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In order to improve the effect of Chinese-English machine translation, this paper combines attention mechanism and neural
network algorithm and applies it to Chinese-English machine learning translation. Moreover, this paper uses Gaussian
distribution instead of chi-square distribution to analyze the approximate error introduced by the Chinese and English speech
energy detection method. In addition, this paper studies the overall and specific approximation errors by establishing the
normalized mean square error function and the absolute error function, respectively. Finally, this paper proposes a new model
for machine translation based on logarithmic position representation and self-attention mechanism. Through the experimental
research, it can be seen that the Chinese-English machine translation model integrating attention mechanism and bidirectional
neural network proposed in this paper has a good practical translation effect.

1. Introduction

In the process of processing Chinese and English languages,
it is relatively easy to split English sentences [1]. The hardest
part is reorganizing the simple sentences that have been split
up, and it is easy to be too limited by the grammatical struc-
ture of English to make bold changes. At this time, nouns in
the original text are translated into nouns in the target lan-
guage, verbs are translated into verbs [2], and adverbs are
translated into adverbs. Even, sometimes an attributive
clause, we will copy the structure of the original text. In this
way, the translated Chinese can only be obscure and incom-
prehensible, the words do not convey the meaning, and do
not conform to the Chinese language habits. Moreover, the
Chinese translated in this way has a strong translation cav-
ity. Therefore, in fact, we should try our best to avoid falling
into the trap of translation cavity [3]. One of the important
translation methods is part-of-speech conversion, and
almost any part-of-speech in the original text can be con-
verted into other parts of speech when it is converted into
the target language, such as verbs into nouns, nouns into
verbs, prepositions or adverbs into verbs, and nouns into

adjectives. The conversion of parts of speech is a necessary
means of doing a good job in translation. It can make the
translation break away from the structure of the original text
and not be bound by the original text. Therefore, the trans-
lated text will naturally avoid translation traces as much as
possible.

This paper combines the attention mechanism and neu-
ral network algorithm and applies it to Chinese-English
machine learning translation to improve the effect of
Chinese-English machine translation and provide a refer-
ence for the development of subsequent artificial intelligence
translation systems.

2. Related Work

The convolutional neural network proposed in [4] achieves
the best performance on object classification in translation
datasets. With the further development of artificial intelli-
gence translation, most of the studies using convolutional
neural networks to learn high-level semantic features in
intelligent translation have been proposed to complete spe-
cific tasks such as classification [5]. Among these methods,
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most of them use repeated several layers of convolutional
networks, followed by a pooling layer after each convolu-
tional network, and finally select more important features
and output them through a fully connected layer [6]. Refer-
ence [7] proposed another classic convolutional neural net-
work, which achieved good results in translation
localization and classification tasks, and brought a new refer-
ence standard for the structural design of deep models. Ref-
erence [8] used a smaller convolution kernel and designed
the model to be deeper, so that it could better learn the
high-level semantics of intelligently translated content. Ref-
erence [9] deepens the depth of the model and improves
the overall performance. Generally speaking, if the convolu-
tional network wants to improve the expression learning
ability, it mainly depends on increasing the number of out-
put channels, which will consume a lot of computing
resources and easily cause overfitting. Reference [10] uses a
convolutional branch network to organize information
across channels, which not only improves the performance
of the model but also greatly reduces the amount of param-
eters that increase sharply due to the deepening of the depth
and width of the model.

With the development of neural network research,
some studies have begun to build neural topic models to
represent local intelligent translation semantics, that is,
object-level intelligent translation content topic models
are derived from natural language processing and can dis-
cover or learn a class of statistical models for abstract
topics in documents [11]. Reference [12] proposed an
unsupervised neural topic model document neural autore-
gressive distribution estimator, which fuses a topic model
and a neural network, assuming that the generation of
each word is only related to the words generated before
it and directly builds. The modulo document is the prod-
uct of the conditional probabilities of all words, and each
conditional probability is generated using a feedforward
neural network to obtain object-level topic features with
high-level semantic information. In the literature [13],
the DocNADE model was introduced into the field of
translation understanding, and it was proposed to do
translation classification and annotation based on the Doc-
NADE model, and it also achieved good performance. The
translation understanding work based on deep learning
has achieved fruitful results, shortening the translation
semantic gap to a certain extent, but there is still some
room for improvement. Reference [14] deepened the net-
work depth to an unprecedented 152-layer M, directly
reducing the translation classification error rate on Ima-
geNet to less than 5%, approaching or even surpassing
the human recognition accuracy rate to an unprecedented
peak of development. With the help of deep learning, the
task of object-level analysis has also achieved great break-
throughs. Object detection is the basic method of object-
level analysis, and it has also entered a stage of rapid
development. In the past ten years, the traditional machine
intelligence translation field usually uses feature descrip-
tors for object recognition tasks, and the progress is slow
[15]. Due to the excellent performance of convolutional
neural networks on ImageNet, the literature [16] general-

ized the ability of AlexNet to recognize objects based on
ImageNet training to the field of object detection, which
is transfer learning. The proposal of R-CNN is a milestone
in the application of convolutional neural networks to the
field of target detection, and it is the pioneering work of
using deep learning for target detection. After this, a series
of far-reaching object detection models based on R-CNN,
and regression methods based entirely on deep learning
[17]. It is precisely with the help of the deep learning
model that under the training of a large amount of Ima-
geNet data, it has the ability to better capture the high-
level semantics of intelligent translation content, so that
the model can also achieve ideal results when migrating
to other tasks or datasets [18]. Transfer learning lays the
foundation for the improvement of most tasks in com-
puter intelligent translation. Not only in the field of object
detection but also in other computer intelligent translation
tasks, transfer learning is also widely used, especially in the
task of mining intelligent translation semantic information,
including translation-based translation description and
translation question answering, as well as video-based
video, description, video understanding, and video ques-
tion answering. As a result, the research progress of intel-
ligent translation semantic understanding task has been
greatly promoted [19].

3. Intelligent Chinese and English Audio
Spectrum Perception

The principle of Chinese and English sound waveform
energy detection is mainly based on the chi-square distribu-
tion theory. The Chinese and English sound waveform
energy Y of the received signal of cognitive users obeys the
chi-square distribution:

Y ~
χ2
2TW , H0,

χ2
2TW 2γð Þ, H1:

(
ð1Þ

Among them, γ represents the signal-to-noise ratio of
the received signal of the cognitive user, χ2

2TW and χ2
2TWð2

γÞ, respectively, represent the central chi-square distribution
and the noncentral chi-square distribution, both of which
have 2TW degrees of freedom, and the parameter of χ2

2TWð
2γÞ is 2γ. For the simplicity of the description, u is uniformly
used in the following text to represent the time-bandwidth
product TW in the above formula [20].

Y ~
χ2
2u, H0,

χ2
2u 2γð Þ, H1:

(
ð2Þ

In the additive white Gaussian noise (AWGN) channel,
the following important probability formulas can be
obtained according to the above probability distribution
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functions, and these formulas can also express the spectrum
sensing performance of cognitive users:

Detection probability : Pd = P Y > λ

H1

� �
=Qu

ffiffiffiffiffi
2γ

p
,
ffiffiffi
λ

p� �
,

ð3Þ

The detection probability Pd represents the probability
that a cognitive user can correctly detect the presence of an
authorized user. The high detection probability indicates
that cognitive users can accurately perceive the presence of
authorized users, to maintain the sensing state to continue
detection or release the spectrum in use and reduce interfer-
ence to authorized users.

False alarm probability : Pf = P Y > λ

H0

� �
= Γ u, λ/2ð Þ

Γ uð Þ :

ð4Þ

The false alarm probability Pf represents the false alarm
(type 1 error) of the cognitive user when the authorized user
does not exist, that is, the probability that the cognitive user
thinks that the authorized user exists at this time. The low
probability of false alarm indicates that cognitive users can
more accurately perceive spectrum holes, so as to perform
dynamic spectrum access.

Missed alarm probability : Pm = P Y ≤
λ

H1

� �
= 1 − Pd: ð5Þ

The missed alarm probability Pm represents the false
alarm (type 2 error) of the cognitive user when the autho-
rized user exists, that is, the probability that the cognitive
user cannot detect the existence of the authorized user. For
the same cognitive device, the probability of false alarm
and probability of detection add up to a constant 1.

ΓðaÞ and Γða, bÞ in formula (4) represent the gamma
function and incomplete gamma function, respectively, and
Quða, bÞ in formula (3) represents the generalization Q func-
tion. The λ in the above two formulas is the threshold value
of the Chinese and English sound waveform energy detector.

Many research methods on cooperative spectrum sens-
ing are based on a centralized cognitive wireless network,
that is, the network consists of a decision center and N cog-
nitive users, and each cognitive user reports its own spec-
trum sensing results to the decision center. The decision
center fuses the above information using information fusion
criteria such as Chinese and English sound waveform energy
fusion or decision fusion, to make a final decision to deter-
mine whether an authorized user exists. Decision fusion
strategies can be mainly divided into the following
categories:

“Majority” rule (majority-rule): if more than a certain
number of cognitive users believe that authorized users exist,
that is, the local decision is H1, then the final decision of the
decision center is H1.

AND-rule: when all cognitive users in the network need
to decide H1, the decision center decides H1.

OR-rule: as long as there is a cognitive user in the net-
work to decide H1, the decision center decides H1.

This research will combine the existing Chinese and
English phonetic waveform energy fusion and decision
fusion criteria to propose a two-layer data fusion mecha-
nism. The “or” criterion is used as the fusion criterion in
the upper-layer decision fusion, and the method is also used
as the comparison object in the simulation analysis. The
cooperative spectrum sensing performance of cognitive net-
works using the OR criterion is listed below as [21].

Qd = 1 −
YN
i=1

1 − Pd,ið Þ, ð6Þ

Qm =
YN
i=1

Pm,i, ð7Þ

Qf = 1 −
YN
i=1

1 − Pf ,i
� �

: ð8Þ

In the formula, Qd ,Qf ,Qm represents the detection
probability, false alarm probability, and missed alarm prob-
ability when N cognitive users in the cognitive network per-
form cooperative sensing, respectively. Pd,i, Pf ,i, Pm,i is the
same as the above and represents the local detection proba-
bility, false alarm probability, and missed alarm probability
of the ith cognitive user ðSUiÞ.

In the traditional Chinese and English sound waveform
energy detector, the cognitive user first passes the received
signal through a band-pass filter, takes out the signal of a
certain target frequency band, and then, performs a square
operation on it. After that, it accumulates the energy value
of Chinese and English sound waveforms in a period of time
through the integrator and finally compares it with the pre-
set threshold value (single threshold), to make a local deci-
sion on whether the authorized user exists. The single-
threshold detection model is shown in Figure 1(a).

Oi in the figure represents the energy of the English
sound waveform in the received signal of the cognitive user
SUi, and the decisions H0 and H1 of the existence of an
authorized user are determined by comparing the Chinese
and English sound waveform energy Oi with the threshold
value λi. When Oi ≤ λi, it is decided as H1, when Oi > λi, it
is decided as H0.

In the double-threshold detection model, each cognitive
user compares the energy of the Chinese and English sound
waveforms in the received signal according to the preset two
thresholds λ1,i and λ2,i in the Chinese and English sound
waveform energy detector, so as to make a local decision,
as shown in Figure 1(b). According to the above description,
the local decision criterion of this method is as follows:

Decision:H1 : Oi > λ2,i
Decision:H0 : Oi ≤ λ1,i
Delayed decision:λ1,i <Oi ≤ λ2,i
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When the energy Oi of the English sound waveform in
the received signal obtained by SUi is located in the interval
λ1,i <Oi ≤ λ2,i, SUi thinks that the energy value of the Chi-
nese and English sound waveform is relatively modular,
and it cannot determine whether an authorized user exists
or not according to its size. Therefore, the Oi value is
reported to the decision center as it is. After obtaining the
local decision results reported by all cognitive users in the
cognitive network and the English sound waveform energy
in the received signal, the decision center performs two-
level information fusion to obtain the final decision result
of the existence of authorized users. The specific spectrum
sensing methods and information fusion rules are as follows:

SUiði = 1,⋯,NÞ first performs local spectrum detection
within its own range and obtains the output Oi of the Chi-
nese and English phonetic waveform energy accumulator.
If Oi satisfies Oi ≤ λ1,i or Oi > λ2,i, it is decided as H0 or H1
, respectively. If Oi is located in the delayed decision interval,
that is, λ1,i <Oi ≤ λ2,i, the cognitive user does not make a
local decision result, but uploads Oi to the decision center
and waits for its delayed decision. From this, it can be seen
that the local perception result Ri reported by the cognitive
user to the decision center consists of two kinds of informa-
tion: the local decision and the energy value of the Chinese
and English sound waveforms, namely,

Ri =
Oi, λ1,i <Oi ≤ λ2,i,
Li, other,

(
ð9Þ

Li =
0, 0 ≤Oi ≤ λ1,i,
1, Oi > λ2,i:

(
ð10Þ

In order to facilitate the theoretical derivation of detec-
tion performance in the following, and without loss of gen-
erality, it is assumed here that the decision center receives
N data packets reported by all cognitive users, including K
Li and −KOi. Then, the decision center uses these N-KO
values and uses the Chinese and English sound waveform
energy fusion method to obtain the delayed decision D:

D =
0, 0 ≤ 〠

N−K

i=1
Oi ≤ λ,

1, 〠
N−K

i=1
Oi > λ:

8>>>>><
>>>>>:

ð11Þ

The λ in the expression of the delay decision D repre-
sents the threshold value obtained by the decision center
according to the user’s communication requirements and
the required false alarm probability set by the spectrum sens-
ing performance. From the cognitive user perception process
described above, it can be seen that this method considers
that N−K users among all N cognitive users cannot make
local decisions based on the energy of the English sound
waveform in the received signal output by the English sound
waveform energy accumulator. Therefore, these cognitive
users report the Chinese and English sound waveform
energy values of the received signal directly to the decision
center without processing, and the decision center uses a
large amount of historical perception data in the past to
make a delayed decision based on the N−K Chinese and
English sound waveform energy values. It is equivalent to
merging Chinese and English phonetic waveform energy
on these values and replacing the unreliable local decision
results of N−K cognitive users. The Chinese and English
sound waveform energy value ∑N−K

i=1 Oi obtained by the deci-
sion center obeys the following chi-square distribution:

〠
N−K

i=1
Oi ~

χ2
2 N−Kð Þu, H0,

χ2
2 N−Kð Þu 2γ0ð Þ, H1:

8<
: ð12Þ

Among them, γ0 =∑N−K
i=1 γi represents the summation of

the signal-to-noise ratios of the N-K cognitive users who
reported the energy values of the Chinese and English sound
waveforms. Finally, according to the local decision results Li
of K cognitive users and the above-mentioned delayed deci-
sion D, the final decision obtained by the decision center
using the “or” criterion for decision fusion is:

F =
1, D + 〠

K

i=1
Li > 1,

0, other:

8><
>: ð13Þ

Among them, F = 1 corresponds to H1, indicating that
the decision center finally determines that the authorized
user exists. On the contrary, it corresponds to H0 and deter-
mines that the authorized user does not exist.

Based on the dual-threshold Chinese and English sound
waveform energy detection method discussed above, the

0

Judgment H0 Judgment H1

𝜆i

Oi

(a) Single-threshold detection model

Judgment H0 Judgment H1Energy value Oi

OiOi

𝜆1,i 𝜆2,i

0

 

(b) Two-threshold Chinese and English sound waveform energy detection model

Figure 1: Single-threshold and dual-threshold detection models.
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spectral sensing performance is analyzed theoretically. Simi-
lar to the previous article, Pd,i, Pf ,i, Pm,i is still used here to
represent the local detection probability, false alarm proba-
bility, and missed alarm probability of SUi itself. Here, two
probability values Δ0,i and Δ1,i are used to denote the prob-
ability of SUi that the energy value of the Chinese and
English speech waveforms falls into the delay decision inter-
val under the two assumptions of the existence of an autho-
rized user or not, so as to facilitate the subsequent
discussion. Its expression is:

Δ0,i = P λ1,i <Oi ≤
λ2,i
H0

� �
, ð14Þ

Δ1,i = P λ1,i <Oi ≤
λ2,i
H1

� �
: ð15Þ

Therefore, the aforementioned local spectrum sensing
performance of cognitive users can be modified as:

Pd,i = P Oi >
λ2,i
H1

� �
=Qu

ffiffiffiffiffiffi
2γi

p
,
ffiffiffiffiffiffiffi
λ2,i

q	 

, ð16Þ

Pm,i = P Oi ≤
λ1,i
H1

� �
= 1 − Δ1,i − Pd,i, ð17Þ

Pf ,i = P Oi >
λ2,i
H0

� �
= Γ u, λ2,i/2ð Þ

Γ uð Þ : ð18Þ

The same symbol Qd ,Qf ,Qm is still used here to repre-
sent the detection probability, false alarm probability, and
missed alarm probability when all cognitive users in the net-
work cooperate:

Qm = 〠
N−1

K=0

N

K

 !YK
i=1

Pm,i
YN
i=K+1

Δ1,i 1 −Q N−Kð Þu
ffiffiffiffiffiffiffi
2γ0

p
,
ffiffiffi
λ

p� �h i
+
YN
i=1

Pm,i,

ð19Þ

Qf = 1 −
YN
i=1

1 − Δ0,i − Pf ,i
� �

− 〠
N−1

K=0

N

K

 !YK
i=1

� 1 − Δ0,i − Pf ,i
� � YN

i=K+1
Δ0,i 1 − Γ N − Kð Þu, λ/2½ �

Γ N − Kð Þu½ �
� �

,

ð20Þ
Qd = 1 −Qm: ð21Þ

It can be seen from the above formula that the probabil-
ity value of Oi between λ1,i and λ2,i under the two assump-
tions of the existence of authorized users has a very
important influence on the spectrum sensing performance
of the dual-threshold Chinese and English tone waveform
energy detector. When Δ0,i and Δ1,i are both equal to zero,
the method proposed in this paper degenerates into the tra-
ditional single-threshold Chinese and English sound wave-
form energy detection method. At this time, all cognitive

users in the cognitive network report their local decisions
to the decision center. Moreover, the decision center also
uses the “or” criterion to perform decision fusion on all local
decision results based on only this kind of data, so as to
obtain the final result.

According to the perception process and realization
principle of the aforementioned dual-threshold Chinese
and English tone waveform energy detector, this part will
use the method of simulation analysis to analyze and discuss
its detection performance in detail. The simulation is pre-
sented in the form of ROC (receiver-operating characteristic
curve) and CROC (complementary receiver-operating char-
acteristic curve). Two simulation scenarios are set here; the
main difference is the difference of the Δ parameter, which
are, respectively, set as: Δ0,i = Δ1,i = 0:01 andΔ0,i = Δ1,i = 0:1.

The comparison objects in the two scenarios are the tra-
ditional single-threshold detection methods when Δ0,i = Δ1,i
= 0:1, and the rest of the parameters are set as follows:

N = 10,
γ1 = γ2 =⋯ = γN = 10 dB,

u = 5:
ð22Þ

We first examine the curves in Figure 2. When Δ is
small, the dual-threshold detection method improves the
spectrum sensing performance less compared to the tradi-
tional method. When Δ0,i and Δ1,i are further increased, as
shown in Figure 3, the improvement of spectrum sensing
performance by this method becomes more significant. At
this time, the probability that the energy value of the English
sound waveform in the received signal falls into the delay
decision interval is greater (0.1) than the first scenario. By
carefully observing Figure 3, it can also be seen that when
Qf is equal to 10−4, the detection probability of this method
can obtain a gain of about 1.23 times compared with the tra-
ditional single-threshold detection method. Also, the gain in
detection probability can be further increased as the false
alarm probability decreases.

This paper studies the approximation error introduced
by using Gaussian distribution instead of chi-square distri-
bution in Chinese and English phonetic waveform energy
detection methods. The overall and specific approximation
errors are studied by establishing the normalized mean
square error function and the absolute error function,
respectively. Moreover, the reasonable lower limit of the
degree of freedom of the chi-square distribution when the
above approximation is performed is given by numerical
simulation, and the corresponding chi-square distribution
probability value when the approximation error is the smal-
lest is listed.

Spectrum sensing technology based on Chinese and
English speech waveform energy detection has the advan-
tages of low cost and simple deployment, making it increas-
ingly a research hotspot in this field. In these related studies,
it is necessary to use the chi-square distribution, a
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mathematical tool. To analyze the performance of the Chi-
nese and English sound waveform energy detectors: the cen-
tral chi-square distribution corresponds to the hypothesis
H0, and the noncentral chi-square distribution corresponds
to the hypothesis H1.

The English sound waveform energy in the signal
observed by the receiver should obey the following chi-
square distribution.

O ~
x22TW , H0,
x22TW 2γð Þ, H1:

(
ð23Þ

Among them, O represents the energy value of the
English sound waveform in the signal received by the cogni-
tive user, and χ2

2TW and χ2
2πWð2γÞ are the central and non-

central chi-square distributions with 2TW degrees of
freedom, respectively. The noncentral parameter of the latter
is 2γ, corresponding to the signal-to-noise ratio of the cogni-
tive user receiver. For brevity of the description below, we
use m for the delay-bandwidth product 2TW and mr for
the degrees of freedom of the chi-square distribution, and
we obtain:

O ~
χ2
m, H0,

χ2
m mrð Þ, H1:

(
ð24Þ

If m is assumed to be large enough (this condition is eas-
ily satisfied when multiple cognitive users perform
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cooperative sensing), then according to the central limit the-
orem, O should tend to obey a Gaussian normal distribution
as follows:

O ~
N m, 2mð Þ, H0,
N m 1 + rð Þ, 2m 1 + 2rð Þð Þ, H1:

(
ð25Þ

Among them, O~ represents the approximate value of
the English sound waveform energy O in the received signal,
and Nðμ, σ2Þ represents the Gaussian normal distribution
with mean μ and variance σ2.

According to formulas (24) and (25), we can obtain the
cumulative probability distribution functions (CDF) of O
and O~ under two assumptions:

Po x ;mð Þ =
ðx
0

tm/2−1e−t/2

2m/2Γ m/2ð Þ dt, H0,

PO x ;m, rð Þ = 〠
∞

j=0
e−λ/2

λ/2ð Þj
j!

Po x ;m + 2jð Þ, H1,

8>>>><
>>>>:

ð26Þ

P�o x ;mð Þ =N x ;m, 2mð Þ,

= 1
2 ffiffiffiffiffiffiffi

mπ
p

ðx
−∞

e− t−mð Þ2/4mdt,

P�o x ;m, rð Þ =N x ;m 1 + rð Þ, 2m 1 + 2rð Þð Þ,

= 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mπ 1+2rð Þp ðx

−∞
e− t−m 1+rð Þ½ �2/4m 1+2rð ÞdtH0:

8>>>>>>>>><
>>>>>>>>>:

ð27Þ

Among them, ΓðxÞ represents the gamma function.
From this, we can define the following absolute error func-
tion and normalized mean square error function:

AEF x ;mð Þ = Po x ;mð Þ − P�o x ;mð Þj j, H0,
AEF x ;m, rð Þ = Po x ;m, rð Þ − P�o x ;m, rð Þj j, H1,

(
ð28Þ

NEF mð Þ = ∑n
i=1 AEF xi ;mð Þ½ �2
∑n

i=1 Po xi ;mð Þ½ �2

= ∑n
i=1 Po xi ;mð Þ − P�o xi ;mð Þ½ �2

∑n
i=1 Po xi ;mð Þ½ �2 , H0,

NEF m, rð Þ = ∑n
i=1 AEF xi ;mð Þ½ �2

∑n
i=1 PO xi ;m, rð Þ½ �2

= ∑n
i=1 PO xi ;m, rð Þ − P�o xi ;m, rð Þ½ �2

∑n
i=1 PO xi ;m, rð Þ½ �2 , H1:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð29Þ

In formulas (28) and (29), n represents the number of
variables x, and i represents the subscript of each x. It can
be seen from the expressions of AEF and NEF that NEF
masks the influence of the variable x on the error, so NEF
only depicts the approximate trend of the approximation
error as a function of degrees of freedom. In contrast, AEF
reveals precisely the exact effect of both x and m on the
approximation error.

As mentioned earlier, NEF does not reveal the exact
effect of x and m on the error when acting at the same time,
but only shows the approximate variation law of the error
for different variables x. Since there are two assumptions
involved in spectrum sensing technology, the presence or
absence of signals from authorized users (corresponding to
H1 and H0), the errors in these two cases will be analyzed
separately in the following sections.

The expression for NEF at H0 is rewritten as follows:

NEF mð Þ = ∑n
i=1 AEF xi ;mð Þ½ �2
∑n

i=1 Po xi ;mð Þ½ �2

= ∑n
i=1 Po xi ;mð Þ − P�o xi ;mð Þ½ �2

∑n
i=1 Po xi ;mð Þ½ �2 :

ð30Þ

It can be seen that Equation (30) contains a fraction with
two square sum functions, and each function contains an
integral (see Equations (26) and (27)). In particular, Poðxi ;
mÞ contains the expression of the gamma function, so the
theoretical analysis of the shape of the NEF function will
be very complicated. In order to find another way, we use
numerical calculation to discuss the NEF, and the parame-
ters in the simulation are set as:

m ∈ 1, 50½ �,
x ∈ 0, 200½ �:

ð31Þ

The expression for NEF at time H1 is rewritten as
follows:

NEF m, rð Þ = ∑n
i=1 AEF xi ;mð Þ½ �2

∑n
i=1 Po xi ;m, rð Þ½ �2

= ∑n
i=1 Po xi ;m, rð Þ − P�o xi ;m, rð Þ½ �2

∑n
i=1 Po xi ;m, rð Þ½ �2 :

ð32Þ
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Figure 5: Absolute error curve and noncentral chi-square
distribution CDF curve when H1 (m = 4, r = −20 dB).
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The difference from the previous assumption is that NEF
at H1 is a binary function of degrees of freedom m and a
noncentral parameter r representing the real-time signal-
to-noise ratio of a cognitive user. Therefore, in this subsec-
tion, we will discuss the impact of the above two variables
on NEF.

Similar to the previous, we also investigate the morphol-
ogy of NEF by numerical calculation. The parameters in for-
mula (32) are set as:

m ∈ 1, 20½ �,
x ∈ 0, 90½ �:

ð33Þ

In addition, according to the recommendation of IEEE
802.22 WRAN, since the signal-to-noise ratio of the received
signal of the cognitive user is very poor when the signal of
the authorized user exists, the noncentral parameter r is set
to -20 dB, -10 dB, and 0dB.

First, we rewrite formula (28) at H0 to simplify the fol-
lowing discussion, where m is fixed at 3 and is not explicitly
expressed in the formula:

AEF xð Þ = PO xð Þ − P �O xð Þ : ð34Þ

Since both PoðxÞ and P�oðxÞ are cumulative probability
distribution functions, they have limits of the form:

lim
x⟶∞

Po xð Þ = lim
x⟶∞

P�o xð Þ = 1: ð35Þ

Therefore, the limit of AEF is:

lim
x⟶∞

AEF xð Þ = 0: ð36Þ

Formula (36) shows that when x is quite large, the abso-
lute error between the central chi-square distribution and
the Gaussian distribution is negligible.

Figure 4 shows both the absolute error value and the
probability value of the central chi-square distribution using
a dual vertical axis plot, with the variable x on the horizontal

Sequence embedding encoding
Xa (Xa1,Xa2,...,Xan)

Sequence embedding encoding
Xb (Xb1,Xb2,...,Xbn)

Multi-head
attention Masked multi-head attention

Residual &
standardization

Residual &
standardization

Feedforward
neural network

Residual &
standardization

Multi-head
attention

Residual &
standardization

Feedforward
neural network

Residual &
standardization

Linear
transformation SoftMaxSequential coding

Y (Y1,Y2,...Ym)

Positional encoding

Nx

Nx

Mongolian input
sequence

Chinese input
sequence

Figure 6: Attention model.
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axis. The relationship between the above two can be clearly
seen from the double vertical axis graph, and the absolute
error will gradually become smaller than that shown in the
above graph, especially in the area containing this special
probability value. It can be seen from this that replacing
the central chi-square distribution with the Gaussian distri-
bution can obtain the best approximation effect at the value
of the corresponding false alarm probability.

We rewrite formula (28) at time H1 as follows to sim-
plify the subsequent discussion. Among them, r is used as
a parameter (set to -20 dB to represent poor channel con-
ditions), and m is fixed at 4 (take a stricter lower limit
than 3 in the previous section to show the difference).

Moreover, it is not explicitly expressed in the formula:

AEF x ; rð Þ = Po x ; rð Þ − P�o x ; rð Þj j: ð37Þ

Since both Poðx ; rÞ and P�oðx ; rÞ are cumulative prob-
ability distribution functions, they are both monotonically
increasing functions of x and have limits of the form:

lim
x⟶∞

Po x ; rð Þ = lim
x⟶∞

P�o x ; rð Þ = 1: ð38Þ
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Figure 7: Chinese-English machine translation model integrating with attention mechanism and bidirectional neural network.
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Thus, the limit of ARF is obtained as:

lim
x⟶∞

AEF x ; rð Þ = 0: ð39Þ

Formula (39) shows that the absolute error between
the noncentral chi-square distribution and the Gaussian
distribution can be ignored when x is quite large.

Figure 5 shows both the absolute error value and the
probability value of the noncentral chi-square distribution
through a dual vertical axis graph, and the horizontal axis

Table 1: Evaluation of Chinese-English translation effect of Chinese-English machine translation model integrating with attention
mechanism and bidirectional neural network.

Number Translation effect Number Translation effect Number Translation effect

1 75.9 19 78.8 37 71.2

2 79.8 20 86.7 38 85.8

3 84.0 21 80.6 39 81.2

4 83.1 22 73.6 40 84.5

5 76.4 23 69.8 41 84.7

6 73.8 24 71.8 42 70.8

7 71.2 25 78.5 43 73.4

8 72.5 26 84.2 44 76.6

9 79.6 27 69.2 45 81.8

10 76.7 28 77.8 46 87.8

11 69.7 29 73.4 47 78.5

12 78.1 30 72.8 48 74.6

13 74.5 31 69.7 49 72.0

14 78.9 32 79.5 50 79.9

15 87.1 33 87.3 51 87.6

16 81.0 34 83.8 52 86.6

17 74.4 35 69.9 53 84.8

18 76.4 36 76.8 54 76.5

Table 2: Evaluation of English-Chinese translation effect of Chinese-English machine translation model integrating with attention
mechanism and bidirectional neural network.

Number Translation effect Number Translation effect Number Translation effect

1 85.0 19 73.4 37 73.6

2 89.7 20 76.7 38 79.0

3 89.4 21 73.6 39 74.2

4 76.4 22 83.7 40 81.1

5 87.6 23 83.5 41 73.3

6 81.9 24 88.8 42 85.1

7 80.4 25 75.1 43 81.9

8 90.0 26 81.5 44 89.7

9 88.9 27 89.9 45 83.2

10 90.8 28 78.0 46 89.4

11 73.4 29 84.4 47 85.1

12 78.2 30 84.0 48 82.6

13 76.9 31 82.0 49 77.2

14 89.8 32 83.8 50 80.8

15 84.4 33 86.7 51 89.3

16 80.6 34 83.0 52 79.5

17 88.0 35 82.3 53 77.6

18 78.3 36 80.5 54 82.6
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is the variable x. The relationship between the above two can
be clearly seen from the double vertical axis graph, and the
absolute error will gradually become smaller than that
shown in the above graph, especially in the area containing
this special probability value. It can be seen that replacing
the noncentral chi-square distribution with the Gaussian
distribution can obtain the best approximation effect at the
value of the corresponding detection probability.

4. The Chinese-English Machine Translation
Model Integrating Attention Mechanism and
Bidirectional Neural Network

The Chinese-English machine translation model constructed
in this paper adopts the classic encoder-decoder architec-
ture, and the internal structure is shown in Figure 6.

In this paper, a new model for machine translation based
on logarithmic position representation and self-attention
mechanism is proposed, as shown in Figure 7. In the
encoder, there are self-attention combined with log position
representation layer and fully connected FFN network layer.
The decoder has self-attention combined with log position
representation layer, encoder-decoder attention layer, and
fully connected FFN network layer. The output layer con-
tains a linear transformation layer and a Softmax fully con-
nected layer.

On the basis of the above research, this paper verifies the
effect of the Chinese-English machine translation model that
combines the attention mechanism and the bidirectional
neural network proposed in this paper. The translation
effects of the Chinese-to-English and English-to-English
translations of this model are evaluated through multiple
sets of translation experiments, and the experimental results
obtained are shown in Table 1 and Table 2, respectively.

From the above research, it can be seen that the Chinese-
English machine translation model combining attention
mechanism and bidirectional neural network proposed in
this paper has a good practical translation effect.

5. Conclusion

There is a huge difference in language structure between
Chinese and English. English focuses on form, while Chinese
focuses on meaning. The grammatical structure of English is
rigorous and in order, and the master-subordinate relation-
ship is clear and clear. It is no exaggeration to say that some-
times, a long English sentence is mostly a compound
sentence, and it is several lines long. Moreover, the structure
is complex, including main clauses, adverbial clauses, attrib-
utive clauses, appositions, adjectives, and adverbs. However,
the syntactic structure of Chinese is loose and flexible, and
different meanings can be generated only by random collo-
cation. This paper combines attention mechanism and neu-
ral network algorithm, applies it to Chinese-English
machine learning translation, improves the effect of
Chinese-English machine translation, and proposes a new
model of machine translation based on logarithmic position
representation and self-attention mechanism. Through the
experimental research, it can be seen that the Chinese-

English machine translation model combining attention
mechanism and bidirectional neural network proposed in
this paper has a good practical translation effect.
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