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The prediction of pick-up regions for online ride-hailing can reduce the number of vacant vehicles on the streets, which will
optimize the transportation efficiency of cities, reduce energy consumption and carbon emissions, and increase the income of
online ride-hailing drivers. However, traditional studies have ignored the temporal and spatial dependencies among pick-up
regions and the effects of similarity of POI attributes in different regions in modelling, making the features of the model
incomplete. To address the above problems, we propose a new multigraph aggregation spatiotemporal graph convolutional
network (MAST-GCN) model to predict pick-up regions for online ride-hailing. In this paper, we propose a graph aggregation
method to extract the spatiotemporal aspects and preference features of spatial graphs, order graphs, and POI graphs. GCN is
used on the aggregated graphs to extract spatial dimensional features from graph-structured data. The historical data are
sequentially divided into temporal granularity according to the period, and convolution operations are performed on the time
axis to obtain the features in the temporal dimension. The attention mechanism is used to assign different weights to features
with strong periodicity and strong correlation, which effectively solves the pick-up region prediction problem. We
implemented the MAST-GCN model based on the PyTorch framework, stacked with a two-layer spatiotemporal graph
convolution module, where the dimension of the graph convolution is 64. We evaluate the proposed model on two real-world
large scale ride-hailing datasets. The results show that our method provides significant improvements over state-of-the-art
baselines.

1. Introduction

As of June 2021, according to China’s online ride-hailing
regulatory information interaction platform, the scale of
China’s online ride-hailing passengers reached 397 million,
with an average daily order number of more than 21 million
units. Demand for online ride-hailing services has led to an
increase in the popularity of ride-hailing among residents.
Although online ride-hailing services have many advantages,
some concerns have emerged against the backdrop of their
increasing adoption. It was found that as more and more
passengers choose to travel by online ride-hailing, this in
turn has increased urban traffic congestion. A study of
online ride-hailing and urban congestion reveals that instead
of complementing public transportation, online ride-hailing

is diverting passenger traffic. There has been some disagree-
ment among researchers as to whether or not online ride-
hailing has added to traffic congestion in some cities [1, 2].
According to the statistical analysis of relevant researchers
[3, 4], the daily mileage of taxi or online ride-hailing is about
400 km, while the average empty rate of cabs is about 40%.
This means that almost half of the time cabs operate ineffi-
ciently, leading to more transportation resources consump-
tion and environmental pollution. Despite the fact that
cabs are mostly vacant, many citizens still struggle with the
difficulty of taking a cab. The most pressing issue that needs
to be addressed is reducing the number of miles traveled by
online ride-hailing cabs when they are vacant in the process
of looking for passengers. The usual method for taxi drivers
to identify potential passengers in a traditional taxi service is
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to drive about the city and wait at “hot spots,” such as the
gates of railway stations, hotels, restaurants, and shopping
malls. However, while there is a large data processing server
that monitors consumer requests and distributes them to
drivers for ride-hailing services, problems similar to those
experienced by normal taxi services still persist [5]. Accord-
ing to statistics from the Online ride-hailing Regulatory
Information Exchange Platform, the average waiting time
of online ride-hailing in China is about 8 minutes. Cus-
tomers’ demands may still be far away from the driver’s
location, accumulating a high distance of empty cars, result-
ing in huge fuel consumption and redundancy.

Some ride-hailing companies, such as Lyft in the U.S.
and DiDi in China, offer passengers a convenient ride-
hailing service. These ride-hailing platforms collect an exten-
sive amount of ride-hailing operation data, including pas-
sengers’ travel time, pick-up region, destination, waiting
time, and other valuable information. Mining and analyzing
the relevant valuable information in these data can provide
better services for drivers and passengers. Pick-up region
prediction can help drivers effectively improve the efficiency
of looking for passengers and reduce carbon dioxide emis-
sions and energy consumption caused by no-load cruis-
ing [6].

The development of intelligent transportation provides
unprecedented opportunities for pick-up region prediction,
but it also faces new challenges. First of all, the increasing
operation data of ride-hailing will consume a lot of storage
resources and reduce the forecasting efficiency [7]. Secondly,
many cities are constantly building or renovating roads. If
they use too much historical trajectory data, noise data will
be introduced instead, leading to the decline of performance.
Therefore, the noise data can be greatly reduced if the order
data can reflect the law of driver’s choice of passengers.
However, the passenger carrying area reached by ride-
hailing vehicles is very limited every day, which makes this
method face the problem of data sparsity [8]. In addition,
as the geographical location changes, the driver’s focus on
the passenger area will also change dynamically, such as
the number and type of POI (point of interest) in different
areas, which will also affect the order number [9].

According to the urban planning, the city is divided into
various functional regions, such as industrial region, com-
mercial region, residential region, and leisure region [5]. In
general, people return to their residential areas on week-
nights or go shopping downtown on weekends, as well as
commuting between functional regions. People engage in a
range of social activities related to these areas. According
to the study [1], most of the areas where residents ride
belong to a small area within a certain point of interest.
Therefore, we mine the data of ride-hailing orders for poten-
tial information about passengers’ pick-up regions. These
potential messages are characterized by spatial dependence,
temporal dependence, and preference of POIs.

(1) Spatial dependence: passenger travel has a certain
spatiality. According to the planning of the city, the
number of orders in the central city is more than
the number of orders in the suburbs. Residential

areas, commercial areas, and other functional areas
have more orders than industrial areas. Passengers
frequently visit specific areas and their
neighborhoods.

(2) Temporal dependence: passenger travel is temporal
in nature [10]. During the morning peak, the board-
ing area is generally near the residential area, while
the alighting area is generally near the office area.
There is temporality in passenger travel, and the
boarding area shows a cyclical change.

(3) Preference of POIs: passengers’ trips also show dif-
ferent preferences when they are in different areas
or at different times of the day [11]. For example,
passengers may frequently visit shopping-related
POIs on weekends and leisure places near residential
areas in the evening. Thus, the pattern of passengers
in functional urban areas is relatively stable com-
pared to mobility [12], as shown in Figure 1.

In summary, pick-up region prediction faces more chal-
lenges in providing prediction due to spatiotemporal dependen-
cies compared to traditional ride-hailing order prediction. In
addition, the movement of online vehicles between functional
regions involves different movement patterns of passengers
and the order data in a region contains POIs for multiple func-
tions, making it more complex to analyze.

To solve the aforementioned issues, we offer a multi-
graph aggregation spatiotemporal graph convolution net-
work model in this research. First, a multigraph
aggregation method is proposed to fuse geospatial data,
ride-hailing order data, and POI data to mine the potential
information of passenger boarding area to provide a solution
to the data sparsity problem. Second, we use a multigraph
structure to obtain data representations from various per-
spectives and adopt a spatiotemporal graph convolution
structure to simultaneously capture data in time, space,
and behavioral preferences. Finally, we capture the dynamic
spatial correlation and dynamic temporal correlation
between different regions by using the spatiotemporal atten-
tion mechanism to improve the prediction performance.

Our contributions are highlighted as follows:

(i) We present a graph convolutional network model
with multiple graph aggregation and three separate
graphs, spatial graph, order graph, and POI graph.
A method for aggregating multiple graphs is
designed so that graph convolution can be applied
simultaneously among multiple heterogeneous data

(ii) A spatiotemporal graph convolution structure is
proposed to model the temporal dependence, spatial
dependence, and spatiotemporal dependence
among three kinds of graph. A spatiotemporal
attention-based mechanism is used to selectively
obtain more valuable information to enhance the
prediction

(iii) An encoder-decoder structure with LSTM units is
constructed to extract the temporal dependence of
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the multigraph and predict the pick-up region of the
ride-hailing

(iv) Extensive experiments on the model proposed are
conducted on the Chengdu DiDi Chuxing dataset
and the Wuhan taxi dataset. On three evaluation
metrics, MSE, RMSE, and MAE, the relevant exper-
imental results reveal that our strategy outperforms
the state-of-the-art baseline

2. Related Work

Ride-hailing pick-up region prediction is one of the research
hotspots in recent years. The use of a ride-hailing pick-up
region prediction approach can help to organize vehicle
flow, increase vehicle utilization, decrease waiting time, and
alleviate traffic congestion; an overview of relevant research
work is shown in Table 1.

The development of smart transportation offers great
opportunities for employing data mining methods for
demand forecasting of cabs. Several researchers have used
spatial cluster analysis methods to address taxi pick-up and
drop-off region prediction. [13] used spatial point cluster
analysis to perform point clustering of cab pick-up and
drop-off points and obtain popular pick-up and drop-off
areas to recommend the best pick-up points to cab drivers.
However, it is difficult to quickly identify clusters with irreg-
ular shapes when the amount of data on pick-up and drop-
off points is large. Also, how to determine the similarity
coefficient of data with multiple attributes is one of the cur-
rent difficulties. [14] clustered the trajectories between the
drop-off hotspots and the pick-up hotspots to get the opti-
mal path with the most customer-seeking potential. How-
ever, overall-based trajectory clustering ignores the detailed

information of subtrajectories, while segment-based trajec-
tory clustering segments the trajectories, thus ignoring the
similarity measure in the spatiotemporal dimension.
Researchers also use time-series methods to analyze taxi tra-
jectory data; [15] propose a Taxi-RS method to search for
frequent pattern subsequences of trajectories and construct
a frequent trajectory graph model, which can calculate the
best pick-up region prediction results. [16] have used auto-
matic ARIMA models for time-series analysis to predict hot-
spot areas for passengers. However, time-series methods are
used to analyze one-dimensional data, and there are many
limitations in applying them to two-dimensional data.

In recent years, researchers have tried to solve this prob-
lem using machine learning methods. [17] have used popu-
lation genetic algorithms for the shortest path calculation to
implement a taxi dispatching model and also to recommend
the best area for taxi drivers to carry passengers. [18]
develop a taxi path optimization model and solve the taxi
path optimization model by using an improved genetic algo-
rithm. The genetic algorithm uses a heuristic search, which
is easy to parallelize, but may be premature and inefficient
when dealing with large-scale data. To forecast the demand
for taxi, [19] combined local geographical elements of taxi
demand and meteorological data into a convolutional LSTM
(ConvLSTM). The model not only establishes the same tem-
poral characteristics as the traditional LSTM model but also
depicts the local spatial features like CNN. [20] propose an
integrated model based on LSTM method, a selected pass
recurrent unit network (GRU), and an extreme gradient
advancement (XGBOOST) model, combined with point of
interest (POI) data to predict taxi demand. The above
methods can capture the nonlinear characteristics of time-
series data. Nevertheless, it is difficult for time-series predic-
tion which is for a single node to describe the interactions

(a) Chengdu POI (b) Wuhan POI

Figure 1: POI information for Chengdu and Wuhan.
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between nodes. Meanwhile, recurrent networks for sequence
learning require iterative training, which introduces a grad-
ual accumulation of errors.

Due to the heterogeneity, spatial and temporal charac-
teristics of traffic data, many methods, and models based
on graph convolutional networks have emerged to achieve
the extraction of spatial and temporal features of traffic data.
[21] studied the operation mode of urban cabs, divided the
road network into grids, and realized the traffic flow predic-
tion while using graph convolution to achieve taxi demand
prediction. [22] constructed various graph structure-based
representations using adjacent neighborhoods and similar
functional areas as nodes, based on which they used multiple
groups of GCNs for spatial correlation modeling to achieve
demand forecasting for online ride-hailing. [23] propose a
new deep learning model ST-ED-RMGC to construct multi-
ple graphs for OD (Origin Destination) prediction of cabs by
spatial distance as well as semantic correlation and use
RMGC network to decode the compressed vectors into OD
graphs and finally predict the future OD demand. Some
researchers have introduced attention mechanisms into
GCNs. [24] proposed a multirange attention mechanism
for two-component graph convolution. The model first con-
structs the node graph and edge graph separately and
designs a two-layer graph convolution model for modelling
edge-node interactions, considers the influence of surround-
ing nodes on the target table nodes, and proposes the use of
a multi-range attention mechanism to aggregate information
of neighboring nodes to dynamically understand the impor-
tance of different aggregation ranges. GCN has become a
fundamental model for traffic prediction research and a
benchmark method for experiments. Since the traffic data
itself is time-series data, how to mine the time-series features
and fuse them with spatial features for prediction has
become the focus of improvement of the models used for
traffic prediction. The above GCN model relies on the eigen-
values of the Laplacian matrix, which makes it difficult to
abstract the convolution operation from the whole static
graph structure. At the same time, the information carried
by a single graph is increasingly difficult to meet the needs
of traffic prediction. Therefore, the traffic prediction prob-

lem relies on well-defined graph structure information to
efficiently extract spatial and temporal features and model
them more finely.

As mentioned in the review, the pick-up region is
affected by the space, time, and POI of that region. There-
fore, we construct three heterogeneous graphs based on his-
torical data and propose a graph aggregation method to fuse
the temporal and spatial features as well as preference fea-
tures of the three graph structures. GCN is used on the
aggregated graphs to extract spatial dimensional features
from the graph structure data. The historical data are
sequentially divided into temporal granularity based on peri-
odicity, and convolution operations are performed on the
time axis to obtain the features in temporal dimension.
The pick-up region prediction problem is effectively solved
by using the spatiotemporal attention mechanism to assign
different weights to features with strong periodicity and
strong correlation.

3. Definitions and Preliminaries

In this section, we first provide important definitions of
geospatial graphs, ride-hailing order graphs, and POI
graphs. This paper adopts the classic processing method in
the field of transportation [25] and divides urban regions
to be processed into multiple grids on average, dividing rel-
evant study regions into i × j grids equally. The spatial area
on the ith row and jth column of the grid region is denoted
as Rði, jÞ in the paper. With these region grids, we can trans-
form the geospatial data into a region grid matrix. The grid
matrix is the most suitable data input format for graph con-
volutional network models. In this manner, the total number
of ride-hailing orders in each small grid area is studied.
Then, each grid is regarded as a vertex of the graph, which
is used to construct the graph model [26].

Definition 1. In spatial graph, we define the regional grids as
an undirected graph Gs = ðVs, Es, AsÞ, where Vs is the centre
point of each grid region, E is the distance between the cen-
tre points of each grid region, and the centre point of each
grid is regarded as the geographic location centre of the grid.

Table 1: Overview of related work to pick-up region prediction.

Method Technology Related model

Traditional methods

Spatial cluster methods
Point cluster [13]

Trajectory cluster [14]

Time series methods
Taxi-RS [15]

ARIMA [16]

Machine learning methods

Genetic algorithm
PGA [17]

HGA [18]

LSTM
ConvLSTM [19]

LSTM and GRU [20]

Deep learning methods
GCN

GCN [21, 22]

ST-ED-RMGC [23]

Attention mechanism MRA [24]
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The distance from the centre is regarded as the edge weight
of the geographic graph structure. A is the spatial adjacency
matrix representing the distance dependence between nodes
[27]. The calculation function of the centre distance between
the two nodes is distð·Þ. The closer the distance is, the
smaller the weight is. The online ride-hailing demand
between the two will also be similar to a certain extent.
The geographical map range set can be defined as

ψi = rj dist ri, rj
� �

≤DÞ��� �
, ð1Þ

where D is the settable threshold.

Definition 2. In order graph, the number of ride-hailing
orders in a region is a key factor affecting the prediction of
passenger pick-up regions. Therefore, based on the similarity
of regional ride-hailing demands, we constructed an order
graph of spatial regions to represent the correlation between
regions and called it an order graph. We define the order
graph as an undirected graph GðtÞ

o = ðVo, EðtÞ
o , AðtÞ

o Þ at time
interval t. Vo is the set of nodes, and EðtÞ

o is the set of edges
[28]. The graph’s nodes are the region grids, and the graph’s
edges represent the links between them. The spatial adja-
cency matrix AoðtÞ represents the reliance between nodes.
If an order is placed within the range of regional grid i, it will
be recorded as a visit to grid i by ride-hailing. In this study,
the number of passengers in the region is used to approxi-
mate the ride-hailing pick-up region, and the Dynamic Time
Warping (DTW) algorithm [29] is used to computational
similarity φij of the demand time-slot between grid i and
grid j, as shown in Equation (2). As long as there is a
demand for online ride-hailing between any two vertices,
they are related. At the same time, the order graph will be
affected by the time factor, because the order information
between the two regions is often different in different time
periods, so the changes of the order graph at different time
should be taken into account in the modeling. We divide
the orders of the day into 48 segments equal in time. The
grid attribute values are updated once every 0.5 hours to
adapt to the preference changes of ride-hailing in different
time periods.

φij = DTW i, jð Þ: ð2Þ

At this point, the adjacency matrix Ao is calculated by

Ao =
0, φij > φ,

1, φij ≤ φ,

(
ð3Þ

where φ is the hyperparameter, indicating the similarity
threshold of whether the two regions are related.

Definition 3 POI Graph. In this study, POI in some areas of
Chengdu was climbed and classified into activity types of
POIs in each grid. The activity attributes of the grid were
consistent with those of POIs with the largest number of
same attributes [30]. We define POI graph denoted as Gp

= ðVp, Ep, ApÞ; the DTW algorithm was used to quantify
the similarity between grids with similar POI activity attri-
butes, as show in

Pi,j =
exp −DTW Oi,Oj

� �� �
,  i ≠ j,

1,  i ≠ j,

(
ð4Þ

where Oi,Oj ∈ℝ1×T represents the ride-hailing orders vector
of the ith grid and T is the length of the vector, determined
by the selected control time scale. After the matrix P is
obtained, the weight of POI activity attribute graph can be
obtained by normalization.

4. Proposed Method

4.1. The Framework of the Proposed Method. In this section,
we formalize the learning problem of spatiotemporal predic-
tion of ride-hailing pick-up region and describe how to
model spatiotemporal correlation using the proposed multi-
graph aggregation spatiotemporal graph convolution net-
work (MAST-GCN). Figure 2 shows the system
architecture which consists of four main components: the
graph construction block, the GCN block, the LSTM block,
and the prediction block. In the graph construction module,
we divide the spatial area by a fixed-size grid, map the POI
information and ride-hailing order information to the corre-
sponding grid, and then aggregate the relevant information
by the grid to form the aggregation graph. The GCN module
uses the above aggregated multigraph to make the input of
the graph convolutional network can have one graph feature
and multigraph structure feature description matrices, thus
fusing multiple spatial relationship matrices (graph structure
feature description matrix) and temporal feature (graph fea-
ture). The time-series data with spatial features are used as
the input to the LSTM module by a two-layer graph convo-
lution operation. The encoded LSTM in the LSTM module is
used to capture the position vector sequence, and the
decoded LSTM is used to predict the pick-up point vector
sequence. The spatiotemporal attention mechanism between
encoding and decoding is to dynamically capture the depen-
dency between the location to be predicted and the sequence
of location vectors. The output of the model is a recom-
mended sequence of ride-hailing pick-up regions.

4.2. Multigraph Aggregation. If each graph model is trained
separately, the complexity of the algorithm will be greatly
improved. In order to avoid this shortcoming, this study
improves the traditional aggregation function and designs
a graph aggregator by comprehensively considering the dif-
ferent influence degrees of the three graph models on the
prediction results [21], as shown in Figure 3. The aggrega-
tion mode of spatial graph is shown in

Sit = δ Ws · f it + 〠
r j∈ψi

dist2 ri, rj
� �

∑ dist2 ri, rj
� � !

f jt

 !
, ð5Þ

where sit represents the spatial graph embedding vector at
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time t, Ws is the trainable weight matrix, and f it and f jt are
characteristics of ri and r j before spatial aggregation opera-
tion, respectively. Similarly, the features of order graph can
be aggregated as shown in

Oi
t = δ WO · f it+〠

num2 rið Þ
∑ num2 r j

� � !
f jt

 !
, ð6Þ

where numðmiÞ represents the number of orders in region ri,
WO is the trainable weight matrix, Oi

t represents the order

graph embedding vector at time t, and f it and f jt are charac-
teristics of ri and rj before the number of order aggregation
operation, respectively. The features of POI graph can be
aggregated as shown in

Pi
t = δ Wp · f it+〠

sim2 ri, r j
� �

∑ sim2 ri, r j
� � !

f jt

 !
, ð7Þ

where simðri, rjÞ represents POI activity attribute similarity

of ri and r j, P
i
t represents the POI graph embedding vector

at time t, Wp is the trainable weight matrix, and f it and f jt
are characteristics of ri and rj before the activity attribute
of POI aggregation operation, respectively.

We embed vectors Sit , O
i
t , and Pi

t carry spatial informa-
tion, order quantity of grid, and POI attribute information,
respectively. Different neighborhood contexts and spatial
features are used to learn the knowledge simultaneously.
The final representation F i

t of grid Gi at time t is calculated
in the last stage of grid embedding by merging grid embed-
ding vectors from three aspects as shown in

F i
t = Sit ,O

i
t , P

i
t

� �
, ð8Þ

where ½·� respresents the concatenation of three vectors.

4.3. Graph Convolution Network. After graph aggregation
construction, we adopt the GCN module to capture the spa-
tiotemporal dependencies. GCN uses a neighborhood aggre-
gation scheme to compute a new feature vector for each
node by iteratively aggregating and transforming the feature

POI information POI graph

Agg

Order information

Spatial
information Spatial graph

Order graph

LSTM+attention block

Output

Attention

Temporal attention

Spatial attention

LSTM

Hidden layer Hidden layer

GCN blockMulti-graph aggregation block

Figure 2: The framework of the proposed multigraph aggregation spatiotemporal graph convolutional network model (MAST-GCN).

Spatial data

Order data

POI data

Order graph

POI graph

Spatial graph

T
T

t

Aggregation graph

Agg

Figure 3: Illustration of graph aggregation of spatial, order, and POI graphs.
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vectors of its neighboring nodes. The aggregate operation of
GCN performs a traversal of the neighboring nodes for each
node, aggregating the feature vectors of the neighboring
nodes. According to [25], the graph convolution operation
method based on Chebyshev polynomial approximation is
defined as follows:

F ′ = σ 〠
n−1

i=0
αjL

jF

 !
, ð9Þ

where F is the input feature, ðα0, α1,⋯αn−1Þ is learnable
coefficients, Lj is the i-th power graph Laplacian matrix,
and σð·Þ denotes the activation function. The graph Lapla-
cian matrix is calculated as follows:

L = I −D−1/2AD−1/2, ð10Þ

where I is the identity matrix, D denotes the degree matrix of
the graph, and A is the adjacency matrix of the graph.

Based on the GCN theory proposed by the [31], the
equation of GCN layer can be expressed as

F ′ = σ W ~D
−1/2~A~D

−1/2
F

	 

, ð11Þ

where ~A = A + I is expressed as the renormalized matrix, ~D

=∑i
~Aij.

Based on the spatiotemporal graph structure, the model
can obtain the first-order neighbor information through
the graph structure during a graph convolution operation,
that is, temporal dependence and spatial dependence. In
the second convolution operation, the model can obtain
the information of the second-order neighbor, that is, the
spatiotemporal dependence.

4.4. LSTM Module. Although the spatiotemporal graph
convolution network has captured the spatiotemporal rela-
tion, the time-series information cannot be captured
because the graph convolution will ignore the sequence
of nodes before and after capturing the time information.
Therefore, the output of the spatiotemporal graph convo-
lutional network is input into LSTM to capture the
sequence information between time nodes, as shown in
Figure 4.

The LSTM model has proved to be very effective in pro-
cessing time-series data with long temporal dependent fea-
tures. In a spatiotemporal graph convolution network, each
grid Gi has a feature vector of time t, such as fvi1, vi2,⋯, vit
g. Taking a time-series fvitgTt=1 as input, LSTM encodes

fvitgTt=1 into hidden states fhitg
T
t=1 via h

i
t = f ðvit , hit−1Þ; the for-

mula is shown as follows:

f it = σ Wxf v
i
t +Whf h

i
t−1 + bf

	 

,

iit = σ Wxiv
i
t +Whih

i
t−1 + bi

	 

,

oit = σ Wxov
i
t +Whoh

i
t−1 + bo

	 

,

cit = f t ⊙ cit−1 + it ⊙ tanh Wxcv
i
t +Whch

i
t−1 + bc

	 

,

hit = oit ⊙ tanh cit
� �

,

ð12Þ

where f it ,i
i
t and oit , respectively, forgotten gate, update gate,

and output gate and cit and hit , respectively, are cell memory
state vector and hidden state vector. In these equations, σ is
the sigmoid function, ⊙ is element wise product, and vit is
the input vector.W and b is the weight and bias in the train-
ing process. We simplify the LSTM representations in

Tanh

tanh

GCN

Loss

Attention

Output

𝜎𝜎𝜎

Ct−1

ht−1

Ct−1
nH

nH

Figure 4: The architecture of LSTM and Attention Block.
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Equation (13).

hit = LSTM vit , h
i
t−1, c

i
t−1

	 

: ð13Þ

4.5. Spatiotemporal Attention Mechanism. The problem of
predicting pick-up regions lies in only considering the number
of orders in the neighboring grid or in the current time win-
dow, which is insufficient. Regions farther away from the grid
regions and the orders in the period before and after the grid
regions should receive relatively more or less receive attention.
We take into consideration the uneven characteristics of pas-
senger travel activity levels in different periods and the mobil-
ity characteristics in different POIs and pay more attention to
the correlation between key spatial regions and POI regions
and between key periods and prediction regions. Although
the spatiotemporal features are obtained by the GCN module,
the spatial regions have been changing dynamically with time,
so the attention weights for each node are different at different
time points. At each moment, global attention should be paid
to each node instead of a few nodes individually. Therefore,
the dynamic spatial correlation between different regions is
captured by using the spatial attention mechanism and the
dynamic temporal correlation between different times is cap-
tured by using the temporal attention mechanism to improve
the prediction performance.

We used an attention mechanism to modify the initial
LSTM to use the incoming spatiotemporal information.
First, for a single time step, spatial weights are dynamically
applied to the input features. Then, at each time step, the
temporal attention weights are allocated to the hidden states
by making full use of the hidden states at each LSTM phase.
The input and output of the LSTM cells are affected by spa-
tial and temporal attention weights. We can dynamically
alter the attention weights while enhancing the LSTM cell’s
performance with the help of the spatial and temporal atten-
tion modules.

We denote the input of the lth layer as Hðl−1Þ, where the
hidden state of vertex vi at time step t j is denoted as hl−1vi,t j.

The outputs of the temporal attention mechanism in the
lth layer are denoted as Hl

s and Hl
t , respectively, where the

hidden state of vertex vi at time step t j is denoted as hslvi,t j
and htlvi,t j, respectively. After gated fusion, we obtain the out-

put HðlÞ of the lth layer, as shown in Figure 5(a).

4.5.1. Spatial Attention Mechanism. In the spatial dimension,
there are significant differences in the interactions between
different regions. For example, most people leave home in
the morning to go to work, indicating a clear influence rela-
tionship between residential and industrial areas. However,
the influence relationship between certain unrelated places
is relatively weak. So, passengers’ pick-up regions affect each
other and have a strong dynamic. Therefore, we use spatial
attention to dynamically assign different weights to different
vertices and adaptively obtain the spatial association rela-
tions of nodes in the spatial dimension, as shown in
Figure 5(b). The spatial attention mechanism assigns differ-
ent weights to the spatial features of nodes at time t. Then,
the attention weights of each node relative to all nodes are
fused through the full connection layer. The formula for cal-
culating spatial attention is as follows:

Ht
sa = ReLU 〠

N

i=1
Stih

t
i

 !
,

Sti =Vs tanh Ws′ ht−1 ; ct−1½ � +Wsht + bsð Þ,

Si,j′ =
exp Si,j

� �
∑N

j=1 exp Si,j
� � ,

ð14Þ

where Ht
sa represents the aggregation of spatial information

of the node at time t, Sti is the weight of the hidden state vec-
tor of nodes, and ½ht−1 ; ct−1� is the hidden state and cell state
of the previous unit at time t − 1. The value of an element
Si,j ′ in Sti semantically represents the correlation strength
between node i and node j. where Vs, bs∈ℝm×1, Ws′ ∈
ℝm×2n, and Ws ∈ℝm×n are learnable parameters.

1−
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Figure 5: Spatiotemporal attention mechanism.
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4.5.2. Temporal Attention Mechanism. During the prediction
process, we find that some destinations are highly correlated
during certain periods of time. Most of the destinations of
online ride-hailing during the morning rush hour (7:00-
9:00) are companies, schools, hospitals, and so on. In the
evening peak (16:00-19:00), there are more residential clus-
ters. The temporal attention mechanism learns the long
time-dependent characteristics of historical data and assigns

higher weights to more relevant destinations over a particu-
lar time period. Therefore, we can grasp the underlying
movement patterns by analyzing destination weights and
making the attention model easier to interpret. As shown
in Figure 5(b), temporal attention is used to adaptively cap-
ture dynamic temporal correlations between different time
periods in order to best manage temporal information with
periodicity. Assign various priority weights to each hidden

Table 2: Comparison if prediction performances in different models.

Dataset Methods
Weekday Weekend

RMSE MAE RMSE MAE

Chengdu

Traditional models
HA 53.25 32.18 54.67 33.58

ARIMA 41.72 29.86 43.32 30.67

Deep models

LSTM 40.81 26.35 42.73 28.49

GRU 36.56 25.22 37.55 26.62

MGCN 32.39 23.21 34.68 24.94

STGCN 29.82 21.24 30.99 22.57

Our model MAST-GCN 20.57 13.29 21.82 14.12

Wuhan

Traditional models
HA 55.49 33.55 56.72 34.25

ARIMA 43.89 31.87 45.76 32.36

Deep models

LSTM 42.13 27.57 45.18 29.77

GRU 37.52 26.47 38.37 28.17

MGCN 33.89 24.31 34.94 25.39

STGCN 30.76 21.52 31.8 23.71

Our model MAST-GCN 22.49 14.68 23.68 15.31
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Figure 6: Comparison of average performance of different methods.
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state on an adaptive basis. The following is how we compute
the temporal attention of each hidden state at the output:

Ht
st = ReLU 〠

T

t=1
Et
ih

t
i

 !
,

Et
i =Ve tanh We′ ht−1 ; ct−1½ � +Weht + beð Þ,

Ei,j′ =
exp Ei,j

� �
∑T

j=1 exp Ei,j
� � ,

ð15Þ

where Ht
st represents temporal attention weights are jointly

determined by historical states, Et
i is the weight of the hidden

state vector of nodes, and ½ht−1 ; ct−1� is the hidden state and
cell state of the previous unit at time t − 1. The value of an
element Ei,j ′ in Et

i semantically represents the correlation
strength between time i and time j. where Ve, be∈ℝm×1,
We′ ∈ℝm×2n, and We ∈ℝm×n are learnable parameters.

4.5.3. Gated Fusion. We use a gated fusion unit to fuse spa-
tiotemporal features by adaptively controlling the effect of
spatiotemporal attention at each time slot [32]. As shown
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Figure 7: Time-based performance: (a) performance across different hours of the day and (b) performance across different days of the week.
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in Figure 5(a), the hidden features are fused by fusion gate z,
including spatial features hsa and temporal features hst .

Hfusion = z⨀Hsa + 1 − zð Þ⨀Hst , ð16Þ

z = σ HsaWz,1 +HstWz,2 + bzð Þ, ð17Þ
where ⨀ indicates the element-wise product; σð·Þ indicates
the sigmoid activation; Wz,1, Wz,2, and bz are parameters
that can be learned; and z is the fusion gate which is calcu-
lated by Equation (17).

5. Experiments

5.1. Datasets and Preprocessing. Multigraph data construc-
tion is performed on the data of two real datasets according
to Definitions 1, 2, and 3 in Section 3.

5.1.1. Spatial Data. In this paper, the selected datasets are
map data of Chengdu and Wuhan cities in China. The study
area was set as a rectangular range region based on the dis-
tribution of the urban areas and the origin and destination
of the ride-hailing trips. The longitude range [104.032,
104.132] and latitude range [30.615, 30.685] are for the
Chengdu Urban areas. The longitude range [114.146,
114.475] and latitude range [30.474, 30.737] are for the
Wuhan Urban areas. We determined the area size based
on the size of the downtown neighborhoods so that the
pick-up and drop-off in each area is related to the nearby
POIs. According to Definition 1, the Chengdu Urban areas
are divided into 40 ∗ 40 grids and the Wuhan Urban areas
are divided into 50 ∗ 50 grids so that the boarding and
alighting in each area are related to the nearby POIs [33].

5.1.2. Ride-Hailing Order Data. The ride-hailing order
records use the 2016 Chengdu China dataset and the Wuhan
taxi dataset released by Didi Chuxing. There are about
200,000 order records in the Chengdu dataset. Each order
record contains seven fields: order ID, order start time, order
stop time, pick-up point longitude and latitude, and drop-off
point longitude and latitude. Wuhan online taxi dataset con-
tains a dataset of more than 1200 taxis from June 1, 2018, to
December 31, 2018. The dataset contains approximately 2.9
million records. The dataset includes taxi ID, location time,
longitude, latitude, direction, speed, empty/heavy vehicles,
and other information. According to Definition 2, passenger

demand data for a region grid within a period of time can be
obtained by summing up order requests for that region
within that period of time.

5.1.3. POI Data.We used POI data obtained from the Gaode
API, a total of 351,216 POIs items in the entire study region.
Each POI data retrieved contains five fields: POI name, lon-
gitude, latitude, category, and address. The pick-up regions
are highly correlated with the category, quantity and distri-
bution of nearby POIs, and the size of all grids is consistent,
so the density of POIs is classified according to the number
of POIs [34]. According to the POI classification informa-
tion in the grid, the POI graph is generated through Defini-
tion 3.

5.2. Experimental Setting. The training and test sets for the
prediction modelling were partitioned into two sets: the first
23 days of data as the training dataset and the last 7 days of
data as the test dataset.

The development computer was equipped with AMD
Ryzen 9 3900X, 128G RAM and Nvidia 3090 graphics card.
We implemented the MAST-GCN model based on the
PyTorch framework. By referring to the experimental
parameter settings in [22, 25], we set the ranges of the rele-
vant experimental parameters. The dimensional reference
values of the graph convolution module (16, 32, 64), the his-
torical time window reference values (30min, 60min,
90min), the learning rate reference values (0.1, 0.01, 0.001,
0.0001), the dropout reference values (0.1, 0.2, 0.3, 0.4,
0.5), the batch size reference values (16, 32, 64, 128), and
optimization are chosen from SGD and Adam. We find
the optimal parameters in the validation by implementing
a grid search strategy. It is determined that the experimental
model consists of a two-layer graph convolution module
(dimension of the graph convolution is 64) and a three-
layer LSTM (dimension of the LSTM is 128) stacked. The
values of the relevant hyperparameters are set as follows:
Dropout is set to 0.5, learning rate is set to 0.001, batch size
is 64, and Adam is chosen as the optimizer of the model. 60
minutes is used as the historical time window for all tests;
i.e., 12 observed data points are used to predict the pick-up
region for the next 15, 30, and 60 minutes. In our experi-
ments, we adopt the Mean Square Error (MSE), Rooted
Mean Square Error (RMSE), and Mean Absolute Error
(MAE) as the metrics to evaluate the performance of all
methods.

MSE is the loss function we used, and we train our
model by minimizing it as follows:

LOSS =MSE = 1
n
〠
n

i=1
yi − byið Þ2, ð18Þ

where n is the sum of all samples, byi represents predicted
value, and yi represents ground truth.

Finally, RMSE and MAE were used as model error anal-
ysis metrics to evaluate the prediction performance of each

Table 3: Experiment results for ablation analysis.

Dataset Method RMSE MAE

Chengdu

MAST-GCN 21.32 15.26

MAST-GCN-V1 23.32 16.04

MAST-GCN-V2 24.12 16.31

MAST-GCN-V3 22.73 15.99

Wuhan

MAST-GCN 23.65 16.31

MAST-GCN-V1 24.41 17.21

MAST-GCN-V2 25.96 17.44

MAST-GCN-V3 25.09 16.92
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model. The error metrics were calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yi − byið Þ2

s
,

MAE =
1
n
〠
n

i=1
yi − byij j,

ð19Þ

where n is the sum of all samples, byi represents predicted
value, and yi represents ground truth.

5.3. Baseline Methods. To further demonstrate that the
MAST-GCN model presented in this paper is effective, we
compare it with the following models:

(i) HA (Historical average method): we used the aver-
age of the last 100 time slices pick-up regions to pre-
dict the value of the next time value.

(ii) ARIMA (Autoregressive Integrated Moving Aver-
age) [16]: we used this method for time-series anal-
ysis to predict passenger pick-up region; we also use
it as the prediction baseline of this paper.

(iii) LSTM (Long-Short-Term Memory) [35]: because
LSTM has more advantages in the learning of long
sequences, it is natural to consider using it for the
prediction task of this paper and as a comparison.

(iv) GRU (Gated Recurrent Unit network) [20]: GRU
can be regarded as a variant of LSTM in order to
solve the problem of gradient disappearance in stan-
dard RNN.

(v) MGCN (Multigraph Convolution Network) [24]:
the Euclidean correlations between adjacent regions
of the MGCN model space are explicitly modeled
using multigraph convolution. This model enhances
the ability of the recursive neural network to predict
future value through a context attention
mechanism.

(vi) STGCN (spatiotemporal graph convolutional net-
work) [25]: STGCN proposes a new GCN structure
composed of spatiotemporal blocks for traffic
prediction.

5.4. Comparison with Baselines. Table 2 and Figure 6 show
the results of MAST-GCN and other baseline models based
on these two datasets. On different datasets, the MAST-
GCN model outperforms the other models in both metrics,
demonstrating the effectiveness of our model in the ride-
area prediction task. Based on Table 2, we summarize three
conclusions as follows:

(1) The relatively low prediction accuracy of traditional
statistical forecasting methods such as HA and
ARIMA indicates that traditional statistical methods
are not well suited to the task of spatiotemporal pre-
diction in non-Euclidean space

(2) Machine learning-based LSTM and GRU models
have better prediction accuracy than traditional sta-
tistical models. For example, compared with the
HA model for the Chengdu and Wuhan datasets,
the GRU model reduces the RMSE by about 16.9%
and 17.97% on weekdays and by about 17.12% and
18.35% on weekends, respectively. The performance
of LSTM is slightly lower than that of GRU using
temporal-dependent

(3) Among the various baselines, the MAST-GCN
model performs best by capturing the spatial charac-
teristics, temporal dependence, and behavioral pref-
erences of the spatial, order, and POI maps
simultaneously. For example, compared with the
MGCN model based on the Chengdu and Wuhan
datasets, there is a reduction of 11.82% and 11.4%
in RMSE for weekdays and 12.86% and 11.26% for
weekends, respectively. The lower prediction accu-
racy of the MGCN model is mainly due to the fact
that it models only spatial correlation and ignores
important temporal features. Compared with the
STGCN model, the MAST-GCN model performs
about 9.25% and 8.27% reduction in RMSE for
weekdays and 9.17% and 8.12% reduction in RMSE
for weekends in Chengdu and Wuhan datasets,
respectively. The experimental results show that
MAST-GCN can capture multigraph hidden spatial
correlation, temporal correlation, and behavioural
preferences and improve the prediction performance

Figure 6 shows the RMSE and MAE values of the seven
different methods for the test data of 7-10, 11-14, and 16-
19 on weekdays and weekends on both Chengdu and
Wuhan datasets. From the figure, it seems that our proposed
MAST-GCN method has the best results in both RMSE and
MAE conditions. Specifically, the LSTM and GRU models
have better performance compared to the traditional
methods of HA and ARIMA. The graph convolutional net-
work model using fused geographic information outper-
forms the LSTM and GRU models. Further spatiotemporal
dependencies are taken into account by STGCN and MGCN
deep learning methods. Compared with the above two
methods, the MAST-GCN method proposed in this paper
achieves better performance by considering temporal and
spatial information in addition to the POI information. Spe-
cifically, MGCN only embeds static graphs into vectors
when extracting global spatial features, which has limited
impact on spatial modeling. The STGCN model models
non-Euclidean correlations between regions, which proves
its rationality and necessity. However, due to the use of tra-
ditional GCNs, they only correlate different neighboring
regions without considering the importance of regularity in
time and space. The MAST-GCN model proposed in this
paper considers the temporality and spatiality of online
ride-hailing trips and the regularity of passenger trips, pro-
poses a spatial graph modeling approach with multiple
graph aggregation, and uses a graph convolutional network
model to deal with spatiotemporal dependencies and finally
uses a spatiotemporal attention mechanism to assign higher
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weights to temporality and preferences, thus achieving better
performance.

5.5. Time-Based Performance. In addition, we also evaluate
the prediction performance for each hour of the day and
each day of the week, as shown in Figures 7(a) and 7(b).
Due to space limitation, only the RMSE of the Chengdu
dataset is demonstrated here. In Figure 7(a), we can see that
the maximum error of these methods occurs in the early
morning hours when the demand for ride-hailing is small
and passengers are scattered in the boarding locations,
which means that the prediction in the pick-up region is
more difficult. In the morning and evening peak hours, the
demand for ride-hailing is high and the pick-up locations
of passengers are mostly in residential areas. In
Figure 7(b), we can observe that the error on weekends is
higher than that on weekdays, almost 10% worse than that
on weekdays. This means that it is more difficult to predict
the pick-up region of ride-hailing on weekends. This may
be because most people have more fixed places in their
pick-up region on weekdays, such as in residential areas
and schools, while they have more choices on weekends,
resulting in a more dispersed pick-up region, such as com-
mercial areas or short trips to other places.

5.6. Ablation Analysis. In this section, we will conduct fur-
ther MAST-GCN ablation experiments. The experiments
are performed by reducing the relevant modules for compar-
ative analysis of MAST-GCN to measure the performance
gain of different modules in MAST-GCN. For this purpose,
three comparative versions of MAST-GCN were
constructed:

(1) Remove the graph aggregation module and use only
the single graph model of the order graph, and
remove spatial dependencies and preferences

(2) Remove the graph convolution module, and use
LSTM for pick-up region prediction

(3) Remove the spatiotemporal attention module to
remove the focus spatial and temporal weights

As shown in Table 3, firstly, we can observe the perfor-
mance of MAST-GCN-V1 after removing the graph aggre-
gation module, which only uses the order graph for graph
convolution operation, the performance of the model has a
certain degree of degradation, and we can find that both spa-
tial information and POI information are important in the
pick-up region prediction. Secondly, MAST-GCN-V2
removes the GCN module and the performance decreases
the most, so we can find that GCN has some advantages in
processing spatiotemporal data. Finally, MAST-GCN-V2
removes the spatiotemporal attention module and elimi-
nates the weights given to the focused spatiotemporal data
and POI locations and the performance also decreases, indi-
cating that passengers’ travel is somewhat spatiotemporally
dependent and preferential. The ablation experiment illus-
trates that each of the submodules in the model has a posi-

tive effect on the improvement of the prediction
performance.

6. Conclusion

In this paper, we propose a new multigraph aggregation spa-
tiotemporal graph convolutional network model to predict
the pick-up region in online ride-hailing. We design three
heterogeneous graphs to model the prediction of online
ride-hailing pick-up region: spatial graph, order graph and
POI graph. We propose a graph aggregation method to
extract the spatiotemporal features and preference features
of the three graphs. The network treats the regional grid as
the vertices of the graph and combines geospatial data,
online ride-hailing order data, and POI data to build a spa-
tial multigraph model. After graph aggregation construction,
we adopt the GCN module to capture the spatiotemporal
dependencies. We introduce an attention mechanism and
assign different weights to different nodes so that the pick-
up region of online ride-hailing can be effectively predicted.
The experiment on ride-hailing pick-up region prediction
shows that our proposed model achieved significantly better
results than the state-of-the-art baselines.

Although we have used a variety of heterogeneous data
for modeling, the online ride-hailing pick-up region predic-
tion is also influenced by many external factors. Research
shows that the number of online ride-hailing orders is
affected by such special factors such as emergencies, holi-
days, and unfavorable weather. In the future, we will add
more external factors to the input features of the online
ride-hailing pick-up region prediction model to adapt the
prediction model to more scenarios and further explore the
spatiotemporal dependence of multisource data. What is
more, although the model obtains better results on the rele-
vant dataset, there are still other important parameters to be
considered in future work, such as the size of the grid divi-
sion, the classification of POI categories, and the spatial geo-
graphic information features. We introduce geographic laws
in the model to further optimize the model and make it
more interpretable.
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