijkstra’s algorithm using
Fibonacci heap, where sorting is not being attempted in any
form. On one side, it is thrashing this time bound with sim-
ple data structure and no sorting algorithm; on the other
side, it has parallelization in its nature that is beyond the
scope of this paper.

At the same time, this algorithm is also better than the
one presented in [29] with worst-case time bound of OðE′
+V ′ lg V ′Þ time algorithm where E′ = E + C−

maxC
+
max and

V ′ = VðC−
max + C−

maxÞ. The algorithm proposed in this
research has worst-case time bound ofOðV + EÞ, which is
linear in time and hence is better than the one presented
in [29] for routing in intelligent networks [38–42].

6. Conclusion

The proposed SPT algorithm executes with OðV + EÞ time
which is relatively better than the state of art work. It is sim-
ple to understand and easy to implement and does not
require high computational resources. It has additional ben-
efit that after some specific stage, it can always hold a path
from source to destination if compromise on quality of path
is possible to address the latency issues in nondelay tolerant
networks that include military and tactical systems, vehicu-
lar communication networks, underwater acoustic networks,
and intelligent sensor networks.
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