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The application of remote sensing images in water body recognition has become an effective method for ecological environment
detection and evaluation, which has the disadvantages of low efficiency due to the existence of interpretation marks and rich
interpretation experience in the current water body environment recognition, and overreliance on human experience. In this
paper, the water body recognition method is applied to remote sensing images by combining the deep convolution generation
network and the combined features, which has the advantage of high recognition accuracy. In the convolutional neural
network, a five-layer convolutional neural network is used to construct a remote sensing water information extraction model,
the transfer learning idea is introduced, and the densely connected feature fusion structure is added, so as to achieve the
purposes of accelerating the convergence speed of the neural network, reducing the requirements of the neural network on the
scale of training data, and reducing the loss of spatial hierarchical information and small object information. Compared with
SVM, DBN, and CNN models, the experimental results show that the recognition accuracy of the proposed method is as high
as 95. 69% under the constraint of scale window, which has a wide range of application scenarios and practical significance.

1. Introduction

Remote sensing technology is a technology that collects elec-
tromagnetic radiation information of ground objects and
targets from artificial satellites, aircraft, or other aircraft
and identifies the earth’s environment and resources [1].
Real-time and efficient remote sensing data are obtained by
means of remote sensing technology, and a series of work
such as flood range extraction, disaster location, disaster
information analysis, and disaster development trend evalu-
ation are completed, providing data guarantee for remote
sensing monitoring of flood disasters [2]. Satellite remote
sensing is a sharp weapon for natural disaster monitoring,
which plays an important role in natural disaster prediction,
monitoring and early warning, risk assessment, decision-
making and command, emergency rescue, recovery and
reconstruction, etc. In recent years, UAV remote sensing
technology has been widely used in disaster reduction and

relief work of natural disasters such as earthquakes, floods,
and typhoons and has played an important role in predisa-
ster early warning preparation, disaster monitoring and res-
cue, and postdisaster assessment and recovery. Compared
with unmanned aerial vehicle remote sensing, the advantage
of satellite remote sensing lies in the periodic revisit of satel-
lites, which can continuously obtain postdisaster data. By
making the time series analysis map of water body changes
in disaster areas, the information of water body changes in
disaster areas can be obtained, and the disaster situation
can be analyzed. However, during the flood disaster, the
affected areas are often cloudy, rainy, and other bad weather,
and optical remote sensing satellites are greatly affected by
the weather, so it is difficult to obtain high-quality optical
remote sensing satellite images. At the same time, the revisit
period of medium- and high-resolution observation satellites
can reach several days to ten days. When floods suddenly
occur, there may be a problem that there is no satellite
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transit. Unmanned aerial vehicle (UAV) remote sensing has
the advantages of fast response speed, strong maneuverabil-
ity, and working under the cloud, which is more in line with
the characteristics of high timeliness and accuracy of data
acquisition in flood emergency relief. The rapid develop-
ment of UAV remote sensing technology provides us with
a reliable means to obtain real-time disaster information.
The UAV flight platform is equipped with various sensors,
which can accurately obtain the real-time image data of the
disaster area. After interpretation and analysis, the disaster
information of the width of the levee breach; the flooded
area; the damage of buildings; the damage of roads in the
disaster area, crops, and aquaculture; etc. can be extracted,
providing important data support for the decision-making
of disaster reduction and relief work.

With the development of artificial intelligence and
machine learning technology and with the help of artificial
intelligence machine learning algorithm relying on remote
sensing images, intelligent analysis, automatic extraction,
and visual display of remote sensing data show the charac-
teristics of high timeliness, low cost, more convenience,
and more accuracy, which changes the disadvantages of tra-
ditional remote sensing data processing, such as long time-
consuming and low efficiency and brings great changes to
the application of massive remote sensing data [3]. Based
on the deep learning semantic segmentation technology of
remote sensing images [4], a neural network semantic seg-
mentation model is constructed by using the deep learning
method. By automatically learning and extracting the fea-
tures of remote sensing images, end-to-end classification
learning is carried out, and each pixel in the images is
assigned to its own category label. Compared with tradi-
tional methods, the depth combination of remote sensing
spatial information and model algorithm has made great
progress in remote sensing image classification, object detec-
tion, image semantic segmentation, and other application
directions [5].

Previously, we proposed a deep neural network for
obtaining remote sensing images for reconstruction, but
there are some problems, such as the deeper the network
trains Vietnam; low resolution and low frequency informa-
tion will be regarded as high frequency information [6].
Therefore, we propose a single-resolution superresolution
algorithm based on gated convolution neural network
(PGCNN), which is mainly composed of multiple residual
blocks, each of which contains well-designed gated convolu-
tion units, which can provide weights to control the trans-
mission of high and low frequency information, so the
main network has more value for high frequency informa-
tion processing. Convolution neural network is widely used
in remote sensing field, but the core of remote sensing intel-
ligent task is to solve the context information in images.
Because the traditional architecture method is only to
improve efficiency, so that the image size can be adjusted
to a smaller resolution to simplify the data, which will make
the information in the text lost. A learning framework of
context information retention architecture for remote sens-
ing scene classification is called CIPAL for short. It makes
the most of the context information in RSIs and also intro-

duces channel compression to reduce memory and time, so
there is more architecture space. Experiments show that
CIPAL is more time-saving than similar architectures. On
the other hand, it helps us understand that different types
of representations are very important for RSI intelligent
understanding [7].

With the rapid urbanization process, how to detect
building information quickly and accurately is a hot research
topic at present. There are a series of problems in traditional
algorithms, such as poor semantic segmentation and rough
edges [8]. At present, the improved U-Net-based deep con-
volution neural network uses end-to-end semantic segmen-
tation and model fusion strategy, which makes the data set
up to 70.4%. In the field of remote sensing image processing,
there are often a large number of image data. Generally,
superresolution methods are used to restore images to high
resolution, but there are many parameters and large amount
of calculation, which is not practical. Therefore, a feedback
ghost residual dense network (FGRDN) is proposed. The
convolution of residual dense blocks (RDBs) is replaced by
ghost modules (GMs) in this network, which avoids param-
eter increase, converges parameters quickly, and improves
network performance [9]. With the development of science
and technology, UAV is no longer simply used for entertain-
ment but has been used in various studies. We propose a
water range estimation method based on UAV remote sens-
ing data, which mainly uses sensors to collect and process
data and obtain exact information to estimate water range.
In the experiment, three kinds of sensors are selected and
carried by UAV, and 6 water bodies are taken as data.
Finally, several strategies for estimating water body range
by using image processing tools are obtained. The results
show that the thermal infrared orthogonal splicing is the
best [10]. The difference of sensor type and product will
affect the plane accuracy of water body range. The above
research work has certain research significance for the recog-
nition and application of neural network in water images,
which solves the application problems in different scenes
and improves the safety of people’s lives. However, this solu-
tion is studied under the traditional technology and algo-
rithm, and its recognition accuracy and accuracy are low.
When facing the specific scene application, the algorithm
produces different effects. The convolutional neural network
proposed in this paper is based on the traditional algorithm
for water recognition and application in specific scenes and
has good results from the application of this paper.

2. Remote Sensing Water Body Recognition
Based on Convolution Neural Network

2.1. Overview of Convolution Neural Networks. Convolution
neural network was proposed by Fukushima University in
1988 and widely used in the field of machine learning [11]
ferent from SDAE model; convolution neural network
model adopts supervised learning. Firstly, the higher-order
features of water body are studied in convolution layer and
pool layer, and then, BP algorithm is used to optimize the
whole neural network in the whole connection layer to min-
imize the error [12, 13]. The convolutional neural network is
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constructed by imitating the biological visual perception
mechanism and can perform supervised learning and unsu-
pervised learning. The convolutional kernel parameter shar-
ing in the hidden layer and the sparsity of interlayer
connections enable the convolutional neural network to
learn lattice features, such as pixels and audio, with a small
amount of computation, a stable effect, and no additional
feature engineering requirements for data.

The specific step of training convolution neural network
is to randomly select a sample ðX, YÞ from all alternative
training samples, take X as the input of the network, trans-
mit it to the output layer through subsampling and some
convolution, and calculate the corresponding actual output
value [14]. The calculated actual output value O is compared
with the expected output value Y , and an error value is cal-
culated. According to the principle of minimum error value,
the weight matrix is adjusted in the opposite direction of
each layer until the actual error reaches the expected error.

Ep =
1
2〠j

ypj − opj
� �2

: ð1Þ

The network diagram of convolution neural network
(CNN) extracting features from remote sensing images is
shown in Figure 1.

For training convolution neural network, the specific
transformation and fine-tuning process are as follows:

(1) See Equation (2) for the calculation formula of fea-
ture learning and classifier:

X = f x, ω, bð Þ,w ∈ Rw, b ∈ RB,
Y = softmax X, θð Þ:

(
ð2Þ

(2) The objective function is optimized by Formula (3)

min
θ

J ω, b, θð Þ = −
1
N

〠
m=1

〠
n=0

log Ym nð Þð Þ + αR ωð Þ + βR bð Þ,

ð3Þ

where α and β are the attenuation coefficients of weight and
bias, respectively.

2.2. Joint Feature Extraction. By analyzing the spectral fea-
tures, texture features, and spatial geometric features of
domain water, the following features are selected as the
input data of convolution neural network:

(1) Single Band Threshold. By detecting the brightness
value of short infrared band, we can sense the slight
change of surface soil water content within a certain
threshold range, which can be used to distinguish
water from other surface objects. Formula (4) is
defined as follows:

Band5 > T: ð4Þ

(2) NDWI is usually used to calculate the area coverage
of water bodies in an area. Because of the close rela-
tionship between the water body and the surface veg-
etation, even in places with abundant water
resources, the vegetation is very lush. Therefore, the
use of NDWI increases the spectral differences
between water and vegetation. Formula (5) is defined
as follows:

NDWI = NIR −Green
NIR + Green : ð5Þ

(3) Multiband Spectral Relationship Method. Multiband
spectral relation method is to effectively combine
the four bands in remote sensing images, enhance
the difference between water information and
shadow, and accurately and quickly eliminate
shadow information caused by external environment
or other factors. Formula (6) is defined as follows:

Band2 + Band3ð Þ − Band4 + Band5ð Þ > 0: ð6Þ

(4) Improved Normalized Water Body Index. It uses log-
ical expressions related to midinfrared band (MIR)
and green belt structure to enhance the contrast

Output

Input image C (convolution layer) P (pooled layer) D (full connection layer)

Figure 1: Schematic diagram of CNN network structure.
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between water body and surface buildings and
reduce the confusion influence on remote sensing
water body recognition. Formula (7) is defined as
follows:

MNDWI = MIR −Green
MIR + Green : ð7Þ

(5) Normalized Building Index. Using NDBI of short
infrared band and midinfrared band, the corre-
sponding formula is constructed to eliminate the
building information in water body of remote sens-
ing image. Formula (8) is defined as follows:

NDBI = MIR −NIR
MIR + NIR : ð8Þ

(6) Histogram Features in Spatial Information. Image
histogram features extracted by using gray value
and direction change of local texture of remote sens-
ing image. The specific calculation process of histo-
gram features in spatial information is as follows:

Assuming a point c centered on an arbitrary number of
pixels ðx, vÞ in a local area of the remotely sensed image,
Formula (9) represents a concrete display of eight pixel
points and textures adjacent to the window 3 × 3:

N C1 − Ci,⋯, C8 − Cið Þ: ð9Þ

Other pixels in the window are binarized, that is, “0” and
“1.” The calculation formula is shown as follows:

N ≈ S C1 − Ci,⋯, C8 − Cið Þð Þ, ð10Þ

where S stands for:

S Xð Þ =
1, X > 0,
0, X ≤ 0:

(
ð11Þ

When the 8-bit binary number is obtained and the
weights of pixels at different positions are determined
according to (12), the LBP value of the window is obtained,
as shown as follows:

LBP Xi, Yið Þ = 〠
8

i=0
S Cj − Ci

� �
2j, j = 1,⋯, 8: ð12Þ

The LBP value of the center pixel is shown in Figure 2.

2.3. Training Sample Selection. The quality of selected train-
ing samples not only has an important impact on the accu-
racy of remote sensing water body recognition [15, 16]. In
this paper, the following methods are designed, and the
spectral characteristics of water bodies in the experiment
are automatically selected.

2.3.1. “Matrix Roulette” Training Sample Selection Method.
Assuming that the total number of training samples is a,
the remote sensing image of the whole study area is regarded
as a segmented i ∗ j “matrix round” to ensure that the
selected samples are randomly distributed in the image of
the whole study area, and samples A/i ∗ j are randomly
selected in each rectangular area so that the selected training
samples cover the image of the whole study area.

2.3.2. Selection of Training Samples for “GNDWI” Index.
Aiming at the difficulty and low automation of traditional
sample selection, a threshold segmentation method of
remote sensing image based on multiband spectral relation-
ship is proposed. The specific steps of the algorithm are as
follows.

Step 1. Calculate the GNDWI index value of the image pixels
in the study area, set the appropriate threshold value, and
preliminarily segment the remote sensing image. See For-
mula (13) for the specific calculation formula:

GNDWI = NDWI −NDWI‘
λ

: ð13Þ

44 120 193

2108332

61 150 78

0 1 1

110

0 1 0

LBP = 01100100 = 100

Figure 2: Schematic diagram of LBP.

Table 1: Comparison table of network training parameters.

Activation function of
convolution neural network Error Max iteration

Input layer Output layer

RBF = 0:4 CNN 0.012 250
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Step 2. Use multiband spectral relationship method to calcu-
late the eigenvalues of all pixels in the study area. Set a rea-
sonable defect value to segment the image twice to obtain
more accurate water information.

Step 3. Use (14) to select training samples.

A =〠
i,j

θi ∗ Awater + θi ∗ Aotherð Þ, ð14Þ

where θi and θ j, respectively, represent the proportion of
water samples and nonwater samples in the total samples
in the whole study area. The setting of its value is obtained
by experimental test.

2.3.3. Feature Selection of Spatial Features. In order to make
full use of the spatial structure information between adjacent
pixels in the image, we calculate the average value of all
nearby pixels in the n ∗ n window and help to extract new
special data as the input of the model.

2.4. Modeling. Firstly, as the input of the neural network
convolving the obtained new feature set (32 dimensions),
the number of input nodes of the model is 32 (nodes corre-
spond to the feature dimension one by one), and then Y is
“0” and “1,” that is, water body and nonwater body. The
number of nodal neurons in the implicit layer of the model
is obtained as follows:

S =
ffiffiffiffiffiffiffiffi
i + j

p
+ λ: ð15Þ

Table 3: Image data of some experimental samples.

Image serial
number

Name
Height ∗

width
Sum of
pixels

Experimental
sample

1 SX_1 227∗250 56750

2 SX_2 250∗302 75500

3 GS_1 400∗302 120800

4 GS_2 200∗150 30000

5 XJ_1 302∗302 91204

6 XJ_2 500∗158 79000

SX: Shanxi; XJ: Xinjiang; GS: Gansu.

Original
image Pretreatment Joint feature

extraction
Sample

1
Sample

2
Sample

3

Deep SVM network
training

5 times cross entropy
verification 

Automatic selection of
training samples

Water body information
extraction

Evaluation of recognition
accuracy and result analysis

No

Figure 3: Specific flow chart of water body information extraction.

Table 2: Detailed information table of study area.

Image serial
number

Study area
Imaging
time

Strip
number

Climate

1 Shanxi June 2021 34/126 Drought

2 Xinjiang June 2021 29/146 Drought

3
Gansu
Province

August
2020

37/129 Damp
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Through experimental tests, the final parameters are i
= 32, j = 2, and λ = 12; the number of hidden neurons in
the two layers is 18 and 16, respectively, and the free kernel
function RBF is 0.4, as shown in Table 1.

The convolution neural network model is initialized by
the abovementioned network parameter comparison table,
and a remote sensing water information extraction model
is constructed, which consists of 32 input units, 18 and
16 hidden layer units, 1 convolution neural network unit,
and 2 output units. The specific flow chart is shown in
Figure 3.

Firstly, the algorithm is used to extract features and
select samples from the image of the study area, and test
samples and training samples are obtained, respectively.
Then, in order to solve the overfitting phenomenon and
enhance the model, five adjoint cross entropy principles
are used to test the generalization ability of samples, so
as to realize faster convergence of convolution neural
network.

3. Combining Depth Convolution Generation
Network and Joint Features for Water
Body Recognition

3.1. Introduction of Study Area and Experimental Data. In
this paper, the details of the selected research fields are
shown in Table 2.

Where the study area selected by Xinjiang is centered on
Yilichuan Basin, Gansu is the coastal waters of Jialing River

x1

x2

x3

x4

x173

y1

y2

y3

y64

X173: Represents the input dimension 173 

H: for hidden layer 

X64: Represents the output of 64 dimensions after
dimensionality reduction

Figure 6: Dimension reduction schematic diagram.

(1) N = 1 (2) N = 3

(3) N = 5 (4) N = 8

Figure 5: Joint feature calculation process of windows with
different scales, where N represents windows with different
proportions.

NDVI, NDWI, MNDWI, LBP, EMAPSS
(area), C (perimeter), GMLM (gray level

co-occurrence matrix), H (histogram), K-T
(k-t change)

3⁎3 windows 

The total feature
dimension is 173

dimensions

The processed image

Figure 4: Construction of new feature matrix.
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in southern Gansu, and Shanxi is Luliang. Selecting the
above three areas as the study area, the recognition general-
ization ability of the proposed model and the same water
distribution situation in different areas are verified.

3.2. Remote Sensing Image Preprocessing. Before the experi-
ment, the remote sensing images of the three regions were
digitized to improve the image quality and reduce the impact
on the accuracy of the water body recognition model.

Experiments were carried out on four images, and each
image had different clipping sizes. Finally, some images are
randomly selected from the images of each region as training
samples and the rest as test samples. Some experimental
samples are shown in Table 3.

3.3. Spatial Joint Feature Extraction. Remote sensing images
are composed of multiple bands, and the spectral reflectance
of water in different bands is not near G phase. Therefore, it
is of great significance to extract spectral features of water
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Figure 7: Influence of hidden layer number in water body identification model on experimental results.

Table 5: Comparison table of experimental results.

Accuracy%, layers 1 2 3 4

100,000 91.02 93.09 92.78 91.89

500,000 92.1 93.65 93.32 92.79

100,000.00 93.26 95.69 94.39 93.98

Table 6: Comparison of experimental results.

Accuracy%, model SVM DBN CNN DCGAN

100,000 92.13 94.19 94.34 93.09

500,000 93.64 94.76 94.88 93.65

100,000.00 94.53 95.39 95.31 95.69

Table 4: Initialization settings of water body identification model parameters.

Number of input layer nodes (feature dimension) 64

Number of output layer nodes 2 (water and nonwater)

Generate model (G)
Learning rate 0.005

Momentum 0.9

Discriminant model (D)
Learning rate 0.005

Momentum 0.9

Number of iterations 1000

Activation function tanh

Classification function SoftMax

Convolution kernel size 5

Pool layer filter size 2

Number of neurons in full connection layer 1024
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bodies. In order to better understand and grasp the dynamic
characteristics of water body, researchers at home and abroad
have put forward many methods to extract spectral character-
istics of water body (such as water index method) [17].

However, only using spectral features cannot fully char-
acterize the fine local water information. Therefore, there are
many methods to extract spatial information from remote
sensing images based on mathematical models [18, 19].

Figure 4 shows the new feature matrix construction pro-
cess and the relationship between each pixel and the corre-
sponding matrix.

The 3∗3 window represents the constraint window
size; that is, the scale size is 3∗3. When the color window
is too large, the detailed information of the water body is
easily lost. If the color window is too small, the water
body information in the remote sensing image cannot be
well represented. Therefore, the experimental results show
that the window size of the final selected scale is 3∗3; that
is, N = 3.

3.4. Constraint Algorithm for Joint Features. The basic steps
of the constraint algorithm are as follows:

90

91

92

93

94

95

96

SVM DBN CNN DSGAN

A
cc

ur
ac

y 
(%

)

Water body information extraction model

100,000
500,000
100,000.00

Figure 8: Experimental comparison results.
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Figure 9: Experimental results.
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(1) Each remote sensing image is a pixel point group. In
the object image, any pixel point is taken as the object
pixel point, and N ∗N of the central pixel point is
taken as the pixel point in the reference window area

(2) Setting the pixel points in the N ∗N window of the
pixel points to be identified, respectively, obtaining
the spectral and spatial combined characteristics of
each pixel point in the scale window

(3) Based on the given spectral and spatial coupling,
including the unique constraint algorithm and for-
mula, the sum of pixels in the region window is
calculated

(4) Finally, after obtaining the sum of all the pixels in the
region window, the average value of all the pixels is
calculated

(5) As a new feature set, the size of the scale window can
be controlled by adjusting the size of N using the
average value of the identified pixel points. Figure 5
shows the calculation process of common features
in different scale windows

In order to improve the accuracy in the recognition model
of spectral and spatial coupling characteristics [20, 21], the
scale window with the size of N = 3 is finally selected not only
to preserve the correlation between aberrations but also to pre-
serve the detailed features of underwater information in
remote images as much as possible. However, due to the high
dimension of coupling characteristics extracted by spectral
and spatial constraint algorithms and the great difficulties in
the operation of the model [22, 23], this paper maps the
high-order element characteristics from the encoder to the
low-dimensional space of the nonlinear unary scheme to test
the smooth operation of the model. As shown in Figure 6, a
schematic process of dimension decline is shown.

4. Experimental Results and Analysis

Using the powerful self-learning ability and high-order fea-
ture mining ability of deep learning algorithm, a water infor-

mation extraction model based on deep deconvolution game
generation network and combined features is established.
Visual Studio 2021 and Anaconda 3 are used to build an
experimental simulation platform, and the effective features
of water signal sum in remote sensing images are extracted
by spectral and spatial coupling feature constraint algorithm
[24]. The overall performance of the proposed water infor-
mation extraction model is tested by experiments.

In the water information extraction model, the initial
settings of the number of layers and nodes are shown in
Table 4.

4.1. Influence of the Number of Hidden Layers on the
Experimental Results of Water Information Extraction
Model. When depth deconvolution competes with genera-
tion model, the change of hidden layer between generation
model and discrimination model will also have a certain
impact on water identification model. Select three different
sets of experimental data in the above table to test the per-
formance of the model, and change the number of hidden
layers to find the best number of hidden layers of the model.
The specific experimental results are shown in Figure 7.

Specific experimental results are compared as shown in
Table 5.

As can be seen from Table 5 and Figure 7, if the amount of
image data is fixed, the recognition accuracy may increase in
advance and decrease as the number of implicit layers of the
water information extraction model increases. As can be seen
from the above figure, when the number of hidden layers is 2,
the accuracy is the highest, which is opposite to the water body
recognition accuracy of the networkmodel generated by depth
convolution proposed in this paper. On the other hand, if the
amount of training data reaches 800,000 and the amount of
test data reaches 200,000, the recognition accuracy of the
water body recognition model reaches 95.69%. In order to
obtain better water information extraction results, the hidden
layer of the discriminant model in the generation model and
the resistance model is set to two layers, and the parameters
of other models are shown in Table 6.

4.2. Comparison with Traditional Machine Learning Models.
In order to test the overall performance of the network water
information extraction model and the proposed depth con-
volution generation, a traditional machine learning algo-
rithm is extracted and compared with the proposed model.
Similarly, we optimize the parameters of the comparative
machine learning model in order to accurately evaluate the
performance of the proposed water recognition model. The
comparison of specific experimental results is shown in
Figure 8.

Table 8: Comparison of experimental results.

Accuracy%, scale 1 3 5 7

100,000 90.39 93.09 93.19 91.41

500,000 91.71 93.65 94.35 92.99

100,000.00 92.43 95.69 95.03 93.84

Table 7: Initialization settings of model parameters.

Number of input layer nodes 64

Number of nodes in output layer 2 (water and nonwater)

Hidden layer number of generation model and discrimination model They are all 2 floors

The number of hidden layer nodes, respectively 128 and 256

Fully connected layer 1024

9Wireless Communications and Mobile Computing



Specific experimental results are compared as shown in
Table 6.

See Figure 8 and Table 6. It can be seen from the fig-
ures and tables that with the increase of remote sensing
image data, the accuracy of all water body recognition
models is steadily improving. With the increase of input
data, these machine learning models can learn more effec-
tive water feature information from image data, so the
accuracy of water recognition can be improved with the
increase of data.

4.3. Influence of the Size of Constraint Scale Window on
Water Body Recognition Results. In order to find the best
constraint window, this summary uses several scaled win-

dows in Figure 9 to test the proposed water body identifica-
tion model. If the amount of input data of the remote
sensing image is constant, the features in the case of window
sizes n = 3, 5, and 7 are spatially limited. The basic initializa-
tion parameter settings of the model are shown in Table 7.

In the constraint algorithm of spectral and spatial cou-
pling characteristics, the size of scale window has an impor-
tant influence on the final recognition effect of water body
recognition model. Therefore, pixels of target objects in dif-
ferent zoom window areas can be identified. Then, choose
the best n and compare it with the experimental results.
The experimental pair is shown in Figure 9.

The comparison table of specific experimental results is
shown in Table 8.
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Figure 10: Model-comparison of experimental results before and after spatial constraint of 100,000.
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Figure 11: Model-comparison of experimental results before and after spatial constraint of 500,000.

10 Wireless Communications and Mobile Computing



As can be seen from Table 8 and Figure 9, when the
amount of input data is constant, with the increase of
scale window N , depth convolution occurs, which reduces
the recognition accuracy of the water body recognition
model. This means that the closer the recognition pixel
is, the greater the impact on the recognition pixel. The far-
ther the distance, the smaller the impact. Experimental
results show that when the scale window is n = 3, the
accuracy of water body recognition model is high. There-
fore, the extraction ratio window of spectral and spatial
coupling features is set to 3.

4.4. Test the Effectiveness of Spectral and Spatial Joint Feature
Constraint Algorithm for Water Body Information
Extraction. By testing the spectral and spatial constraint
algorithms, we verify the effectiveness of the whole model.
When the scale window n is set to 3, an average of all pixels
in the n ∗ n window is obtained to combine the recon-
structed new features with the input data of the water body
recognition model. The specific experimental results are
shown in Figures 10–12.

As can be seen from Figures 10–12, if the water body rec-
ognition model is trained using the constrained common
features, the water body recognition model obtains a better
recognition effect. Because of the coupling characteristics
of spectrum and space, the constraint algorithm not only
eliminates the spatial correlation between adjacent aberra-
tions in remote sensing images but also reduces the interfer-
ence of other aberrations in adjacent areas on recognition
aberrations. Figures 10–12 show the different amounts of
data, respectively. When the amount of input data reaches
1 million, whether there are spatial constraints or not, the
recognition effect of water body recognition model based
on depth convolution is better than other traditional
machine learning algorithms.

5. Conclusion

Obtainingmore accurate and less noisy water information from
remote sensing images is the key to water body recognition. By
introducing the concept of distributed parallel computing and
based on deep learning mode, the correctness, automation,
and running speed of extracting models from water informa-
tion are improved to a certain extent. However, with the geo-
metric growth of remote sensing image data, how to obtain
more and more accurate marker data for training water body
recognition model is a challenge. To solve the above problems,
this paper constructs a water body information extraction
model with stable spectral and spatial coupling features by using
different feature knowledge such as spectrum, texture, shape,
and spatial geometry and identifies water bodies in remote sens-
ing images through depth learningmodel. Considering the con-
stant correlation between adjacent pixels in remote sensing
images, we propose a spatial constraint algorithm with spectral
and spatial coupling features to extract new common features
and use the new feature set as the input solution of the depth
learning model to train the model, so as to realize the correct
extraction of water information. Experimental results show that
the traditional deep learning water recognition model is supe-
rior to shallow support vector machine (SVM) network in
learning ability and feature extraction ability. The water body
recognition model proposed in this paper has good representa-
tiveness in feature learning and image data processing of gener-
ation model and discrimination model and has higher
recognition effect than traditional beam learning model.

Data Availability

The experimental data used to support the findings of this
study are available from the corresponding author upon
request.
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Figure 12: Model-comparison of experimental results before and after spatial constraint of 1 million.
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