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This paper studies moving object tracking in satellite videos. For the satellite videos, the object size in the images may be small, the
object may be partly occluded, and the image may contain an area resembling dense objects. To handle the above problems, this
paper puts forward a kernelized correlation filter based on the color-name feature and Kalman prediction. The original image is
mapped to the color-name feature space so that the tracker can process the image with multichannel color features. The Kalman
filter is used to predict the moving object position in the tracking process, and the detection area is determined according to the
predicted position. The Kalman filter is updated with the detection results to improve the tracking accuracy. The proposed
algorithm is tested on Jilin-1 datasets. Compared with the other seven tracking algorithms, the experiment results show that
the proposed algorithm has stronger robustness for several complex situations such as rapid target motion and similar object
interference. Besides, it is also shown that the proposed algorithm can prevent the problem of tracking failure when the
moving object is partially occluded.

1. Introduction

With the development of remote sensing technologies, the
earth observation satellites are extensively applied to several
fields [1–7]. However, traditional earth observation satellites
can only take a single image of a certain area. The valuable
and interesting dynamic data in the object area is hard to
obtain only based on the static medium and high resolution
optical remote sensing data, which may limit the reconnais-
sance capability of the earth observation satellites in emer-
gencies [8].

On the other hand, video satellites can overcome the
limitation of traditional earth observation satellites and can
obtain high time-resolution images [9–11]. Video satellites
are used to obtain a series of images of fixed object areas
on the ground. Therefore, the videos can be formed to
obtain the dynamic object information directly. Currently,
the continuous monitoring capability of high-resolution sat-

ellites in a certain time range has been realized [12]. Due to
the above advantages, video satellites are used to observe and
track the states of moving objects on the ground [13] and
have wide application potential in the fields of vehicle real-
time monitoring [8, 14, 15], rapid response to natural disas-
ter emergency [16], major engineering monitoring [17], and
so on. In recent years, some representative video satellites
are Skysat-1 and Skysat-2 in the United States [18, 19], TUB-
SAT series satellites by the Technical University of Berlin
[20] and Jilin-1 [7, 21] and Tiantuo-2 (TT-2) [22] in China.

Besides, moving object tracking (MOT) in traditional
videos has been a research hotspot in computer vision.
MOT is widely used in automatic monitoring, automatic
driving, human-computer interaction, and so on [23, 24].
The task of MOT is to predict the size and position of the
object in subsequent frames based on the size and position
of the object in the initial frame. Much research has been
done in this aspect, and numerous algorithms have been
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investigated for accurate tracking in ordinary videos
[25–30]. Notice that the commonly used visual object track-
ing methods can be divided into generation methods
[25–27] and discrimination methods [28–30].

On the one hand, the generative methods establish the
object model and describe the real-world object, so as to
search for the position with the highest similarity with
the object template in the next frame [31]. Many break-
throughs have been made and several generative methods
have been utilized in MOT, including mean shift, sparse
coding, dictionary learning, particle filter, and sliding win-
dow [32–37]. On the other hand, compared with genera-
tive methods, the discriminative methods regard object
tracking as a detection problem, also known as tracking
by detection (see [38, 39] and the related references).
The discriminative methods generally train the classifier
in the first frame to separate the object from its surround-
ing background. In particular, considering the complex
background such as background changes, the discrimina-
tive methods establish an online discrimination classifier
model to distinguish objects from cluttered backgrounds
to provide more effective features and avoid unwanted
model drift. Recently, some representative machine learn-
ing techniques are adopted into the discriminative
methods, such as Boosting, Support Vector Machines
(SVM), Multiple Instance Learning (MIL), Random For-
ests, Semisupervised Learning, and Structured Output Sup-
port Vector Machines (SOSVM) [40–42]. A theoretical
framework of dense sampling in tracking-by-detection is
presented [43]. In [44], a tracking learning detection
(TLD) algorithm is also proposed, where learning and
detection are introduced into the long-term tracking of
the objects in the videos to enhance the tracking accuracy.
Hare et al. [45] propose an adaptive tracking-by-detection
method called STRUCK, which exploits Gaussian kernels
and SVM as a structured output to accurately locate the
objects. A cooperative model tracking algorithm based on
sparse representation is presented, which is suitable for
the situation of object occlusion and blur [46].

Apart from the machine-learning-based discriminative
methods, the kernelized correlation filter (KCF) can also
accelerate the calculation speed and improve tracking accu-
racy simultaneously [43, 47, 48]. In particular, the KCF-
based method can efficiently handle the object in changing
environment [47]. A scale adaptive tracker is proposed based
on the separate discriminative correlation filters, where the
computational cost is reduced [49]. Galoogahi et al. [50]
demonstrate a background-aware correlation filter (BACF)
for real-time visual tracking, where the handcrafted features
are introduced to effectively describe the changing back-
ground. In [48], a KCF and the Normalized Cross-
Correlation (NCC) template matching is proposed for
long-term target tracking of UAVs to improve the tracking
performance.

In addition, note that the moving objects in satellite
videos include vehicles, airplanes, rockets, and ships. Com-
pared with moving target tracking in ordinary videos, real-
time object tracking in satellite videos should overcome
three main challenges as follows [51, 52].

(1) Compared with the ordinary videos on the ground,
the object size is small in satellite videos, which
may lose their effective features (see Figure 1). For
instance, the length of a car is about 4-5m in real life,
while it is about four pixels in satellite videos. The
size of these objects in the satellite videos is so small
that it may be difficult to track these objects reliably

(2) Since remote sensing images have a relatively large
field of vision, there is low contrast between the
background and the objects (see Figure 1(a))

(3) The background of the image sequence of the satel-
lite videos may be fuzzy and chaotic (see
Figure 1(b)). Besides, there may be more than one
moving target in the image sequence, which have
the characteristics of high similarity, serious mutual
interference, and low resolution. This will result in
partial or complete occlusion between moving tar-
gets (see Figure 1(c))

Due to these above challenges and the increasing
demand for MOT in the field of remote sensing, up until
now, several moving object detection/tracking algorithms
have been carefully designed for MOT in satellite videos
[51–55]. Lei and Guo [53] propose a road masking and
Gaussian mixture method to achieve multiple object detec-
tion and tracking of the remote sensing video satellite.
Meanwhile, the method can improve the reconnaissance
capability of the remote sensing satellite for the dynamic
mobile small target. In [51], a fusion tracker is introduced
where the kernel correlation filter and the three-frame-
difference method are synthesized for satellite videos to
improve the performance of the tracker. Li and Man [52]
put forward an optical-flow-based detection algorithm with
video attention saliency for the moving ships in the satellite
videos, where the Gabor filter is utilized to extract the tex-
ture feature, and the registration of the sea-scene images
can be avoided. Liu et al. [54] present a kernelized correla-
tion filter where multifeature fusion and motion trajectory
compensation are employed for satellite videos to mitigate
the tracking drifts. In [55], an object tracking algorithm is
also proposed for the high-resolution multispecial satellite
images with multiangular observation capability, where a
novel regional operator is constructed and the tracking capa-
bility is verified in the WorldView-2 satellite images.

However, the above trackers [51, 52, 54, 55] generally
rely on the original pixel information (such as HSV or
HOG), which ignores the color information. In fact, several
satellite videos contain some color-name (CN) features.
Compared with other color features, CN features show bet-
ter discriminative capability in MOT [56, 57]. In addition,
due to undesirable environmental factors, such as shadows,
similar backgrounds, and other interferences, it will become
more complicated to realize the MOT.

On this foundation, aiming at MOT in satellite videos,
this paper proposes the kernelized correlation filters based
on color-name features and Kalman prediction (CNK-
KCF). The images are mapped to CN feature space so that
the tracker can process the image with multichannel color
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features. Moreover, the KCF can improve the calculation
speed in the Fourier translation based on the cyclic matrix
and kernel trick. Meanwhile, the Kalman filter can help cor-
rect and update the predicted position of the moving object
and, together with the kernelized correlation filters based on
the color-name features (CN-KCF), can improve the track-
ing accuracy. The proposed algorithm is tested on Jilin-1
datasets. Experimental results are analyzed and show that
the proposed method is robust to some environmental fac-
tors such as partial occlusion, background similarity, and
rapid motion.

In summary, the contributions of this paper are twofold.

(1) For MOT in satellite videos, a framework named
CNK-KCF is carefully designed based on the CN fea-
ture and the Kalman filter. Besides, the proposed
CNK-KCF algorithm is stable in complex situations
such as rapid target motion, occlusion, and similar
object interference, which can solve the problem of
tracking failure when a moving object is partially
occluded

(2) In the experiment section, the CNK-KCF algorithm
is compared with other algorithms, and it is shown
that the CNK-KCF algorithm possesses better track-
ing accuracy and success rate for the airplane, rocket,
and ship in Jilin-1 satellite videos. The performance
of each type of tracker in satellite videos is analyzed
in detail

The rest of this paper is organized as follows. Section 2
presents the design of the CNK-KCF for satellites videos
MOT. Section 3 introduces the experiment results and some
analysis. Finally, Section 4 concludes this article.

2. Materials and Methods

In this section, to solve the problem of MOT in satellite
videos, the CNK-KCF is developed carefully. As shown in
Figure 2, the CNK-KCF mainly consists of 3 parts: (1)
KCF [58, 59], (2) CN, and 3) KF prediction. In the rest of
this section, each part is described in one subsection each.

2.1. Kernelized Correlation Filter (KCF). The KCF has a rel-
atively low computational cost and relatively high tracking
accuracy, especially for rapid deformation. KCF is also
robust to illumination changes. Hence, KCF is suitable for
MOT in satellite videos. The procedures of the KCF tracking
algorithm are shown as follows. Firstly, in order to construct
the tracking area, the tracking object is selected from the ini-
tial frame in the satellite videos. Then, according to the cyclic
matrix theory, the tracking area is cyclically shifted. The ker-
nel function is applied to calculate the similarity between the
possible region of the target location and the tracking
objects. Finally, the area with the largest output response is
selected as the new target, and the classifier is trained based
on the Fourier transform to reduce the calculation time.

In the KCF, the following regression function

f xð Þ = ωTz ð1Þ

is trained to obtain weight coefficients ω = ½ω1, ω2,⋯,ωn�T ,
where z = ½z1, z2,⋯,zn�T is an n-dimensional vector. Corre-
spondingly, the cost function can be minimized as

f xð Þ =min
ω

Xω − yð ÞT Xω − yð Þ + λ ωk k2, ð2Þ

(a) (b)

(c)

Figure 1: The moving objects in satellite videos. (a) There is low contrast between the background and the object. (b) The background is
fuzzy and chaotic. (c) The target is partially occluded.
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where X is the data matrix, y is the desired output, and λ is
the regularization parameter to prevent overfitting. Based on
[64, 65], the extreme value of Equation (2) can be obtained
as

ω = XTX + λI
� �−1

XTy, ð3Þ

where I is an identity matrix. In Equation (3), calculating the

inverse matrix (ðXHX + λIÞ−1) is very time-consuming.
Therefore, the calculation is performed in the Fourier
domain, and Equation (3) can be rewritten in a complex
field as

ω = XHX + λI
� �−1

XHy, ð4Þ

where XH represents the Hermitian transpose of X. Obvi-
ously, if X is a real matrix, Equation (4) can be considered
as equivalent to Equation (3).

Besides, in order to accelerate the calculation speed of
MOT, the cyclic shift is also introduced. The cyclic shift
operator is a permutation matrix, which can be used to sim-
ulate the one-dimensional translation of this vector. The
permutation matrix can be shown as

P =

0 0 0   1

1 0 0 ⋯ 0

0 1 0   0

  ⋮   ⋱ ⋮

0 0 0 ⋯ 0

2666666664

3777777775
, ð5Þ

so the cyclic shift of x can be presented as

Px = xn, x1,⋯,xn−1
� �T

: ð6Þ

Since the product Px shifts x by one element, u shifts are
used to chain with the matrix power Pux and achieve more
translations. The same signal x can be obtained periodically
every n-time translation based on the cyclic property of the
cyclic matrix, which means that all shifted signals can be
represented as

Pux ∣ u = 0, 1, 2,⋯, n − 1f g: ð7Þ

Correspondingly, the data matrix X can be the circulant

matrix and is denoted as

X = C xð Þ =

x1 x2 x3   xn

xn x1 x2 ⋯ xn−1

xn−1 xn x1   xn−2

  ⋮   ⋱ ⋮

x2 x3 x4 ⋯ x1

2666666664

3777777775
: ð8Þ

One-dimensional vector cyclic displacement is given in
Figure 3. All cyclic matrices can be diagonalized through
the discrete Fourier transform (DFT), which is independent
of the generated vector X. Therefore, X can be diagonalized
as

X = C xð Þ = F diag x̂ð ÞFH , ð9Þ

where the constant matrix F is known as the discrete
DFT that does not depend on x. The Hermitian transpose
of F is represented as FH . The matrix diag ð∙Þ is the diagonal
matrix. Accordingly, the vector x̂ is the DFT of x and is
defined as

x̂ = F xð Þ = ffiffiffi
n

p
Fx: ð10Þ

In the following section, the DFT of the vector will be
represented by the hat (^). Due to the diagonalization prop-
erty of the matrix diag ð∙Þ, the matrix XH can be obtained as

x̂ = XH = X∗ð ÞT = F∗ diag x̂∗ð ÞFH∗� �T = F diag x̂∗ð ÞFH ,
ð11Þ

where X∗ is the complex-conjugate of X and ð∙Þ∗ can be
defined as a conjugate symbol. In addition, XHX is repre-
sented to be a noncentral covariance matrix. From (9) and
(11), it follows that

XHX = F diag x̂∗ð ÞFHF diag x̂ð ÞFH : ð12Þ

Because the diagonal matrices are symmetric, the Her-
mite transpose is used only after complex-conjugation x̂. In
this way, the factor FHF = I can be eliminated. Moreover,
the operations on diagonal matrices are done by elements,

Initialize the KF/KCF
parameters

Read the object position in
the 1st frame

Extract the
learn model

KCF
cyclic matrix

fourier transform

Map to
CN space

Update

Y

N

�e error < threshold

Kalman filter

OutputVideo streams

Figure 2: The flow charts of our proposed tracker (CNK-KCF).
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so Equation (12) can be rewritten as

XHX = F diag x̂∗ð Þ diag x̂ð ÞFH = XHX = F diag x̂∗ ⊙ x̂ð ÞFH ,
ð13Þ

where ⊙ is the dot product of two vectors. It can be seen in
(13) that the original complex matrix operation is trans-
formed into a simple vector and dot product operation based
on the diagonalization property of the cyclic matrix. Based
on (4) and (13), the DFT of ω is obtained as

bω = diag
x̂∗

x̂∗ ⊙ x̂ + λ

� �
ŷ =

x̂∗ ⊙ ŷ
x̂∗ ⊙ x̂ + λ

, ð14Þ

where fractions represent the division element. ω can be
recovered in the spatial domain on the basis of the inverse
DFT.

In addition, a nonlinear mapping function φðxÞ is
employed to make the mapped samples linearized in the
new space. Therefore, f ðxÞ can be transformed into

f xð Þ = ωTφ xð Þ: ð15Þ

Furthermore, the kernel technique can be used to map
the input of a linear problem to a nonlinear feature space
φðxÞ. Correspondingly, the solution ω is rewritten as

ω =〠
i

αiφ xi
� �

, ð16Þ

where is xi a column vector. Therefore, the parameters of the
solution are changed from ω to α. Meanwhile, Equation (2)
can be rewritten as

min
ω

〠
i

φ Xð Þω − yð ÞT φ Xð Þω − yð Þ + λ ωk k2: ð17Þ

Besides, the dot products can be defined as φTðxÞ ⊙ φðx
′Þ = κðx, x′Þ, where κðx, x′Þ is the Gaussian kernel expressed
as

κ x, x′
	 


= exp −
1
σ2

xk k2 + x′
�� ��2 − 2F−1 x̂ ⊙ x̂′

	 
	 
� �
,

ð18Þ

where F−1 is a mapping function in the high dimensional
space. Furthermore, the dot products φTðxÞ ⊙ φðx′Þ = κðx,

x′Þ between all pairs of samples are stored in a n × n kernel
matrix K ≜ ½Kij�n×n, which can be defined as

Kij = κ xi, xj
� �

: ð19Þ

The complexity of the regression function increases with
the increase of the sample size, so that f ðXÞ can be rewritten
based on (16) as

f Xð Þ = KTα: ð20Þ

Meanwhile, Equation (17) can be rewritten as

min
ω

KTα − y
� �T

KTα − y
� �

+ λαTKα: ð21Þ

The optimal solution of (21) is given by

α = K + λIð Þ−1y: ð22Þ

If the kernel function satisfies Equation (22), K is circu-
lant for any permutation matrix M as

κ x, x′
	 


= κ Mx,Mx′
	 


: ð23Þ

In addition, if the kernels can make K circulant, Equa-
tion (22) can be diagonalized as

bα =
ŷ

k̂
xx + λ

, ð24Þ

where kxx′ is the first row of the kernel matrix K defined as

kxx′ = k x1, x1ð Þ, k x1, x2ð Þ,⋯,k x1, xnð Þ½ �: ð25Þ

Furthermore, K is a circulant matrix and can be
expressed as

K = C kxxð Þ, ð26Þ

so it further follows that

f Xð Þ = C kxxð ÞTα = F diag k̂
xx

	 

FH

	 
T
α, ð27aÞ

f̂ Xð Þ = diag k̂
xx

	 

⊙ α: ð27bÞ

2.2. KCF Tracking Algorithm Based on Color-Name (CN)
Feature. In the traditional KCF algorithm, the original pixel
and the directional gradient histogram (HOG) feature are
required, and the original pixel features are utilized to con-
vert the images into gray images. The pixel gray value is
regarded as the image feature. However, the generation pro-
cess of the HOG feature descriptor is lengthy, which results
in slow speed and poor real-time performance for MOT in
satellite videos. In addition, the HOG feature descriptor is
relatively sensitive to noise, so it is difficult to deal with
occlusion based on the gradient characteristics. Compared

C =

Figure 3: One-dimensional vector cyclic displacement.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Overview of the MOT in our experiments. There are six scenes of the satellite videos. In every scene, there is only one object. (a)
The moving airplane-1 is selected as the object; (b) the moving airplane-2 is selected as the object; (c) the moving airplane-3 is selected as the
object; (d) the moving airplane-4 is selected as the object; (e) the moving rocket is selected as the object; (f) the moving ship is selected as the
object.

Table 1: The size of the objects in satellite videos.

The object Airplane-1 Airplane-2 Airplane-3 Airplane-4 Rocket Ship

Size (pixels) 44 × 44 28 × 28 28 × 28 22 × 22 46 × 46 30 × 30

Table 2: The precision and success rate in comparison with other seven trackers for airplane-1.

Methods KCF K-KCF CN-KCF CSK STRUCK MeanShift CamShift CNK-KCF (ours)

Precision 0.929 0.888 0.907 0.943 0.889 0.621 0 0.957

Success rate 0.873 0.816 0.841 0.895 0.827 0.495 0.020 0.917

Table 3: The precision and success rate in comparison with other seven trackers for airplane-2.

Methods KCF K-KCF CN-KCF CSK STRUCK MeanShift CamShift CNK-KCF (ours)

Precision 0.732 0.284 0.939 0.955 0.272 0.932 0 0.967

Success rate 0.632 0.260 0.856 0.881 0.224 0.824 0.0003 0.902
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with the original pixel feature and HOG feature, the CN fea-
ture has better stability properties. As a result, the proposed
algorithm applies a CN statistical feature to extract the
image feature.

CN feature space is a special color space based on a
potential probability model. CN space contains 11 color
channels: yellow, red, black, blue, gray, pink, white, brown,
green, orange, and purple. In the form of mathematical
description, a color image MðxÞ represents the color pixel
value at position x, and the image is mapped to CN space
so that MðxÞ can be converted into an 11-dimensional
(11D) probability feature vector f ðxÞ. Specifically, the RGB
value is represented by an 11D color with a total probability
sum of 1, so as to realize the low-dimensional extraction of

color information. The model can be expressed as follows:

M x0ð Þ = arg max
i

i ∣ 〠
x∈Ωc x0ð Þ

ϕi xð Þ∙N x0, σð Þ, i = 1, 2,⋯, 11
( )

,

ð28Þ

where Ωc presents a region with x0 as the center and c as the
radius. Nð∙Þ is a Gaussian function. σ is the standard devia-
tion. However, in the process of tracking, since not all of use-
ful object information can be provided by the 11D color
attributes, the 11D color attributes are firstly reduced to
10D. Subsequently, the PCA is employed to reduce 10D to
2D, which can reduce calculation and accelerate the calcula-
tion speed of the algorithm.

We supposed that xkCN is the CN feature extracted from
the target region in the kth frame and x̂kCN is the Fourier
transform of xkCN . To reduce dimensions, the dimension
reduction matrix is given as

~xkCN = Bkx̂
k
CN , ð29Þ

where ~xkCN is the CN feature through the dimension-
reduction operation in the kth frame and Bk is a
dimension-reduction matrix. The reconstructed minimum
cost function as the decision function is given to obtain the

Table 4: The precision and success rate in comparison with other seven trackers for airplane-3.

Methods KCF K-KCF CN-KCF CSK STRUCK MeanShift CamShift CNK-KCF (ours)

Precision 0.963 0.952 0.959 0.958 0.977 0.220 0 0.981

Success rate 0.889 0.866 0.878 0.873 0.925 0.186 0.010 0.935

Table 5: The precision and success rate in comparison with other seven trackers for airplane-4.

Methods KCF K-KCF CN-KCF CSK STRUCK MeanShift CamShift CNK-KCF (ours)

Precision 0.691 0.848 0.973 0.973 0.970 0.936 0 0.974

Success rate 0.506 0.632 0.917 0.916 0.890 0.803 0.0003 0.918

Table 6: The precision and success rate in comparison with other seven trackers for the rocket.

Methods KCF K-KCF CN-KCF CSK STRUCK MeanShift CamShift CNK-KCF (ours)

Precision 0.962 0.950 0.980 0.889 0.960 0.050 0 0.980

Success rate 0.903 0.879 0.941 0.822 0.898 0.075 0.048 0.941

Table 7: The precision and success rate in comparison with other seven trackers for the ship.

Methods KCF K-KCF CN-KCF CSK STRUCK MeanShift CamShift CNK-KCF (ours)

Precision 0.640 0.698 0.975 0.978 0.962 0.458 0.279 0.979

Success rate 0.563 0.625 0.948 0.954 0.931 0.426 0.251 0.954

Table 8: The basic parameters of the algorithms.

Methods σ λ η

KCF 0.5 0.0001 0.02

K-KCF 0.5 0.0001 0.02

CN-KCF 0.2 0.01 0.075

CSK 0.2 0.01 0.075

STRUCK 0.2 0.01 0.075

MeanShift 0.2 0.01 0.075

CamShift 0.2 0.01 0.075

CNK-KCF (ours) 0.2 0.01 0.075
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dimension-reduction matrix Bk as

~xkCN =min
Bk

αkηDATA + 〠
k−1

i=1
αkη

i
SMOOTH

 ! !
, ð30Þ

where αk and αi are weight coefficients and ηDATA can be
used for the solution of the dimension reduction matrix Bk
in Equation (29). Meanwhile, due to the poor discriminant
performance in this process, ηiSMOOTH is introduced to
increase the robustness of Bk in (30), where the first ith

frames are added for training. The forms of ηDATA and
ηiSMOOTH are

ηDATA =
1

MN
〠
m,n

xkCN m, nð Þ − BkB
T
k x̂k m, nð Þ

��� ���2, ð31aÞ

ηiSMOOTH = 〠
s

p=1
λpi bpi − BkB

T
k b

p
i

�� ��2: ð31bÞ

In Equations (31a) and (31b), xkCN represents the CN

21 59 91

222168126

Figure 5: The results of moving airplane-1 tracking by CNK-KCF.
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Figure 6: The success and precision plots in comparison with the other seven trackers: (a) the success plot for airplane-1; (b) the precision
plot for airplane-1.
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Figure 7: The results of moving airplane-2 tracking by CNK-KCF.
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Figure 8: The success and precision plots in comparison with the other seven trackers: (a) the success plot for airplane-2; (b) the precision
plot for airplane-2.
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Figure 9: The results of moving airplane-3 tracking by CNK-KCF.
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features in the kth frame, s is the total number of basis vec-
tors, and λpi is a nonnegative weight. Accordingly, based on
Equations (31a) and (31b), Equation (30) can be rewritten as

Subsequently, based on (30), Bk obtained from (32) and
the values x̂kCN and ~xkCN can be updated as

x̂kCN = 1 − γð Þx̂k−1CN + γx̂kCN , ð33aÞ

~xkCN = Bkx̂
k
CN = Bk 1 − γð Þx̂k−1CN + γx̂kCN

h i
, ð33bÞ

where γ is a learning rate parameter.
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Figure 10: The success and precision plots in comparison with the other seven trackers: (a) the success plot for airplane-3; (b) the precision
plot for airplane-3.
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Figure 11: The results of moving airplane-4 tracking by CNK-KCF.
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2.3. Motion Estimation by Kalman Filter. The Kalman filter
is initialized before tracking, and the initial state vector con-
taining the manually labeled real coordinate value of the tar-
get center and the velocity component on the coordinate axis
is obtained. The state equation and observation equation of
the Kalman filtering algorithm are, respectively, shown as
follows:

Ut = At,t−1Ut−1 +Wt−1, ð34aÞ

Zt =HtUt +Vt , ð34bÞ
where Ut is the state vector of the system at time t. Zt is the
observation vector at time t. At,t−1 is a state transition matrix
defined as

At,t−1 =

1 0

0 1

Δt 0

0 Δt

0 0

0 0

1 0

0 1

266664
377775, ð35Þ

and Ht is an observation matrix. Let the initial state U0 = ½
x0, y0, x0′ , y0′�, where ðx0, y0Þ is the initial coordinate of the
target center point, and ðx0′ , y0′Þ is the velocity component
at x-axis and y-axis. Both process noise Wt−1 and observa-
tion noise Vt are white noise sequences with the mean value
of 0, which are uncorrelated.

The current state matrix and covariance are used to pre-
dict the speed and position of the target in the next frame
according to the recursive estimation principle. Finally, the
prediction equation is obtained:

Ut,t−1 = At,t−1Ut−1 +Wt−1, ð36aÞ

Pt,t−1 = At,t−1Pt−1A
T
t,t−1 +Qt , ð36bÞ

where Ut,t−1 is the state prediction vector, Pt,t−1 is the covari-
ance matrix, Qt is the covariance matrix of the process noise
Wt , and Δt is time interval that is usually taken as 1.

After the predicted coordinates are obtained, the target
sampling area is expanded to make the sampling area 3.5
times that of the target image, and the CN features of the
model are extracted. Samples are constructed using a cyclic
matrix. At the same time, the Fourier transform is per-
formed. The Gaussian kernel is also obtained based on the
properties of the cyclic matrix and (18).

Combined with the new actual observations and the
prior estimates obtained in the previous step, an a posteriori
estimate is obtained using the feedback method. The correc-
tion equation is given as

Pt = I − KtHtð ÞPt,t−1, ð37aÞ

Kt = Pt,t−1H
T
t HtPt,t−1ð ÞHT

t + Rt , ð37bÞ
Ut =Ut,t−1 + Kt Zt −HtUt,t−1ð Þ, ð37cÞ

Ht =
1 0 0 0

0 1 0 0

" #
, ð37dÞ

where Rt is the covariance matrix of the noise vector Vt . Kt
is the Kalman gain matrix.

In theory, the trajectory of a moving target can be
regarded as a smooth curve in a short time. However, on
the one hand, there is a certain jitter in the target trajectory
curve obtained by KCF. Besides, when there are shadows,
similar backgrounds, or other interference, it can easily lead
to the failure of MOT. The above two problems can be
improved by using KF to correct the tracking results. On
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Figure 12: The success and precision plots in comparison with the other seven trackers: (a) the success plot for airplane-4; (b) the precision
plot for airplane-4.
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Figure 13: The results of moving rocket tracking by CNK-KCF.
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Figure 14: The success and precision plots in comparison with the other seven trackers: (a) the success plot for the rocket; (b) the precision
plot for the rocket.

34 55 81

113 139 154

Figure 15: The results of moving ship tracking by CNK-KCF.
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the other hand, the reason is that KF can predict the possible
position in the next frame based on the current frame.
Hence, the search area can be relatively reduced. Corre-
spondingly, the tracking accuracy can be relatively improved
and is robust to some environmental factors such as partial
occlusion, background similarity, and rapid motion.

3. Results and Discussion

3.1. Datasets and Compared Algorithms. In this paper, the
experimental datasets are from the Jilin No. 1 satellite con-
stellation developed by the China Changchun Satellite Tech-
nology Co., Ltd. There are six videos used in our
experiments. Among the videos, six scenes are selected from
the satellite videos. Besides, the moving objects are the air-
planes in the first four videos, and in the other two videos,
the moving objects are the rocket and the ship. The number
of the objects is only one in each video. The videos show the
part of the process of aircraft flying, ship driving, and rocket
launching. Each object is manually labeled through a direc-
tional bounding box to describe the position. Figure 4 illus-
trates the overview of the moving objects in the datasets. In
addition, the sizes of the targets in the satellite videos are
shown in Table 1. Notice that the sizes of moving objects
are small, which may result in tracking failure.

Besides, there are many problems for MOT in satellite
videos, which will affect the tracking performance. As a
result, to analyze the MOT performance of the proposed
method, the authors choose seven trackers, KCF, the kerne-
lized correlation filter-based Kalman filter (K-KCF), CN-
KCF, the circulant structure of tracking-by-detection with
kernels (CSK), STRUCK, MeanShift, and CamShift, to com-
pare with the proposed CNK-KCF algorithm. In Tables 2–7,
the comparison among the above 8 trackers is made in
detail.

3.2. Details on the Setting of Parameters. The KCF, K-KCF,
CN-KCF, CSK, STRUCK, MeanShift, CamShift, and CNK-
KCF are implemented in MATLAB R2018b and NVIDIA
GeForce GXT 2080Ti GPU. Therefore, for all tested video
datasets, the basic parameters of the algorithms are shown
in Table 8, where σ is the standard deviation of the Gaussian
kernel, λ is the regularization coefficient, and η is the learn-
ing factor. Besides, the parameters of each algorithm are
consistent in all video sequences.

3.3. Evaluation Metrics. In this paper, two common evalua-
tion criteria are used, that is, precision plot and success plot
[60]. The horizontal axis of the accuracy chart is the center
location error (CLE). In a frame image, CLE is described as

CLE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xtr − xgr
� �2 + ytr − ygr

	 
2r
, ð38Þ

where CLE represents the average Euclidean distance, ðxtr ,
ytrÞ is the tracked target center position coordinates, and ð
xgr , ygrÞ is the manually marked real coordinates. When
CLE is less than this prescribed threshold, it indicates that
the tracking target is correct. That means the smaller the
prescribed CLE value is, the more accurate the MOT is.
The vertical axis of the accuracy map is the percentage of
frames in which tracking accuracy is greater than the
threshold.

On the other hand, the horizontal axis of the success rate
graph is the overlap threshold of the bounding box. The
mathematical expression of overlap rate S is as follows:

S =
Rt ∩ Ra

Rt ∪ Ra
, ð39Þ
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Figure 16: The success and precision plots in comparison with the other seven trackers: (a) the success plot for the ship; (b) the precision
plot for the ship.
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where Rt is the predicted tracking box obtained from the
algorithm, Ra is the real target box marked manually, and
S is the ratio of the overlapping area of Rt and Ra to the total
area of Rt and Ra. j∙j represents the number of pixels in the
region. The vertical axis of the success rate graph is the pro-
portion of successful frames to all image frames. In this
experiment, the area under the success rate curve (AUC) is
used as the performance evaluation criterion of the algo-
rithm. The larger the value is, the better the tracking perfor-
mance is.

3.4. Experimental Analysis on Moving Airplane Tracking.
The moving objects are the airplanes in the first four real sat-
ellite videos of this experiment, recorded as airplane-1, air-
plane-2, airplane-3, and airplane-4. Note that the objects
are small, but the scales are large. First, the results of the
moving airplane-1 tracking by CNK-KCF are shown in
Figure 5. Note that the airplanes at the airport are not
completely occluded. It is shown that for the airplane-1
whose shape is clear, CNK-KCF performs best with a pre-
cision of 0.957 and a success rate of 0.917. However, the
other seven trackers do not possess similar performance
as the CNK-KCF in the aspects of success rate and preci-
sion (in fact, in Tables 2–7, we can see the CamShift
tracking failure in the satellite videos). Figure 6 shows
the success rate and precision plots containing the eight
trackers for airplane-1.

For the airplane-2 video, Figure 7 shows the results of
the moving airplane-2 tracking. Because the environment
around the moving target is relatively complex, the K-KCF
and STRUCK have a weaker performance than the proposed
CNK-KCF, which have a precision of 0.284 and 0.260 and
success rate of 0.272 and 0.224, respectively, followed by
the KCF. However, the proposed CNK-KCF has better per-
formance with a precision of 0.902 and a success rate of
0.967. Figure 8 shows the success rate and precision plots
containing the eight trackers for airplane-2.

For the airplane-3 video, Figure 9 shows the results of
the moving airplane-3 tracking. In Table 4, the KCF, CN-
KCF, K-KCF, CSK, STRUCK, and CNK-KCF have similar
precision performance. However, the success rate of CN-
KCF, KCF, K-KCF, and CSK is less than 0.9, compared with
that of the proposed CNK-KCF. Figure 10 shows the success
rate and precision plots containing the eight trackers for air-
plane-3.

For the airplane-4 video, Figure 11 shows the results of
the moving airplane-4 tracking. In Table 5, the proposed
CNK-KCF has better results than the other 7 trackers. The
CN-KCF and CSK have slightly weaker results, followed by
STRUCK. However, the KCF and K-KCF have relatively
weaker results, only with a precision of 0.691 and 0.848
and a success rate of 0.506 and 0.632, respectively.
Figure 10 shows the success rate and precision plots contain-
ing the eight trackers for airplane-4. In all, in the experimen-
tal results, on the MOT of airplanes, it can be seen that the
designed CNK-KCF has better tracking success rate and pre-
cision, compared with the other seven algorithms. Figure 12
shows the success rate and precision plots containing the
eight trackers for airplane-4.

3.5. Experimental Analysis on Moving Rocket Tracking. The
results of moving rocket tracking are shown in Figure 13.
Because a rocket over the sea will be partly occluded in the sat-
ellite videos, it is necessary to consider the occlusion detection
in the MOT. Besides, the rocket is small in satellite videos.
Hence, the texture features and shape are not clear. In
Table 6, CNK-KCF performs best with a precision of 0.980
and a success rate of 0.941, as well as CN-KCF. KCF, K-
KCF, STRUCT, and CSK showing weaker performance in
the aspect of precision and success rate. Besides, MeanShift
fails to track the rocket. Figure 14 shows the success rate and
precision plots containing the 8 trackers for the rocket.

3.6. Experimental Analysis on Moving Ship Tracking. The
results of moving ship tracking are shown in Figure 15.
CNK-KCF performs best with a precision of 0.979 and a suc-
cess rate of 0.954. KCF and K-KCF show weaker perfor-
mance in the aspect of precision and success rate. The
performance of MeanShift and CamShift is also weaker with
a precision of 0.458 and 0.279 and a success rate of 0.426 and
0.251, respectively. Figure 16 shows the success rate and pre-
cision plots containing the 8 trackers for the ship.

In all, compared with the other 7 algorithms, the pro-
posed CNK-KCF possesses better tracking performance.

4. Conclusions

In this paper, the authors propose an effective tracker called
CNK-KCF based on the framework of the correlation filter
for the MOT in satellite videos. Based on the CN feature,
the proposed tracker can process the videos in the multi-
channel color feature. The Kalman filter is also utilized to
improve the tracking success rate and accuracy.

The improved algorithm is tested on Jilin-1 datasets
many times. Meanwhile, we compared with other seven
tracking algorithms. The experimental results are analyzed
and it has been determined that the proposed method is
robust in several complex situations such as rapid target
motion, occlusion, and similar object interference. The pro-
posed algorithm solves the problem of tracking failure when
a moving object is partially occluded. In the future work, the
above tracker will be combined with the controller rather
than working separately.
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