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Aiming at the problem of low global convergence and local convergence rate of trust region interior points of bounded variable
constrained nonlinear equations, a trust region interior point algorithm for bounded variable constrained nonlinear equations
under edge calculation is designed. By constructing the basic function form of nonlinear equations constrained by bounded
variables, the boundary of nonlinear equations is determined by Gauss Newton iterative process to ensure the global
convergence of changes; solve the original objective function, analyze the trust region subproblem of the unconstrained
optimization problem, and generate an acceptable region. The region is generated through two-dimensional example
interpretation. The interior points in the acceptable region are determined by the primal dual interior point method, and the
interior points in the acceptable region are optimized. With the help of edge calculation, the trust region interior point
programming model of bounded variable constrained nonlinear equations is designed to realize the algorithm design. The
experimental results show that the designed algorithm can improve the trust region interior point global convergence and local
convergence rate of nonlinear equations with bounded variable constraints.

1. Introduction

Nonlinear programming is an important research branch of
optimization theory and method, and it is widely used in engi-
neering practice, management decision-making, and many
other fields. Nonlinear optimization mainly includes uncon-
strained optimization, convex optimization, Lagrange multi-
plier theory and algorithm, and duality theory and method
and studies gradient method, Gauss Newton method, conju-
gate direction method, and then feasible direction method,
gradient projection method, conditional gradient method,
coordinate block descent method, and other algorithms for
solving beam reduction problem [1, 2]. Among them, in the
unconstrained problem, the basic idea of the gradient method
is that the negative gradient direction of an iteration is the
direction in which the objective function value drops the fast-
est at this point. Therefore, taking the negative gradient direc-
tion as the search direction is also called the steepest descent
method, and its convergence speed is linear at most [3]. The
idea of the conjugate gradient method is to use the gradient

of the objective function to gradually generate the conjugate
direction as the line search direction, generally taking the neg-
ative gradient direction as the initial direction, and then con-
struct a new search direction from the conjugation. The
conjugate gradient method has quadratic termination for the
quadratic function. In the solution of nonlinear system, the
Newton method is an important and commonly used iterative
method. Its basic idea is to linearize the nonlinear equations
step by step. Under certain conditions, it has the property of
quadratic convergence [4]. The basic idea of the trust region
algorithm is to give a trust region in each iteration, solve a sub-
problem in this trust region, take the solution as a trial, and
then decide whether to accept the trial step according to a cer-
tain standard. Generally, the trust region of the next iteration
is determined based on the degree of simulation of the original
function. Trust region algorithm has fast convergence
speed [5].

In applied mathematics and engineering technology, we
need to solve nonlinear equations in many cases. For exam-
ple, the section characteristics of structural members, the
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size of mechanical connections, and the concentration of
chemical substances all need to solve nonlinear equations.
This problem also has important applications in function
approximation and parameter estimation. For uncon-
strained nonlinear equations, FðxÞ is a continuous differen-
tiable function [6]. Generally, the Newton method or
quasi-Newton method is used to solve such problems. At
the same time, there are many algorithms to solve this type
of optimization problems. However, in many practical prob-
lems, it is sometimes impossible or difficult to solve the
derivative of the function. Therefore, in these cases, the
derivative free algorithm is very useful. Many trust region
methods construct the local polynomial interpolation or
regression model of the objective function of the original
problem and obtain a descent direction by minimizing the
trust region subproblem. In the past few years, some scholars
have developed derivative free algorithms to solve uncon-
strained and constrained optimization problems. A typical
derivative free trust region algorithm is developed to solve
the unconstrained least squares problem [7]. The algorithm
uses the characteristics of the problem itself to establish an
interpolation model for each function in the problem. Some
scholars use technology to construct a derivative free recur-
sive trust region model to solve the problems of nonconvex
nonlinear equations with boundary constraints. However,
in the existing methods, there are few studies on the problem
of low global convergence and local convergence rate of trust
region interior points of bounded variable constrained non-
linear equations, and there are many deficiencies. Therefore,
this paper designs a new trust region interior point algo-
rithm for these two key problems. This paper mainly opti-
mizes the trust region interior point mapping of its
bounded variable constrained nonlinear equations through
the existing advanced technology edge calculation and ana-
lyzes some experimental data. The results not only improve
the overall convergence and local convergence rate of the
trust region interior points but also can be simply applied
in the existing research. The main research steps of this
paper are as follows:

Step 1. By constructing the basic function form of the
nonlinear equations constrained by bounded variables, the
gauss Newton iterative process is used to determine the
boundary of the nonlinear equations and ensure the overall
convergence of their changes.

Step 2. Restrict the heuristic step to the trust region,
solve the original objective function, resolve the trust region
subproblem of the unconstrained optimization problem, and
use a cone to generate the acceptable region. Through the
two-dimensional example to explain the generation of this
region, complete the design of the trust region algorithm.

Step 3. Determined by the original-dual interior point
within the acceptable field point, introducing the slack vari-
ables, and though laser multiplier vector, the logarithmic
barrier (barriers) function, the Lagrange function method
and Newton iteration method, optimization of acceptable
domain points, with the aid of edge constrained nonlinear
equations calculating design of bounded variables of trust
region interior point planning model, and algorithm design
are as follows.

2. Design of the Trust Region Interior Point
Algorithm for Nonlinear Equations with
Bounded Variables under Edge Computation

2.1. Analysis of Nonlinear Equations Constrained by
Bounded Variables. Before designing the trust region interior
point algorithm of bounded variable constrained nonlinear
equations under edge calculation, it is necessary to clarify
the style of bounded variable constrained nonlinear equa-
tions and related calculation methods. The general expres-
sion of nonlinear equations is [8] as follows:

f1 x1, x2,⋯xnð Þ = 0,
⋯⋯⋯ ⋯ ⋯

f n x1, x2,⋯xnð Þ = 0:

8>><
>>:

ð1Þ

Among them, f iði = 1, 2⋯ nÞ is the real value function
in the open space of different dimensions [9], setting the vec-
tor symbol as

V xð Þ =
v1 xð Þ
⋯

vn xð Þ

0
BB@
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CCAx =
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⋯

xn

0
BB@

1
CCA0: ð2Þ

Then, the nonlinear equations are expressed as

V xð Þ = 0, ð3Þ

where V is a nonlinear function defined in the open field,
obtaining

V : D ⊂ Rn ↦ Rn: ð4Þ

The problem of nonlinear equations has been studied in
theory and numerical solution as early as the 1970s. Because
the problem of solving nonlinear equations is not as mature
and effective as linear equations in theory and solution [10],
therefore, there are many problems in the existence of solu-
tions of nonlinear equations and the search for effective
numerical methods, which need to be further solved and
studied. Generally, the iterative methods for solving nonlin-
ear equations include Newton method, Newton type itera-
tion, secant method, quasi-Newton method, and Levenberg
Marquardt method [11].

In this paper, we need to construct a derivative free algo-
rithm to solve the nonlinear equations with bounded con-
straints [12]. The general form of the question is

V xð Þ = 0, x ∈Ω = x a ≤j x ≤ bf g: ð5Þ

Among them, VðxÞ = ½ f1ðxÞ, f2ðxÞ,⋯f nðxÞ�T Represents
the general nonlinear quadratic continuous differentiable
functions, but their first and second derivative information
is difficult to obtain [13], the vector a/b represents the upper
and lower bounds, the set is nonempty sets, and its sche-
matic diagram is shown in Figure 1.

2 Wireless Communications and Mobile Computing



In Figure 1, multivariate interpolation function tech-
nology and trust region strategy are combined to solve
the problem of bounded constrained nonlinear equations.
Firstly, the corresponding interpolation model is estab-
lished for each function in the objective function. Such
approximation does not require additional function calcu-
lation. In general, many interpolation points need to be
used to determine a completely quadratic interpolation
model [14]. Instead, the algorithm only needs 2n + 1 inter-
polation points when establishing the interpolation model,
while the trust domain subproblem considers the second-
order Taylor expansion of the polynomial interpolation
model to introduce an affine transformation matrix, so
that the problem has only one ellipsoid constraint. How-
ever, when the strict inner point is feasible, it is difficult
to obtain the descent direction of the objective function
by solving the trust domain subproblem [15].

In order to obtain a feasible descent step, the trust region
subproblem with strict feasible constraints needs to be
solved repeatedly. Therefore, the total calculation cost is very
large. In order to overcome this disadvantage, the upper and
lower bounds of the nonlinear equations with bounded con-
straints are determined by the Gauss Newton method. This
method does not need to calculate the trust region subprob-
lem repeatedly in each iteration, which reduces the amount
of calculation and improves the purpose. The use of back-
tracking line search can ensure the feasibility of strict inte-
rior points.

Firstly, the boundary problem of nonlinear equations
with bounded constraints is equivalent to the nonlinear least
squares problem; that is,

min
x∈Rn

ϑ xð Þ = 1
2 V xð Þk k2, ð6Þ

where the gradient of ϑðxÞ is

Δϑ xð Þ = p xð ÞTV xð Þ: ð7Þ

The Hesse matrix of ϑðxÞ is

G xð Þ = p xð ÞTV xð Þ + s xð Þ: ð8Þ

Among them,

s xð Þ = 〠
n

i=1
f i xð ÞΔ2 f i xð Þ: ð9Þ

At this time, the second order term sðxÞ in GðxÞ can be
ignored, and then the quadratic model of the objective func-
tion is as follows:

lk xð Þ = ϑ xkð Þ + Δ x − xkð Þ + 1
2 x − xkð ÞG xkð Þ

= 1
2V xð Þ + p xkð Þð ÞT + 1

2 x − xkð Þ:
ð10Þ

The basic idea of Newton’s method is to linearize the
system of nonlinear equations, so as to determine the
boundary of the system of nonlinear equations with
bounded constraints, and obtain

xk+1 = xk = p xkð ÞTp xkð Þ−1p xkð ÞTV xð Þ
h i

, ð11Þ

where pðxkÞ represents the Jacobi matrix of V at xk.
When ck = −pðxkÞ−1VðxkÞ represents in the Gaussian New-
tonian direction at xk, and when the determined boundary
value is close to the solution, the Gauss Newton iterative
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Figure 1: Schematic diagram of upper and lower bounds and set coincidence of nonlinear equations with bounded constraints.
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process can reduce the convergence speed of the nonlinear
equation with bounded constraints [16], and its linear con-
vergence state is shown in Figure 2.

According to the above calculation flow and the conver-
gence change state of Gauss Newton iterative process in
Figure 2, the bounded variable constrained nonlinear equa-
tions are analyzed, and the typical characteristics of a good
trust region interior point algorithm are obtained. It has
global convergence and fast convergence rate.

2.2. Trust Region Algorithm. According to the bounds of the
nonlinear equations with bounded constraints determined
above, this paper continues to study the trust region algo-
rithm in the nonlinear equations with bounded constraints
and determines the region where the points in the trust
region of the nonlinear equations with bounded constraints
exist. Trust region algorithm is also known as the step con-
trol method, originated from Powell’s work in. It was first
used to solve unconstrained optimization problems and then
gradually applied to optimization problems with constraints.
It is an important research direction in the field of optimiza-
tion in recent years [17]. The traditional line search method
often fails in solving ill-posed problems because the selected
step size is too large. However, the trust region algorithm
can effectively solve both good and ill-posed problems, with
fast and reliable convergence, and has a good effect on the
selection of variable iteration step size.

The basic idea of the trust domain method is to limit the
test step hk to the trust domain, and the positive number Δk
is given at each iteration and requires the test step hk to sat-
isfy khkk ≤ Δk. Solve an approximate problem of the original
objective function in the trust region and obtain the solution
as a trial step. This approximate problem is often called a
subproblem [18]. Generally, the trust region subproblem of

unconstrained optimization problem can be

min
d∈Rn

Vk +wkk k2 = lk hð Þ,

s:t hk k ≤ Δk,
ð12Þ

where Vk = FðxkÞ,wk =wðxkÞ, Δk > 0 is the radius of the
current trust domain, and setting hk is the solution of the
above problem and then obtains

prehk = lk 0ð Þ − lk hkð Þ: ð13Þ

The result obtained at this point is the estimated
decrease of the objective function, because lkðdÞ ≈ lkðhkÞ.
The real decrease of the objective function FðxÞ is

hk ′ = Fkk k2 − F xk + hkð Þk k2: ð14Þ

The ratio of real decline to estimated decline is

φk =
prehk
hk ′

: ð15Þ

At this point, the larger φk represents, the more the tar-
get function drops, and the more new iterations there are; so,
you can consider expanding the data. When the hour of φk is
more small, the corresponding points in the trust area are
also less [19]. Trust region method has the characteristics
of global convergence and fast local convergence.

In Figure 3, in the multidimension, a face aðt, cÞ can be
regarded as a line, and the normal vector t is perpendicular
to the line and points to the acceptable area of the face.
The pyramid is composed of two nonparallel two-
dimensional small planes [20]. Figure 3(a) shows such a pyr-
amid. The acceptance area of the pyramid is the intersection
of the two acceptance areas of the small planes a1 and a2,
which is represented by the intersection area Y in
Figure 3(a). In Figure 3(b), a new small plane intersects the
pyramid at two generation points q1 and q2, which are the
real entry points [21]. Since the arrow of the normal vector
points in the same direction, according to its direction, Y
is also located in the receiving area, and the area covers the
area of the pyramid. In Figure 3(c), the normal vector
remains unchanged, but the generation point of the two
faces is in the position shown in the figure. This is a reduced
area, and the receiving area Y at this time is a smaller area
than the original one. The area y here is no longer the orig-
inal accepted area, the area is reduced, and the original point
is deleted; so, it can be considered to be rejected by a. In
Figure 3(d), the normal vector is pointing in the opposite
direction, and the acceptable area is still reduced; so, it can
be deleted [22]. The acceptable area intersects the acceptable
area of the pyramid; so, the whole acceptable area is reduced
to the enclosed area Y . From the planning problem, it is the
constraint conditions to be met jointly [23]. It must be in dry
area Y .

Based on the acceptable domain determined above,
select a reasonable acceptable domain for each pyramid
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Figure 2: Convergence change state of Gauss Newton iterative
process.
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from ðm + nÞ and interpret it from two dimensions. How-
ever, inequality constraints require three-dimensional trans-
formation under multiple parameters. Therefore, there can
be three-dimensional interpretation from two dimensions
to three dimensions. When did similar generation methods
exist in the previous study of three-dimensional [24]? As
shown in the following figure, at this time, they are faceted.
Different acceptance domains can be formed for different t
directions. Determine the new acceptable domain, as shown
in Figure 4.

In Figure 4(a), the original 3D is the whole area, and the
enclosed three-cone structure formed under the constraint
of a1 : y1 + y3 ≤ 1, a2 : y2 + y3 ≤ 1, and a3 : y1 + y2 ≤ 1 is
the acceptable area, so that the best advantage is to find in
such a limited area. The “<1” here is that the direction is ver-
tical A to Y2, if “>” will be the opposite direction, and then
the area will be different [25], which is similar here so do
not repeat. If in Figure 4(b), another constraint appears: a,
the original space is divided into new ones, and then a4 = y
1 + y2 + 3y3 ≤ 1 new receptive field is gradually formed. Of
the temporary, most advantages will become a new vertex
of the receptive field; in many inequality constraint nonlin-

ear programming problem, there are a variety of parameters
and inequality; so, how to unify the face combination cone,
then generated by the cone acceptable domain, this two
dimensional matrix table gives enlightenment, if appear
“>” is the opposite direction.

3. Design of the Trust Region Interior Point
Algorithm for Nonlinear Equations with
Bounded Variables under Edge Computation

In the design of the trust region interior point algorithm for
bounded variable constrained nonlinear equations, the inte-
rior point in the acceptable region is determined by the pri-
mal dual interior point method. The primal dual interior
point method is also known as the path tracking method
or tracking center trajectory method. In essence, it is an
algorithm that combines logarithmic barrier function,
Lagrange function method, and Newton iteration method
for optimization calculation by introducing relaxation vari-
able and Lagrange multiplier vector and has the advantages
of these three methods at the same time. The primal dual
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t1 t2
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q2
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Figure 3: Schematic diagram of cone acceptable region.
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Figure 4: Schematic diagram of new acceptable domain.
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interior point method starts from the feasible initial interior
point and searches for optimization within the feasible
region along the steepest descent direction of the primal dual
path until it approaches the optimal solution [26]. When
solving large-scale linear programming problems, it has been
proved theoretically that it has polynomial time complexity
and second-order convergence characteristics. It has the
advantages of insensitive calculation time to the scale of
the problem, stable number of iterations, fast convergence
speed, good robustness, and high accuracy.

Firstly, a trust region interior point programming model
of bounded variable constrained nonlinear equations is
designed; that is,

min χTx,
s:t:b ≤ ax ≤ c:

ð16Þ

The model is a nonlinear pattern, where χ is the order
matrix, and a, b, c represents the number of different state
variables and control variables, respectively.

Turning the above model into a simple form, we obtain

min χTx,
s:t:b ≤ ax ≤ c,
x − 1 = x,⟶
x + u = x:

ð17Þ

Then, the logarithmic barrier (obstacle) penalty function
is introduced into the objective function to transform the
objective function into an obstacle function. As shown in
the formula, the newly constructed function is close to the
original objective function within the feasible region, and
its value increases rapidly when it is close to the boundary
of the feasible region. Therefore, the minimum value satisfy-
ing the condition can only be found in the feasible region, so
as to ensure that the optimization is always found within the
feasible region in the iterative process [27]; that is,

ξi = χTx − u〠
n

i=1
insi − u〠

n

i=1
lnsi − u〠

n

i=1
nnsi, ð18Þ

where u ≥ 0 is called a perturbation factor or a barrier
(barrier) parameter, and when u⟶ 0,, the optimal solution
of the formula is equivalent to an optimal solution of the
original linear programming problem.

According to the programming model of the trust region
interior point of the bounded variable constrained nonlinear
equations, the optimal solution can determine the existence
state of the interior point in the trust region, but there are
still some errors. Therefore, this paper introduces the edge
calculation method to correct the error. Edge computing is
based on a virtualization platform, and its method is a sup-
plement to nfv; in fact, when NVF focuses on network func-
tions, MEC framework enables applications to run at the
edge of the network [28]. The infrastructure carrying MEC
and nfv or network functions is very similar; therefore, in

order for operators to get as much benefit from their invest-
ment as possible, it will be beneficial to maximize the reuse
of nfv infrastructure and infrastructure management by
hosting vnfs (virtual network functions) and mec applica-
tions on the same platform. The edge computing environ-
ment is characterized by low latency, proximity, high
bandwidth, real-time insight into radio network informa-
tion, and location awareness. All this can be translated into
value, creating opportunities for mobile operators, applica-
tions, and content providers to play complementary and
profitable roles in their respective business models, and
enable them to better benefit from the mobile broadband
experience.

In fact, the concept of edge computing can be traced
back to 1998. A content distribution network (CDN) was
proposed. It installs cache server in various places and
directly connects users’ access to the nearest cache server
through functional modules such as load balance, content
distribution, and scheduling of the central platform, so as
to reduce the access pressure and delay of the core network
and improve the hit rate. It is a cache network. The differ-
ence between CDN and mobile edge computing is that
CDN emphasizes the caching of data, while edge computing
emphasizes the caching of functions, and gives some func-
tions on mobile devices to MEC. In the early stage, margin-
alized data were rare, and computers were far from universal
[29]. However, with the rapid development of the Internet,
in the context of mobile communication and Internet of
things, the number of networking devices and mobile
devices has ushered in an explosive growth, followed by
the explosive growth of fragmented data information gener-
ated at the edge of the network. Cloud computing, in this
case, cannot fully meet the requirements. Then, satvanarava-
nan put forward the concept of cloud let. Cloud let is a server
that does not need to worry about various resources (such as
computing resources, storage resources, and network
resources) and is very trusted. It can provide services to users
like cloud. However, cloud let emphasizes downlink services,
and its main function is to reduce bandwidth and delay. The
schematic diagram of edge computing architecture is shown
in Figure 5.

According to Figure 5, the constraint conditions to be
satisfied need to be set in the trust region interior point error
of the boundary calculation correction bounded variable
constrained nonlinear equations. One of the first constraints
to be met is the limited computing resources at the MEC
end. Because the MEC of mobile edge computing cannot
have the computing performance of traditional cloud com-
puting, its computing resources are also limited, and it is
impossible to handle too many tasks [30]. From this, we
can get

〠
n

i=1
xij f i ≤ Fi, ∀i ∈H: ð19Þ

In the formula, the total computational resources of the
MEC are expressed as f i, namely, the number of points in

6 Wireless Communications and Mobile Computing



the trust domain. Indicates the total number of tasks that
need to be uploaded.

Secondly, assuming that only one task per UE waits to be
completed, that is, to determine the existence form of points
in the trust domain, it can be obtained:

〠
n

i=1
xij f i ≤ 1, ∀i ∈U : ð20Þ

Among them, xij indicates that the sum of the number of
tasks in all points in the trust domain cannot be greater than
1. Since this paper assumes that only one task needs to be
uninstalled to the cloud and not local computing, the points
in the trust domain are either confirmed or failed; that is,

xij ∈ 0, 1½ �, ∀i ∈ L: ð21Þ

In addition to the above constraints, there is also one of
the most important constraints, which is the task. The delay
of all tasks includes the time of uploading tasks and the time
of computing tasks. Since the amount of data returned from
computing results is usually very small and the time is very
short, regardless of the return time of tasks, the following
formula can be obtained:

〠
n

i=1
xij wc

ij +wd
ij

� �
<wmax

ij , ∀i ∈ L: ð22Þ

After calculating the constraint problem according to the
set edge, calculate the objective function, that is, the optimi-

zation objective and constraint at the same time in the trust
region internal point error of the bounded variable con-
strained nonlinear equations to obtain the final optimization
problem, and obtain the following:

〠
n

i=1
xij wc

ij +wd
ij

� �
≤wmax

ij , ∀i ∈ L,

xij ∈ 0, 1½ �,
P : Minimize E xð Þ − J xð Þð Þ:

ð23Þ

It can be seen from the above formula that there are two
objective functions in the design of the trust in-domain
point algorithm of bounded variable constrained nonlinear
equations. MinimizeðEðxÞÞ is the best determining speed
and convergence in the whole edge calculation process,
which can improve the convergence of the trust domain
points of bound variable constrained nonlinear equations.

Based on the above edge calculation, the trust region
interior point algorithm design of bounded variable con-
strained nonlinear equations is completed. The specific steps
are as follows:

Step 1. Select the initial point a0, the trust radius is set to
Δ0 > 0, and the maximum trust radius is Δmax > Δ0.

Step 2. Initialize the filter subset and set K = 0.
Step 3. Calculate the inner point trust domain subprob-

lem to obtain the search direction OK .
Step 4. Regeneration line search: set αk = 1, l = 0, calcu-

late xkðαkÞ = xk + αkOk, and test whether the iteration point
is accepted by the filter; if not, the iteration step is rejected.

Step 5. In order to avoid the use of classical value function,
instead of the filter method, make the constraint violation
function used that is jSðxÞj. Call point dk dominate point dl,
if and only if jSðxÞj < ksðdlÞk, f ðdkÞ ≤ f ðdlÞ, and definition fil-
ter is a list with form jSj, f , recorded as F, so that

s dl
� ����

��� ≤ s dKð Þk kf dkð Þ ≤ f dl
� �

: ð24Þ

This time holds for all k ≠ l.
Step 6. Update the trust domain radius to get the follow-

ings:

arrdk S xð Þð Þ = f dkð Þ − f dk + dl
� �

,

predk S xð Þð Þ = εk 0ð Þ − εk Dk, skð Þ,

G = arrdk S xð Þð Þ
predk S xð Þð Þ :

ð25Þ

Step 7. Ensure the existence of points in the trust
domain, set sk = αkdk, and then exists xk+1 = xk + sk. Com-
plete the design of the trust domain point algorithm for
bounded variable constrained nonlinear equations. The trust
region interior point algorithm mainly studies the establish-
ment of trust region subproblem by introducing constraint
violation function based on edge calculation. The super-
linear convergence rate of the algorithm is guaranteed

Cloud

Data center

Data
transmissionMarginal cloud

Data provider user

DSU/CS
U

Figure 5: Edge calculation framework.
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without strict complementary relaxation conditions and rea-
sonable assumptions.

In the algorithm design, the interior point in the accept-
able region is determined by the primal dual interior point
method, the relaxation variable and Lagrange multiplier vec-
tor are introduced, the logarithmic barrier function,
Lagrange function method, and Newton iteration method
are combined to optimize the interior point in the acceptable
region, and the trust region interior point programming
model of bounded variable constrained nonlinear equations
is designed with the help of edge calculation to realize the
algorithm design.

4. Example Analysis

4.1. Design of Experimental Scheme. For the trust region
interior point algorithm of nonlinear equations constrained
by bounded variables under the above edge calculation, the
mathematical software MATLAB is used to program and
realize the specific numerical results. To test the validity of
the algorithm, the parameters are selected as follows: ε =
10−8, p = 0:4, e = 0:02, and w = 0:05.

In the numerical experiment, the following standard
numerical tests are selected, and the numerical results are
given by the table. NF represents the number of calculations
of the objective function, and NG represents the number of
its gradient function. The details of the standard numerical
tests are shown in Table 1:

According to the standard numerical test questions in
Table 1, experimental analysis is carried out on this basis
to further analyze the global convergence and local conver-
gence rate of trust region interior points of bounded variable
constrained nonlinear equations.

4.2. Analysis of Experimental Results. Firstly, the algorithm
designed in this paper is used to calculate the actual numer-
ical value of the interior point on the basis of the standard
test questions designed in the experimental scheme. The
results are shown in Table 2:

The results in Table 2 are in line with expectations. In
this example, the iterative sequence can quickly converge
to the solution. Although the values in Table 2 are singular,
the effect of the algorithm is still very good, because the
function considered in the algorithm guarantees the local
error bound condition in a field of the solution set, and when
the number of iterations of the example increases, the num-
ber of times used in the projection gradient direction also
increases. This feature shows that the method proposed in
this paper is better than the projection gradient method in
calculation.

To avoid excessive internal iteration subroutines within
1000 iteration that requires NC < 1000, the regular parame-
ter update scheme is as follows: uk =min fskkFkkα, sg, where
the s > 0. Parameter is selected as follows:

α = 1, sk = 0:8, τ = 0, 2:0½ �, β = 0:8, p = 0:7, s = 0:001: ð26Þ

Based on the above parameter setting, the numerical
results of the global convergence of the interior points in

the trust region of the bounded variable constrained nonlin-
ear equations are analyzed. By comparing the traditional
algorithm 1 and the traditional algorithm 2, and character-
ized by the performance graph, the global convergence
results are shown in Figure 6.

By analyzing the experimental results in Figure 6, it can
be seen that when the τ value changes, the overall conver-
gence of the trust region of the proposed algorithm and
the two traditional methods shows different fluctuations.
Among them, when the value is about 0.5, the overall con-
vergence of the internal points in the trust region of the pro-
posed algorithm changes smoothly; that is, the convergence

Table 1: Standard numerical test questions.

Number Content

1 HS003ð Þ: f = x2 + 0:00001 x2 − x1ð Þ2

2 HS004ð Þ: f = 1/3 x1 + 1ð Þ x2 + 1ð Þ x2 − x1ð Þ2

3 HS005ð Þ: f = sin x1 + 1ð Þ x2 + 1ð Þ x2 − x1ð Þ2

4 HS006ð Þ: f = 4 x1 − 1ð Þ x2 − 1ð Þ x2ð Þ2

5 HS007ð Þ: f = 1000 x1 + 1ð Þ x2 − x1ð Þ2

Table 2: Numerical results of this algorithm.

Title number NF NG

1 3 3

2 3 3

3 6 7

4 2 2

5 5 5

p 
(𝜏

)

0 0.5
0

1.0 1.5

0.2

0.4

0.6

0.8

1.0

𝜏

Proposed algorithm
Traditional algorithm 1
Traditional algorithm 2

Figure 6: Comparison of global convergence changes of trust
region interior points of different algorithms.
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is relatively stable, while the changes of the other two tradi-
tional algorithms also show a fluctuating trend. It can be
seen that the overall convergence of the internal points in
the trust region can be effectively improved by using this
algorithm.

Based on the above experiments, the local conver-
gence rate of the interior point of the trust region of
the system of nonlinear equations constrained by
bounded variables is analyzed. The numerical results are
shown in Figure 7.

By analyzing Figure 7, it can be seen that with the con-
tinuous updating of the number of iterations, there are cer-
tain differences in the local convergence rate of the trust
region of the three methods for the bounded variable con-
strained nonlinear equations in the example. Among them,
the best local convergence rate in the trust region of nonlin-
ear equations with bounded variables is the method in this
paper, which can be 100% at the highest, while the local con-
vergence rates of the other two methods show an unstable
state, which verifies the effectiveness of the proposed
algorithm.

To sum up, compared with other algorithms, the overall
convergence of the trust region interior point algorithm of
the bounded variable constrained nonlinear equations under
the designed edge calculation fluctuates relatively smoothly.
There are some differences in the local convergence rate of
the trust region interior point of the bounded variable con-
strained nonlinear equations in the example, and the conver-
gence rate of this method is the best.

5. Conclusion

The trust region interior point algorithm for nonlinear
equations with bounded variable constraints is a key algo-

rithm in the field of mathematics. It has the problems of
low global convergence and low local convergence rate in
the existing research methods. Therefore, the trust region
interior point algorithm for nonlinear equations with
bounded variable constraints under edge calculation is
designed. By constructing the basic function form of non-
linear equations constrained by bounded variables, the
Gauss Newton iterative process is used to determine the
boundary of nonlinear equations and ensure the global
convergence of their changes. The trial step is limited
to the trust region, the original objective function is
solved, the trust region subproblem of the unconstrained
optimization problem is analyzed, and an acceptable
region is generated by a cone. The interior point in the
acceptable region is determined by the primal dual inte-
rior point method, the relaxation variable and Lagrange
multiplier vector are introduced to optimize the interior
point in the acceptable region, and the trust region inte-
rior point programming model of bounded variable con-
strained nonlinear equations is designed with the help
of edge calculation. The research results show that the
quality of the trust region interior point algorithm of
bounded variable constrained nonlinear equations can be
improved by using the designed algorithm. There is an
objective function in the design of the trust region inte-
rior point algorithm for bounded variable constrained
nonlinear equations, which has the best speed and con-
vergence in the whole edge calculation process, and can
effectively improve the convergence of trust region inte-
rior points of bounded variable constrained nonlinear
equations. However, there are many constraints and
changing conditions in the research of mathematical
methods. Therefore, the algorithm research under more
constraints will be studied in the future.
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Figure 7: Variation of local convergence rate of points in trust region of nonlinear equations with bounded variable constraints.
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