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There is a growing demand for localization of illegal signal sources, aiming to guarantee the security of urban electromagnetic
environment. The performance of traditional localization methods is limited due to the non-line-of-sight (NLOS) propagation
and sparse layouts of sensors. In this paper, a deep learning-based localization method is proposed to overcome these issues in
urban scenarios. Firstly, a model of electromagnetic wave propagation considered with geographic information is proposed to
prepare reliable datasets for intelligent cognition of urban electromagnetic environment. Then, this paper improves an
hourglass neural network which consists of downsampling and upsampling layers to learn the propagation features from
sensing data. The core modules of VGG and ResNet are, respectively, utilized as feature extractors in downsampling.
Moreover, this paper proposes a weighted loss function to expand the attention on position features, in order to improve the
performance of localization with sparse layouts of sensors. Representative numerical results are discussed to assess the
proposed method. ResNet-based extractor performs more efficiently than VGG-based extractor, and the proposed weighted
loss function increases the localization accuracy by more than 50%. Additionally, the established geographic model supports
qualitative and quantitative evaluation of the robustness with varied degree of NLOS propagation. Compared with other deep
learning-based algorithms, the proposed method presents the more robust and superior performance under severe NLOS
propagation and sparse sensing conditions.

1. Introduction

Along with the acceleration of social urbanization and
informatization progresses, human activities have been con-
centrated in urban areas. The urban electromagnetic environ-
ment has become much more complex as well. Illegal signal
sources in the cities encroach the spectrum resources without
a valid license or even cause harmful interference, which prob-
ably leads to the loss of data and other critical faults in the
communication systems [1]. As a result, localization of illegal
signal sources is significant to guarantee the security of the
urban electromagnetic environment. Wireless sensor net-
works (WSN) [2] utilize a set of sensors to monitor the electro-
magnetic activities in the target area. These sensors are
characterized by small volume and low power, working in
concert for localization by collecting and processing the signal
parameters such as time of arrival (TOA), time difference of

arrival (TDOA), angle of arrival (AOA), and received signal
strength (RSS) [3].

However, it is unavoidable for the reflections and diffrac-
tions of electromagnetic wave to create non-line-of-sight
(NLOS) propagation due to the dense buildings in urban sce-
narios. Compared with line-of-sight (LOS) propagation, it
results in longer propagation distance and time, so that the
localization errors reach to hundreds of meters [4]. In this
case, traditional geometry-based positioning methods require
at least three LOS paths between sensors and signal sources
to solve nonlinear equations (such as TOA-based, TDOA-
based, AOA-based, and RSS-based equations) which are sus-
ceptible to severe NLOS propagation conditions [5–8].

Addressing the challenges of localization in urban envi-
ronment, researchers focus on the reduction of the estimation
errors for signal parameters by identifying and discarding the
sensing data of NLOS or changing the weight of NLOS data
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[9–13]. These solutions, in essence, still apply LOS paths for
localization as much as possible, but LOS paths are not avail-
able in complex urban scenarios. Furthermore, there are also
some approaches (e.g., [14–16]) mitigating the NLOS errors
by nonlinear optimization, convex relaxation, and other algo-
rithms with prior information. A solution based on robust
least squares and semidefinite relaxation is suggested in [16].
It is able to carry out the localization with only one LOS path
but requires prior knowledge of the upper bound loss in NLOS
propagation. However, the prior knowledge is difficult to
obtain in the complex electromagnetic environment. Addi-
tionally, with the development of modern geographic infor-
mation system (GIS) techniques, geographic models are
introduced into relevant field [17, 18]. A floor map [19] is used
to initialize and update the landmark graph for indoor local-
ization with the aid of multifunction sensing components. In
[20], the environmental information is imported into the pro-
posed quasi 3D ray-tracing model to construct the synthetic
radio map, and then, the refined radio map is used to prepare
the training datasets for the indoor intelligent target intrusion
sensing and localization. Focusing on the localization under
NLOS conditions, Zhang et al. [21] correct the NLOS errors
with the aid of 3Dmapping database and employ factor graph
optimization for the positioning calculation in global naviga-
tion satellite system. Perez-Cruz et al. [22] propose a probabi-
listic algorithm to learn and correct the NLOS biases. The
above approaches are all generalized by two steps, i.e., calibrate
the parameter estimation errors caused by NLOS propagation
and solve the positioning equations by various optimization
algorithms. Undeniably, such solutions are mathematically
intractable and faced with double challenges from parameter
estimation errors and localization errors.

From another perspective, since the NLOS propagation
channels are relatively stable in a certain urban area with
known geographic information, solutions of localization
can be formulated to seek for the mapping of signal posi-
tions with sensing data by learning the NLOS propagation
features in the target area, which offers an end-to-end intel-
ligent cognition service. Deep learning has been proved to be
an efficient tool in a wide range of fields due to its outstand-
ing capability to capture the features and learn the mapping
of data [23, 24]. Recently, several researches [25–27] apply
deep neural networks (DNN) for end-to-end localization
and gain some improvement. A long short-term memory
(LSTM) network is used in [25] for small-scale indoor local-
ization. Lin et al. [26] suggest a heatmap regression-based
HMTLNet, revealing the active role of ResNet in a fully con-
volutional network (FCN) for localization. Zhan et al. [27]
present a convolutional neural network (CNN) to solve
localization problems from a view of computer vision. How-
ever, there are mainly two challenges of these methods.

(1) The empirical and statistical propagation model used
in simulated validation (e.g., [25, 26]) is far from the
actual electromagnetic propagation data, without con-
sidering the geographical distribution in urban areas

(2) The existing deep learning-based localization
methods require massive data and dense deployment

of sensors for perception of the target area. For
example, the density of sensors in DeepMTL method
[27] is 2 percent, with the number of sensors reach-
ing to 200 in a 1 km × 1 km-sized area, which is
costly in practice

To adapt to the NLOS propagation and sparse layouts of
sensors, a localization method based on the intelligent cogni-
tion of urban electromagnetic environment is proposed in
this paper. The main contribution is that geographic infor-
mation is considered in the electromagnetic wave propaga-
tion model. The model prepares datasets which are closer
to actual electromagnetic propagation. More specifically, an
hourglass neural network and a weighted loss function are
proposed to predict the position probability distribution
with the sparse sensing data in urban electromagnetic envi-
ronment. Finally, the performance of the proposed method
is verified on the reliable datasets with extremely sparse
sensors.

The rest of this paper is organized as follows. In Section
2, reliable datasets are prepared with the aid of geographic
information. In Section 3, the proposed deep learning-
based localization method is depicted in detail. In Section
4, the comparative simulations with different density of sen-
sors are presented and discussed. Finally, conclusions are
stated in Section 5.

2. Data Preparation

In this section, we introduce the urban propagation model
considered with geographic information and the prepared
datasets for intelligent cognition.

2.1. The Urban Propagation Model with Geographic
Information. NLOS propagation is mainly caused by ray
blocking from varied objects in urban scenarios. The layouts
and positions of urban objects are essential on the analysis of
NLOS propagation. Generally, the GIS data are open access,
which contains the distribution of buildings, vegetation, riv-
ers, and other objects. Based on the GIS information, the
geographic model G is established. This paper is aimed at
learning features in NLOS propagation with the aid of geo-
graphic information, demanding of massive data. Calculat-
ing accurate electromagnetic wave propagation is the core
step to prepare effective datasets for deep learning-based
localization. Empirical or statistical electromagnetic propa-
gation models (e.g., COST 231 Walfisch-Ikegami propaga-
tion model [28]) only consider statistical features of
different geographic scenarios roughly but take no account
of the specific geographic models of the study area. Hence,
they are prone to deviate a lot from practical propagation.
According to the interactions between electromagnetic
waves and urban geographical objects, ray-tracing model
[29] is able to track hundreds of propagation paths for each
receiving sensor but is susceptible to small errors in geo-
graphic models. Considering geographic information, Wahl
et al. [30] propose dominant path model (DPM). In [31],
DPM has been proved as a more accurate and robust elec-
tromagnetic propagation model than intelligent ray tracing
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(IRT) model and the COST 231 Walfisch-Ikegami model in
complex urban scenarios. Therefore, in this paper, DPM is
utilized to calculate the propagation loss based on the estab-
lished geographic model G.

Assume that the illegal signal source is located at si = ð
xi, yiÞ, and coordinates of all receiving points (different from
the definition of sensor positions) in G are collected in the
set M = fm1, m2,⋯, mQg. Then, the length of the propaga-
tion path between the signal source and a receiving point
is formulated as dðsi, m j ∈MðsiÞÞ, which also includes the
case that the direction of propagation is changed by block-
ing. The function f ðφ, kÞ in dB means the kth interaction
loss with the new propagation direction φ. Therefore, the
predicted loss in G is calculated as

L si, m j

� �
= −27:56 + 20 log fð Þ + 10p log d si, mj

� �� �

+ 〠
n

k=0
f φ, kð Þ − 1

c
〠
c

u=0
wu:

ð1Þ

Here, f is the electromagnetic wave frequency in MHz.
The factor p depends on the LOS or NLOS condition of
the propagation path. And w is the waveguiding factor
which represents the effect of reflection along the walls in
dominant path.

Since RSS is easily acquired in receiving sensors, we col-
lect RSS as sensing parameters. The RSS at mj is expressed as

Pr si,mj

� �
= Pt sið Þ − L si,mj

� �
, ð2Þ

where PrðsiÞ means the transmission power of the signal
source at si. For the whole target area, the RSS from each
receiving point is collected into the set Hfull = fPrðsi,mjÞg.
However, it is impractical to deploy sensors densely. This
paper focuses on the localization solutions by learning the
propagation features from sparse sensing data. The following
is the generation of sparse sensing datasets for deep learning.

2.2. Dataset Preparation. Intelligent cognition of the map-
ping between sparse sensing data and signal positions is
driven by the calculation of electromagnetic data with geo-
graphic model. Toward this end, there are three steps to gen-
erate the datasets.

Step 1. Calculate the Hfull of the target area with fixed signal
source position si, and then extract RSS for sparse sensors
from Hfull. The set of sensor positions is expressed as V = f
v1, v2,⋯, vNg with N ≪Q and V ⊆M. Therefore, the RSS
of sensors is

Pr Vð Þ = Pr si,mj

� �
,mj ∈ V : ð3Þ

Step 2. Convert RSS data of sensors into an image matrix
where the sensing data are combined with sensor positions.
Corresponding to the size of target area, the image matrix

is established as

I x, yð Þ =
Pr , x, yð Þ ∈ V ,
0, x, yð Þ ∉ V :

 
ð4Þ

There are RSS values at the sensor positions, while others
are zeros. The DNN is aimed at capturing both geographic
and propagation features from the input matrix I.

Step 3. Predict the signal source position in terms of proba-
bility distribution. Different from conventional datasets
labeled with two-dimensional coordinates, the labels in our
dataset are expressed in the image matrix Y with the same
size as I. The maximum probability value in Y is 1, located
at the true position, and others are zeros. The output Ŷ =
f DNNðIÞ of the neural network is expected as a probability
matrix where the higher the probability is predicated, the
closer to the true position.

Then, a fusion dataset is obtained with fixed sensor posi-
tions. Its size depends on the number of samples with varied
signal positions. In the training dataset, positions of signal
sources traverse the target area by gird. In the validation
and testing dataset, positions of signal sources are randomly
generated in the target area. In addition, different datasets
are created by changing the positions and number of sen-
sors. Consequently, there are two advantages of the pro-
posed fusion datasets.

(1) In content, the fusion datasets are collected based on
the electromagnetic propagation calculation fused
with geographic models, and the datasets are more
effective than other simulation datasets based on
the empirical or statistical propagation models.
Hence, it is more persuasive to verify the validity of
proposed localization method by applying the effec-
tive datasets

(2) On structure, the fusion datasets are framed in image
matrices including position features of sensors and
signal sources, highlighting the propagation charac-
teristic from different positions. Besides, compared
with the datasets based on the practical measure-
ment, it is more flexible for the proposed datasets
to adjust sensor distribution to satisfy the require-
ments of researches

In conclusion, the proposed method can be used to gen-
erate authentic datasets flexibly and efficiently with accessi-
ble geographic models.

3. Deep Learning-Based Localization Method

The deep learning-based localization works in two stages,
i.e., training stage and localization stage. During the training
stage, DNN is driven by fusion datasets to minimize the
errors between the predicated matrix Ŷ and the label Y , in
order to boost the cognition for the NLOS propagation
channels. During the localization stage, the sensing image
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matrix is sent into the trained network to output the proba-
bility matrix. The pixel with the peak value in the output
matrix is predicted as the position of single signal source.

In order to improve localization under the sparse layout
of sensors, an hourglass architecture is applied to capture
multiscale features from the sparse input I. In addition, a
weighted loss function is proposed to help the hourglass net-
work pay more attention to the position feature from the
sparse label Y .

3.1. The Hourglass Architecture in DNN. Most neural net-
works extract and learn the features via downsampling,
whereas hourglass networks [32] carry out the upsampling
after downsampling. In this paper, the upsampling is used
to learn the position probability distribution from the
multidimensional features extracted by the downsampling.
Specifically, the higher-dimensional and lower-dimensional
features are combined in the upsampling layers to generate
the probability matrix, and the output is restored into the
original size of input image gradually. As shown in
Figure 1, the hourglass network in this paper contains five
downsampling layers and four upsampling layers.

During the downsampling in this paper, the core mod-
ules of VGG [33] and ResNet [34] are taken as the feature
extractors, respectively. VGG is a convolutional deep neural
network proposed in 2014. Each convolutional module con-
sists of a convolutional layer with the kennel of 3 × 3, a batch
normalization layer, and an activation layer with the ReLu

function, which leads a deep capture for features. ResNet-
based extractor is motivated by the residual module, which
has a skip connection between the input and output of a
stack of two convolutional layers. And then, the fusion fea-
ture is activated by the ReLu function. Moreover, thanks to
the max pooling layer after the convolutional module or
the residual module, the feature maps become smaller from
the lower dimension to the higher dimension.

During the upsampling, the higher-dimensional features
and the lower-dimensional features are, respectively, unified
in channels by the 3 × 3 convolutional layer and the 1 × 1
convolutional layer at first. Next, the bilinear interpolation
is adopted to scale up the higher-dimensional feature maps.
Then, multiply the higher-dimensional feature maps and the
lower-dimensional to realize the fusion of different feature
dimensions. Progressively, the size of data turns back to
the same as input. Finally, an output matrix Ŷ is obtained
through a convolutional layer.

3.2. The Proposed Weighted Loss Function. The training
stage is intended to minimize the loss between the output
Ŷ and the label Y . The loss function is expressed in mean
square error (MSE) as follows:

LMSE =
1
n
〠
n

i=1
Ŷi − Yi

� �2
: ð5Þ
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Figure 1: The structure and core modules of hourglass deep neural network.
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The label Y is extremely sparse, which is intractable for
the hourglass network to concentrate on the features around
the signal position. Therefore, a weighted loss function is
proposed in this section. Without any prior information of
illegal signal sources, it is difficult to calculate the weight at
each pixel of the matrix precisely. However, we cannot over-
look the fact that a higher number of weight should be
assigned if it is closer to the true position. Assume that the
weight distribution is centered on the label position and
decreases around with the two-dimensional normal distribu-
tion probability density function. The weight matrix W with
the same size as the input and output is expressed as

Wi x, yð Þ = 1
2πσ2 exp −

1
2σ2 x − xið Þ2 + y − yið Þ2� �� �

, ð6Þ

where ðxi, yiÞ means the coordinate of the illegal signal
source si, as well as the weighted center. Weighted radius is
set as R = 3σ, which means there is a 99.7 percent chance
that the signal source is located in the weighted area. More
specifically, the hourglass network expands the attention
on the position feature from single pixel to an area of the
radius R via the weighted method. The weighted loss func-
tion is determined as follows:

LWMSE =
1
n
〠
n

i=1
Wi Ŷi − Yi

� �2
: ð7Þ

The RMSProp optimizer and backpropagation algorithm
are used for training until the loss falls below a threshold or
the iteration reaches to a certain number.

In the stage of localization, the RSS data are collected
from sensors and converted into the image data. Succes-
sively, the trained hourglass network is expected to predict
the probability matrix from the sensing image. For the local-
ization task with single signal source, the predicted position
is calculated as

ŝi x̂i, ŷið Þ = argmax
x̂i ,ŷi

Ŷ
� �

: ð8Þ

4. Results and Discussion

4.1. Simulation Setup. As is shown in Figure 2, the geo-
graphic model of Tsinghua University is established for the
following simulations. A study area with the size of 480m
× 360m is marked in the red box. Accordingly, the input
and output data are 480×360-sized image matrices. Based
on the geographic model, the RSS set Hfull is obtained by a
software called WinProp [35] which supports the calculation
for DPM. The calculation resolution is set to 1m, represent-
ing the interval between receiving points in Hfull is 1m. The
frequency of signal source is set to 1800MHz, and the trans-
mission power is 43 dBm, which are unknown for DNN. All
simulation parameters are set in detail according to Table 1.
Figure 3(a) shows the RSS distribution in the whole study
area, which reveals the nonuniform attenuation of radio
wave propagation to the surrounding due to the blocking

of buildings etc. In Figure 3(b) about the LOS/NLOS distri-
bution, the NLOS propagation paths account for a huge pro-
portion in the urban scenario.

Four groups of datasets are set up with varied number of
sensors, i.e., 48, 12, 8, and 4. The sensors are uniformly
deployed as shown in Figure 4. Compared with most data-
sets in deep learning-based localization methods [26, 27],
the sensor density in our datasets is extremely sparse. For
the training datasets, the traversal gird of signal source posi-
tions is set into a size of 3m × 3m, generating 19200 samples
to learn the propagation features of the whole study area.
The learning rate is set to 0.001, and the training epoch is
20. To evaluate the performance of the localization in the
testing stage, the mean positioning error of the ns = 2400
samples are calculated by

e = 1
ns
〠
ns

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − x̂ið Þ2 + yi − ŷið Þ2

q
: ð9Þ

Additionally, in this paper, PyTorch is the basis of the
deep learning algorithm framework. All simulations are
implemented on an RTX2080ti GPU with 96GB of RAM.

4.2. Results and Evaluation

4.2.1. Comparison of VGG-Based and ResNet-Based
Extractor. In this paper, VGG and ResNet are, respectively,
applied as feature extractors in downsampling of the hour-
glass network. From Figure 5, the two extractors achieve sat-
isfactory localization results with the errors of about 2m
when the total number of sensors is 48. With the reduction
of sensors, the positioning errors present an upward trend,
whereas the ResNet-based extractor suffers less severe degra-
dation than VGG-based extractor. It is indicated that the
residual module plays an active part to extract features from
sparse input image, which benefits from the fusion of multi-
scale features though the skip connections. Nonetheless,
when there are only 4 sensors, ResNet-based extractor per-
forms worse.

4.2.2. Evaluation of the Weighted Loss Function. To alleviate
the hardships of localization from sparse sensing data, the
weighted loss function is proposed to enhance the attention
on the position features. As the number of sensors decreases,

Figure 2: The established three-dimensional geographic model of
Tsinghua University (grey, green, and blue objects, respectively,
represent buildings, vegetation, and rivers).
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the hourglass deep neural network requires wider attention
on the position features, leading to a larger weighted radius.
However, if the weighted radius is too large, the network has
to pay attention to more extra features in the whole weighted
area and reduce the attention to the true position. There is a
balance between larger weighted area and the better accu-
racy. Varied from 65m to 145m with the interval of 20m,
an appropriate weighted radius is determined via several
purposeful setting and numerous tests. Finally, considering

the overall positioning performance with different number
of sensors, the weighted radius is set to 105m.

Figure 6 gives the effect of the weighted loss function
with a 105m radius on the localization results, which reveals
that the proposed weighted loss method provides a signifi-
cant enhancement over the original loss function. The local-
ization errors are limited in 10m with a total of 8 sensors.
And the weighted loss function improves the performance
of localization more than 50% with a total of 4 sensors.

Table 1: Simulation parameters.

Study area Size 480m × 360m

Buildings

Materials Concrete

Thickness of walls 10 cm

Permittivity 4

Permeability 1

Conductivity 0.01 S/m

Water

Permittivity 81

Permeability 1

Conductivity 0.5 S/m

Vegetation
Additional loss 10 dB

Additional attenuation or rays 0.05 dB/m

Signal source
Frequency 1800MHz

Power 43 dB

DPM

Resolution 1m

Interaction loss 11 dB

Building penetration loss 20 dB

LOS path loss exponent Before/after breakpoint: 2.3/3.3

NLOS path loss exponent Before/after breakpoint: 2.5/3.6

Wave guiding weighting factor 1

480 m

Power
[dBm]

–30.00
–35.00
–40.00
–45.00
–50.00
–55.00
–60.00
–65.00
–70.00
–75.00
–80.00
–85.00
–90.00
–95.00

360 m

(a)

360 m

480 m

LOS status
[status]

NLOS
LOS

(b)

Figure 3: Visual implementation of (a) RSS distribution and (b) LOS/NLOS distribution in the study area of 480m × 360m.
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4.2.3. Analysis of LOS/NLOS Propagation. It is rarely possible
to count the number of LOS or NLOS sensors without geo-
graphic information, so that the sensors with NLOS propa-

gation paths are generally assumed in most simulations of
other researches (e.g., [16]). On the other hands, dense lay-
outs of hundreds of sensors in traditional deep learning-
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Figure 4: Visual implementation of the distribution of (a) 48 sensors, (b) 12 sensors, (c) 8 sensors, and (d) 4 sensors (which are represented
as black triangles).
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based localization methods inevitably provide sufficient LOS
paths for accurate localization. Differently, this paper applies
the geographic model to offer LOS and NLOS information
and focuses on the localization with sparse distribution of
sensors. As a result, the LOS and NLOS sensors are distin-
guished to evaluate their influences on the localization.

As a qualitative analysis, Figure 7 is the visual implemen-
tation of LOS/NLOS distribution and positioning errors
against a backdrop of urban buildings. In Figure 7(a), when
an illegal signal source is located in the red area, there are
less than 4 LOS sensors with a total of 8 sensors, which
means it suffers from severe NLOS propagation. In contrast,
Figure 7(b) shows that localization results calculated by the

proposed method are less affected by NLOS propagation in
the corresponding area, indicating that the NLOS propaga-
tion features are well captured for robust localization. And
the worse performance at the edge of the study area can be
interpreted by the poor sensing.

As a quantitative analysis, Figure 8 gives the positioning
errors with different number of LOS sensors, representing
that the more LOS sensors there are, the better performance
the proposed method offers. With a total of 4 sensors,
Figure 8(a) shows that the error fluctuations of the localiza-
tion method with weighted loss function decrease 85% as the
number of LOS sensors increases from 1 to 4. In addition,
with a total of 8 sensors in Figure 8(b), the weighted method
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Figure 7: Visual implementation of (a) LOS/NLOS distribution and (b) positioning errors with a total of 8 sensors (which are represented as
black triangles).
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Figure 8: The positioning errors with different number of LOS sensors. (a) The total number of sensors is 4. (b) The total number of sensors
is 8.
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achieves the robust localization performance of median
errors below 10m, especially as the original method fails to
localize with single LOS sensor.

4.2.4. Comparison with Other Algorithms. The proposed
method is compared with DeepMTL localization [27] and
another network structure, i.e., U-net [36]. DeepMTL pri-
marily converts the RSS value into image data and predicts
the positions of multiple transmitters by CNN. In this paper,
apply DeepMTL for localization of single signal source to
evaluate its performance under the condition of NLOS prop-
agation and sparse sensor distribution. Besides, a typical U-
net that consists of four downsampling and four upsampling
layers is considered for comparisons.

Table 2 shows the comparative results. DeepMTL per-
forms worst due to the sparse layouts of sensors. Its original
performance is based on the dense sensors and the ideal or
statistical propagation data which are easy to learn the local-
ization features. Driven by our datasets that is closer to the
practical electromagnetic environment, its localization errors
of single signal source are up to 200 meters, illustrating that
DeepMTL is not suitable for the severe NLOS propagation
conditions. On the other hand, the VGG-based and
ResNet-based hourglass networks with weighted loss func-
tion have a 63.7% and 73.0% improvement over U-net with
a total of 4 sensors, respectively. The comparisons express
the fusion of multiscale features in hourglass network which
is more efficient to predict probability distributions of posi-
tions than U-net, and the weighted loss function improves
the attention on true positions. Therefore, it is concluded
that the proposed method is more qualified for localization
in large-scale urban scenarios.

5. Conclusions

For the challenges of severe NLOS propagation and sparse
layouts of sensors in urban scenarios, this paper proposes a
deep learning-based localization method which learns the
NLOS propagation features with the aid of urban geographic
model. The proposed method fully considers the fusion of
geographic information and electromagnetic wave propaga-
tion. The reliable urban propagation model prepares the
datasets close to practical electromagnetic environment and
motivates neural networks. Moreover, the improved hour-
glass networks with two typical feature extractors, i.e.,
VGG and ResNet, are trained for localization. In compara-
tive simulations, the ResNet-based hourglass network out-
performs the VGG-based, but huge positioning errors still
exist when there are only 4 sensors. With the assistance of

the proposed weighted loss function, the localization perfor-
mance is enhanced by over 50%. Furthermore, geographic
information supports for the distinction between LOS and
NLOS paths in order to evaluate the robustness of the
method with different number of LOS sensors. Compared
with other deep learning-based algorithms, the proposed
method keeps obviously reliable and superior performance
as the total number of sensors decreases. The results present
the validity and robustness of the proposed deep learning-
based localization method under the severe NLOS propaga-
tion and sparse sensing conditions in urban scenarios.

Data Availability

The original data used in this work is generated by simula-
tion via WinProp. The method of dataset generation is
included within the article.
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