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At present, most of the event relation identification work mainly focuses on the sequential temporal and explicit causal relation
between events. These methods usually ignore the role of synchronous temporal and implicit causal relation in sentences,
which makes the semantic understanding of the model deviate from the text. In this paper, we propose a joint event relation
identification model. The model uses bidirectional GRU and multiscale convolutional neural network to obtain the context
semantic features and multiscale local semantic features of text, respectively. Then, these two kinds of features are fused to
fully obtain the semantics of the text itself. In addition, we build encoders and decoders of event temporal and causal relation,
respectively, to obtain the event temporal and causal semantic features from text. In this process, considering the correlation
between event timing and causality, we use three different parameter sharing strategies to realize the interaction between event
temporal and causal semantic features. The experimental results on the legal field dataset we constructed show that our model
has made significant improvements compared with the baseline model. Through experimental analysis, our method can
effectively improve the identification performance of synchronous temporal and implicit causality relation.

1. Introduction

Event relation identification [1] in text is an important
research topic in the field of information extraction and nat-
ural language processing, especially in some specific fields,
such as the judicial field. Mastering the causal and temporal
relation between events can provide support for the analysis
of the cause and development of the case. Among the possi-
ble relation types between events, this paper focuses on the
joint identification of temporal and causal relation.

For the causal relation of events, it mainly depends on the
explicit causal indicators in the text, such as “cause,” “so,”
“therefore,” and “because.” By constructing the causal rule base
[2] and using the model to learn the causal relation features in
the text, the causal relation between events can be identified.
In example 1 shown in Figure 1, due to the causal indicator

“cause,” the model can easily identify the “cause-effect” relation
between event A and event B. However, in the face of some
implicit causal relation, that is, when there are no explicit causal
indicators in the text, the semantic features of causality are
obscure, and it is difficult for the model to learn the causal fea-
tures. In example 2 shown in Figure 1, there are no indicators in
the text that can directly express cause and effect, so it is difficult
to obtain the “cause-effect” relation between event A and event
B.

For the temporal relation of events, the event chain is con-
structed according to the shortest dependent path [3] between
events or the sequence of events in the text, and then, the event
chain [4] is optimized to distinguish the temporal relation. In
example 3 shown in Figure 2, by analyzing the sequence of
events in the text, it is clear that there is a “before” relation
between event A and event B and a “before” relation between
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event B and event C. However, there are some differences
between the sequence of events in the text and the sequence
of their occurrence. When the difference is large, it is difficult
to optimize the event chain, resulting in the difficulty of iden-
tifying the sequence of events. In example 4 shown in Figure 2,
the sequence of events in the text is “A, B, C,” but temporal
relation between them is “C, before, A,” “A, before, B.” Due
to the great difference between the initial event chain and
the real results, the mainstream methods are difficult to
completely optimize the initial event chain.

In this paper, we propose a joint event relation identifi-
cation model of timing and causality. Our contributions
include the following:

(i) The fusion of context and multiscale local semantic
features is used to fully mine the semantic informa-
tion contained in the text, so as to provide semantic
support for causal and temporal relation feature
mining

(ii) Temporal and causal relation encoders and
decoders are constructed, respectively, to amplify
the causal and temporal features of events in the text
semantic information, and the correlation learning
of timing and causality is realized by using the
shared parameter strategy

(iii) We experiment on the constructed legal domain
dataset, and the experimental results show that the
performance of our proposed model is better than
that of the baseline model

2. Related Work

At present, the research of event relation identification
mainly focuses on event causal and temporal relation identi-
fication. Among them, event causality identification mainly
excavates the causality between ordered event pairs, and
event timing identification mainly distinguishes the sequen-
tial timing and synchronous timing between events.

2.1. Event Causality Identification. For the study of event
causality, the method based on template matching was
mainly used in the early stage. Kaplan and Berry-Rogghe
[5] used manual weaving rules to establish domain knowl-
edge base and used knowledge reasoning technology to iden-
tify the causal relation between events. By combining with
cue phrase and pattern matching, Khoo and Kornfilt [6]
extracted causal language pattern rules for English corpus
in the field of medicine and achieved good results in event
causal recognition. Bethard et al. [7, 8] annotated the event
timing and causality at the same time and used the manually
annotated timing relation to assist the causality classifier to
extract the causality between events. Mostafazade et al. [9]
proposed an event semantic annotation model CaTeRS,
which provides an annotation tool for the joint identification
of event timing relation and causality. Mirza and Tonelli
[10] combined the prediction results of event causality to
make auxiliary judgment on the time sequence relation, so
as to realize the correlation between event timing and causal-
ity. Using the constraints and linguistic rules between time
series and causality, Ning et al. [11] transformed the joint
identification task of event time series and causality into an
integer linear programming problem and used deep learning
technology to solve the problems existing in causality
identification.

Riccomagno and Smith [12] proposed the chain event
graph model, which is a discrete Bayesian network model
and provides a flexible and highly scalable framework. The
model can be used to express and analyze the meaning of
causal hypothesis and strengthen the causal reasoning ability
of the model through the interactive calculation of causal
correlation generated in the basic network. Acharya and
Lee [13] proposed an incremental causality network model
to assist in inferring causality by learning time priority.
The model infers causality by using an incremental Bayesian
network called incremental hill climbing Monte Carlo. In
addition, the authors also propose a two-layer causal net-
work, which can realize the causal analysis of event flow
without prior knowledge.

2.2. Event Timing Relation Identification. The early research
on the temporal relation of events paid more attention to the
various semantic features contained in the text itself. Marcu
and Echihabi [14] paired words in order and took it as a fea-
ture of temporal relation to realize the discovery of temporal
relation. With the establishment and development of
TimeML (Time Markup Language) tagging system and the
emergence of time series corpora such as TimeBank, more
and more researchers began to extract event temporal rela-
tions from high-quality time series corpora such as

Example 2:

Event A: Radiation Event B: Bomb explosion
Relation: Cause-effect (B, A)

Example 1:

Event A: Burst Event B: Pressure Relation: Cause-effect (B, A)

pressure.

is a typical acute radiation

�e burst has been caused by water hammer

�e radiation from the atomic bomb explosion

Figure 1: Examples of causal indicators.

Example 4: Mr.Erdogan accepted the Israeli apology, the prime
minister's office said. Mr.Erdogan has long sought an
apology for the raid in May 2010 on the Mavi
Marmara, which was part of a flotilla that sought to
break Israel 's blockade of Gaza.

Event A: Accepted 
Time series: C, A, B

Example 3: People have predicted his demise so many times, and
the US has tried to hasten it on several occasions.
Time and again, he endures.

Event A: Predicted 
Time series: A, B, C

Event B: Hasten Event C: Endures

Event C: Sought Event B: Said 

Figure 2: Example of causal event chain.
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TimeBank. Mani et al. [15] used event attributes to construct
feature vectors based on TimeBank labeled corpus, including
event type, posture, shape, polarity, and tense, and used
maximum entropy classifier to identify temporal relations.
On the basis of Chambers et al. [16], Mani et al. [17] further
combined semantic features such as part of speech and syn-
tactic tree structure and extracted lexical and morphological
features from WordNet, so as to greatly expand the feature
space, which is conducive to the classifier to fully learn the
temporal features between events.

In recent years, the global optimization method based on
graph model has been widely used in many tasks, such as
event identification and event timing relation identification.
Chambers and Jurafsky [18] used integer linear program-
ming method to improve the experimental performance on
English temporal relation corpus. Li et al. [19] mined multi-
ple document-level constraints derived from Chinese event
semantics and used the integer linear programming method
to globally optimize the classifier results, which significantly
improves the recognition performance of event timing rela-
tion in Chinese text. Xu et al. [4] proposed an event timeline
framework based on joint reasoning; that is, the events in the
article form a complete event chain according to the order of
their occurrence, then used the integer linear programming
model to optimize the event chain, and add the event hom-
onymy information to the model, which further improves
the recognition ability of the model to the temporal relation.

The existing event causality identification methods
mainly focus on explicit causality. However, due to the lack
of explicit causality indicators in some texts, the model can-
not accurately obtain the causal semantic features between
events and identify the implicit causality in the text. For
the identification of event timing relation, the existing
research mainly constructs the event chain through the
dependent path between events or the sequence of events
in the text and then optimizes the event chain through global
reasoning, integer linear programming, and other methods,
so as to distinguish the event sequence and synchronous
timing. However, the sequence of events in some texts is
quite different from that in the text. When the generated
event chain is different from the beginning and end nodes
of the real time chain and the intermediate nodes are also
misplaced, the existing methods can only optimize some
nodes of the event chain. It is difficult to optimize the nodes
with a large span, such as the beginning and end nodes,
resulting in the model that cannot accurately distinguish
the sequence of events and synchronous timing relation in
the text.

3. Model

We propose a joint event relation identification model based
on multiscale CNNs and sharing strategy. The overall archi-
tecture is shown in Figure 3. Firstly, the initial semantic rep-
resentation of the text is obtained by BERT [20]. The context
semantic features and multiscale local semantic features of
the text are obtained through Bi-GRU [21] and multiscale
convolution neural network [22], respectively. The multi-
scale CNN obtains the local semantic features of the text

with different granularity by setting different convolution
kernel sizes. Then, the context semantic features and multi-
scale local semantic features are fused to fully obtain the rich
semantic information in the text. Based on the fused seman-
tic information, encoders and decoders of event causality
and temporal relation are constructed, respectively, to
amplify the causal and temporal features implied in the
semantic features of the text itself, and three different shared
parameter strategies are used to realize the correlation
between causal and temporal features, so that temporal and
causal relations can provide additional semantic information
for each other’s accurate identification. Finally, the event
relation classifier is used to recognize the event causality
and temporal relation.

3.1. Context and Multiscale Local Semantic Feature. For text
context semantic feature acquisition, we use Bi-GRU to
extract text features and obtain text context semantic fea-
tures through forward and backward GRU networks, respec-
tively. The specific calculation method of GRU network
semantic status update is as follows:

zt = σ Wz∙ ht−1, xt½ �ð Þ,
rt = σ Wr∙ ht−1, xt½ �ð Þ,

eht = tanh W∙ rt ∗ ht−1, xt½ �ð Þ,
ht = 1 − ztð Þ ∗ ht−1 + zt ∗ eht ,

ð1Þ

where ht−1 is the contextual semantic information of the t
− 1 word in the text, xt is the initial semantic representation
of the tth word in the text, ht is the contextual semantic
information of the tth word in the text, and σ is the activa-
tion function. zt is the update door, rt is the reset door,
and Wz and Wr is the weight calculated by the two gates,
respectively. For the update gate, when its value is larger, it
means that the more text context semantic information is
retained at present, and the less text context semantic infor-
mation is retained in the previous sequence step. For the
reset gate, the smaller its value is, the more context semantic
information of the previous sequence step will be discarded,
and the more semantic features of the current input word
will be retained.

The text initial embedding is used as the input of Bi-
GRU. The Bi-GRU network is composed of two GRU in dif-
ferent directions, which learn the contextual semantic fea-
tures of the text from the front and back, respectively:

hn
!

=GRU��!
hn−1
��!

, xn, θGRU
� �

,

hn
 

=GRU ��
hn−1
 ��

, xn, θGRU
� �

,

hn = hn
!

⨁ hn
 
,

ð2Þ

where hn
!

and hn
 
, respectively, represent the hidden layer

semantic representation of forward and backward GRU
when the sequence step size is n; θGRU is the network
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parameter of GRU; and xn represents the initial semantic
representation of the nth word in the text.

In order to fully mine the local semantic features of dif-
ferent granularity in the text, this section constructs a multi-
scale convolution neural network and sets different
convolution kernel sizes. The feature learning mechanism
of multiscale convolution neural network is shown in
Figure 4. Given the text, the embedded initial semantic rep-
resentation of the text is obtained through the BERT model

and used as the input of multiscale convolutional neural net-
work. Firstly, the convolution kernel set K of multiscale con-
volution neural network is defined, as shown in equation (3)
below, where ki represents the number of convolution ker-
nels and n represents the number of convolution kernels.

K = k1, k2, k3,⋯, knf g: ð3Þ

The initial semantic representation of the text is input
into the convolution kernel ki to carry out convolution oper-
ation to obtain the local feature of words in the text, as
shown in the following equation:

Featurelocal i = σ Wiembeddingt:t+j−1 + bi
� �

ð4Þ

where embeddingt:t+j−1 is the embedded representation of
the input word vector and j is the convolution kernel ki win-
dow size; Wi and bi is the weight and bias of convolution
layer corresponding to different convolution kernel sizes in

w1

w2

w3

wn

Embedding
Multi-scale CNNs

Context and multi-scale local
semantic feature

Temporal relation
encoder

Causal relation
encoder

Parameters sharing strategies

Temporal relation
decoder

Causal relation
decoder

Joint event relation identification

Text

Event
relation classifier

Bi-GRU

··· ··· Relation
features

Semantic
features

GRU GRU GRU GRU

GRUGRUGRUGRU

Figure 3: The overall architecture of the proposed joint event relation identification model.

Text

feature_local_1

Multi-scale CNNs

k1

k2

kn

feature_local_2
feature_local_n

. . . . . .

Figure 4: The feature learning mechanism of multiscale CNNs.

Table 1: Experimental results.

Model Precision Recall F1

CNN-GRU-CRF 0.521 0.438 0.476

Attention-LSTM 0.493 0.469 0.481

Joint identification method 0.628 0.542 0.582

Encoder sharing 0.631 0.549 0.587

Decoder sharing 0.649 0.548 0.594

Both sharing 0.675 0.581 0.624
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multiscale convolution neural network, which is a learnable
parameter; and σð·Þ is the activation function.

Using equation (4) above, make all convolution kernels
in the convolution kernel set act on the initial semantic rep-
resentation of the text, and the local semantic features of
words in the text with different granularity can be obtained,
as shown in the following equation:

Featurelocal = featurelocal1 , featurelocal2 ,⋯, featurelocaln
� �

:

ð5Þ

Because different convolution kernels can form local
semantic features of text with different granularity, if these
local semantic features are directly spliced, the dimension
of local semantic features of words will be too high. There-
fore, this section through the local semantic Featurelocal per-
forms the maximum pooling operation to reduce the
dimension of the text while retaining the local semantic fea-
tures of different granularity, as shown in the following
equation:

maxlocal = maxpooling featurelocalð Þ: ð6Þ

The local features with different granularity of word vec-
tors in the text are maximally pooled, and the output dimen-
sion is fixed through the full connection layer, and finally,
the multiscale local semantic feature representation of the

central word vector is obtained, as shown in the following
equation:

Flocal = maxlocal1 , maxlocal2 ,⋯, maxlocaln
� �

: ð7Þ

Repeat the convolution process of the above central
word vector, and scan the whole text sequence with the con-
volution set K to obtain the multiscale local semantic fea-
tures of the text, as shown in the following equation:

Featurelocal = F local1 , Flocal2 , Flocal3 ,⋯, Flocaln

� �
: ð8Þ

3.2. Relation Coding and Decoding. We build encoders and
decoders of event causality and temporal relation, respec-
tively. The event relation encoder is used to learn the seman-
tic feature representation of event timing and causality in the
text, and the event relation decoder is used to correspond the
learned semantic feature representation of event relation
with event relation coding.

3.2.1. Event Relation Encoder. We use Bi-LSTM [23] as the
temporal and causal semantic feature encoder. This is
because LSTM is mainly used to learn long-term depen-
dency problems, which can well model and represent the
dependency in the text, and because LSTM introduces mem-
ory unit, it can automatically update and selectively forget
the dependency features in the text.

Fuse the context and multiscale local semantic features
obtained in Section 3.1, and input them into the Bi-LSTM
network to obtain the temporal or causal features in the text.
The specific calculation method is as follows:

rel hn
���!

=LSTM���! rel hn−1
����!

, hn ; F local½ �, θLSTM
� �

,

rel hn
 ���

=LSTM ��� rel hn−1
 ����

, hn ; F local½ �, θLSTM
� �

,

rel hn =rel hn
���!

⨁relhn
 ��

,

ð9Þ
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identification
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Figure 5: Comparison of experimental results.

Table 2: Ablation experimental results.

Model Precision Recall F1

MCNN 0.428 0.394 0.410

GRU 0.399 0.384 0.391

MCNN-GRU 0.575 0.519 0.546

MCNN-GRU-sharing 0.642 0.573 0.606
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where rel hn
���!

and rel hn
 ���

, respectively, represent the hidden
layer representation of event relation semantics in the text
of forward and backward LSTM at time n, θLSTM is the net-
work parameter of LSTM, and ½hn ; Flocal� indicates the splic-
ing and fusion of context semantic features and multiscale
local semantic features of text.

3.2.2. Event Relation Decoder. The decoder is used to apply
the learned event relation semantic feature rel hn converted
into the hidden layer representation of event relation, which
can be simply expressed by the following equation:

rel = decoder relhnð Þ: ð10Þ

We use a full connection layer as the event relation
decoder. As shown in equation (11) below, we map the event
relation semantic features learned by the encoder to the
event relation label representation space, so as to establish
association with the event relation label, where W and B
are the weight and offset of the full connection layer, respec-
tively, which are learnable parameters, and σ ð·Þ is the activa-
tion function.

rel = σ Wrelhn + bð Þ: ð11Þ

3.3. Joint Event Relation Identification. Considering the cor-
relation between timing and causality, there is often time
series between events with causality, while there must be
no causality between events with synchronous time series.
Therefore, we take temporal relation identification and cau-
sality identification as two subtasks: tasktime and taskcause.
There is no sequence between the two subtasks, but they
are carried out at the same time. For the interaction between
the two subtasks, we choose three different parameter shar-
ing strategies: (1) sharing the coding layer, (2) shared the
decoding layer, and (3) share the encoding layer and decod-
ing layer.

3.3.1. Sharing the Coding Layer. Firstly, the event temporal
relation identification task and the causal relation identifica-
tion task, respectively, use their respective event relation
encoders to process the semantic features of the text and
obtain their respective event relation semantic features, as
shown in equations (12) and (13) below:

reltime = Encodertime hn ; Flocal½ �ð Þ, ð12Þ

relcause = Encodercause hn ; Flocal½ �ð Þ, ð13Þ
where the event relation encoder is the Bi-LSTM encoder
introduced in Section 3.2, hn is context semantic feature,
and Flocal is a multiscale local semantic feature. Then, the
two subtasks share their own event relation coding layer
states, respectively, and splice them with their own coding
layer states to generate joint relation semantic features, as
shown in equations (14) and (15) below.

reltime′ = reltime ⨁ relcause, ð14Þ

relcause′ = relcause ⨁ reltime: ð15Þ
Finally, the semantic features of event joint relation are

decoded by using their respective event relation decoders
to obtain the decoded event relation representation.

3.3.2. Shared the Decoding Layer. Similarly, the event tempo-
ral relation encoder and causality encoder are used to pro-
cess the semantic features of the text to obtain their
respective event relation semantic features reltime and
relcause, as shown in equations (12) and (13) above.

When decoding, the event timing relation and causality
are decoded by their respective event relation decoders, as
shown in equations (16) and (17) below.

dtime = Decodertime reltimeð Þ, ð16Þ

dcause = Decodercause relcauseð Þ: ð17Þ
Then, the two subtasks share their own decoding layer

states and splice them with their own decoding layer states,
as shown in equations (18) and (19) below.

dtime′ = dtime ⨁ dcause, ð18Þ

dcause′ = dcause ⨁ dtime: ð19Þ
In the final classification of event relation, the full con-

nection layer is used to predict the event relation of the
spliced decoding layer state, as shown in equations (20)
and (21) below, where Wtime, btime and Wcause, bcause are
the weight and offset of the full connection layer of the two
subtasks, respectively, and σð·Þ is the activation function.

dtime′ = dtime ⨁ dcause, ð20Þ

dcause′ = dcause ⨁ dtime: ð21Þ
3.3.3. Share the Encoding Layer and Decoding Layer. After
passing through the respective event relation encoders, the
semantic feature representation of the respective event rela-
tion is obtained. The two subtasks share their respective cod-
ing layer states and splice them to generate the semantic
representation of joint relation reltime′ and relcause′ , as shown
in equations (14) and (15) above.

Then, each event relation decoder is used for decoding to
obtain the decoded event relation hidden layer representa-
tion dtime and dcause. Then, the two subtasks share their
own decoding layer states and splice them with their own
decoding layer states, as shown in equations (18) and (19)
above.

Similarly, when classifying the event relation, the full
connection layer is used to predict the event relation of the
spliced decoding layer state, as shown in equations (20)
and (21) above.

4. Experiments

In this part, we give the experimental results of the proposed
model. We first describe the constructed dataset. Then, we
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introduce the relevant settings of the experiment and the
baseline of our comparison. The experimental results show
that the proposed model is improved in the joint identifica-
tion of event timing and causality.

4.1. Dataset. According to the needs of event sequence and
causality extraction task and the relation between events
which has directionality, it is necessary to mark the head
event and tail event of the event relation in the text. We
use “< E1 > event_1 < / E1 >” to represent the head event,
use “< E2 > event_2 < /E2 >” to represent the tail event,
and use “rel” to represent the relation between the head
event “event_ 1” and tail event “event_ 2”. For event rela-
tions, we define the following relation types: before, after,
meanwhile, cause-effect, effect–cause, and other.

4.2. Experimental Settings. The hyperparameters of the
model we use are set as follows: in the initial vectorization
representation stage, set the word vector dimension output
by the BERT pretraining language model to 762. In the stage
of using Bi-GRU to obtain the semantic features of text con-
text, set the number of layers of Bi-GRU to 2 and its dimen-
sion to 512. The multiscale convolution neural network is
used to obtain the multiscale local semantic features of the
text, and the convolution set K is set as

K = 5,10,15,20f g: ð22Þ

In the event timing and causality feature coding stage, set
the number of layers of Bi-LSTM to 2 and its dimension to
512. In the event timing and causality feature decoding stage,
set the number of network layers of the full connection layer
to 1 and its dimension to 256. In the event timing and cau-
sality prediction stage, set the number of network layers of
the full connection layer to 1, and its dimension is the total
number of event relation labels 7. In all parts using activa-
tion functions, except that the last step of event relation pre-
diction uses softmax activation function, the rest uses relu
activation function. The normal distribution with standard
deviation Nð0,0:01Þ is adopted for all parameters in the
model to initialize the parameters. The batch size during
training is 16. The back propagation algorithm is used for
learning, and the Adam optimizer is used for optimization
training. LR is set to 0.0001.

4.3. Baseline and Evaluation Metrics. In order to verify the
effectiveness of our proposed model, three comparison
models are selected for comparison:

CNN-GRU-CRF: Zheng proposed an event causality
identification model based on double-layer CNN-GRU-
CRF, which regards event causality identification as a
sequence annotation task. In this method, CNN and Bi-
GRU are used to obtain the local semantic features and con-
textual features of the text, respectively, and fuse them.
Then, CRF is used to obtain the dependency rules between
event relation tags, determine the final prediction tag
sequence, and complete the identification of event causality.

Attention-LSTM: Zhang proposed an event timing rela-
tion recognition model combining self-attention mechanism

and neural network. Taking the shortest dependent path
sequence of event sentences as the input of the model, first
use the nonlinear sublayer (CNN or RNN) to preliminarily
semantically encode the input of the model, then use the
self-attention network layer to capture the global informa-
tion in the output of the nonlinear layer, and finally use a
softmax layer to classify the event timing relation.

Joint identification method: Zhang proposed a joint iden-
tification model of event timing and causality based on neu-
ral network. This method takes the dependent path sequence
as the input of the model, takes the event timing identifica-
tion as the main task, and takes the event causality identifi-
cation as the auxiliary task. The correlation between
causality and temporal relation is realized through parame-
ter sharing. Finally, the relation classifier is used to classify
timing and causality, respectively.

In addition, since we proposed three different parameter
sharing strategies in the joint event relation identification
stage, we also carried out experiments on three different
parameter sharing strategies.

4.4. Quantitative Results. For the task of event timing and
causality identification in the text, the accuracy, recall, and
F1 are used to evaluate the performance of the model.
Table 1 shows the specific values of the experimental results
of the comparison model and the three models based on the
parameter sharing strategy. Figure 5 more vividly shows the
accuracy, recall, and F1 of the event relation extraction by
different models. It can be seen that the model proposed in
this paper has been significantly improved. It can be seen
from the data in the table that compared with the compari-
son model, the event relation joint identification model
based on multiscale convolution neural network and sharing
strategy has improved in various evaluation indexes. By
comparing the experimental data of three shared parameter
models, it can be found that the performance of the model
based on shared coding and decoding layer is relatively bet-
ter, while the performance of the model only shared coding
layer is relatively weak.

By comparing with two single event relation identifica-
tion models (CNN-GRU-CRF and attention-LSTM model
in the table), it is found that the joint event relation identifi-
cation model based on multiscale convolution neural net-
work and sharing strategy proposed in this paper considers
the correlation between event timing and causal relation,
integrates event timing characteristics with event causal
characteristics, and learns the correlation characteristics,
which makes the model perform better in implicit causality
identification and sequential, synchronous, and temporal
differentiation tasks. Compared with the joint identification
model (joint identification method in the table), it is found
that although this method also considers the correlation
between event timing and causality, it does not well model
and represent the semantic features of the text itself in the
previous feature construction stage, resulting in the lack of
some semantic features of the text, so the performance of
this model is relatively poor. Through the experimental
results of the three proposed parameter sharing models, it
is found that the strategy of sharing coding and decoding
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layer comprehensively considers the different semantic
information of event relation semantic features in the coding
stage and decoding stage and integrates the event relation
features, so it can well correlate the event timing relation
and causality and play the role of auxiliary prediction.

In addition, in order to highlight the importance of each
module in our model, we also conducted ablation experi-
ments. The experimental results are shown in Table 2.

The number of layers and parameter settings of each
model in the table are the same as those of the previous
experiments. MCNN indicates that only multiscale local
semantic features of text are obtained. GRU indicates that
only context semantic features are obtained. MCNN-GRU
acquires both features. MCNN-GRU-sharing also adds a
parameter sharing policy. From the experimental results, it
can be seen that compared with the context semantic fea-
tures, the multiscale local semantic features obtained by
MCNN are more important for the identification of event
relations. By combining the two semantic features and fully
modeling the semantic features of the text, the accuracy of
event relation recognition can be further improved. The
introduction of sharing strategy can fully consider the corre-
lation characteristics between event timing and causality and
play an auxiliary role in prediction.

5. Conclusion

Aiming at the difficulty of identifying the implicit causal
relation of events in text and distinguishing the sequential
and synchronous temporal relation, this paper proposes a
joint event relation identification model based on multiscale
convolutional neural network and sharing strategy. The con-
text sequence semantic features and multiscale local seman-
tic features of the text are obtained through Bi-GRU and
multiscale CNNs, respectively, and then, the context
sequence semantic features and multiscale local semantic
features are fused to make full use of the rich semantic infor-
mation in the text. Then, the coders and decoders of causal-
ity and temporal relation are constructed, respectively, to
amplify the causality and temporal features implied in the
semantic features of the text itself. In addition, we use three
different shared parameter strategies to realize the correla-
tion between temporal features and causal features, so that
temporal features and causal relations can provide addi-
tional semantic features for each other’s accurate prediction.
We evaluated the proposed method on the constructed data-
set. The results show that the performance of this method is
better than that of the previous methods in the joint identi-
fication of event timing and causality.
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