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Currently, smart devices of Internet of Things generate massive amount of data for different applications. However, it will expose
sensitive information to external users in the process of IoT data collection, transmission, and mining. In this paper, we propose a
novel indexing and searching schema based on homocentric hypersphere and similarity-aware asymmetric LSH (H2SA-ALSH)
for privacy-preserved data collection and mining over IoT environments. The H2SA-ALSH collects multidimensional data
objects and indexes their features according to the Euclidean norm and cosine similarity. Additionally, we design a c-k-AMIP
searching algorithm based on H2SA-ALSH. Our approach can boost the performance of the maximum inner production
(MIP) queries and top-k queries for a given query vector using the proposed indexing schema. Experiments show that our
algorithm is excellent in accuracy and efficiency compared with other ALSH-based algorithms using real-world datasets. At the
same time, our indexing scheme can protect the user’s privacy via generating similarity-based indexing vectors without
exposing raw data to external users.

1. Introduction

In recent years, Internet of Things (IoT) technology has been
applied to a wide range of applications [1, 2], mainly driven
by the rising number of Internet-connected devices that
already amount to several billion [3]. The devices of IoT
[4] aim to connect everyday objects, such as humans, plants,
and even animals, to the Internet to enable interactions
among these objects [5]. Applications of IoT have been
widely developed in medical healthcare [6, 7], vehicular net-
works [8, 9], and industrial IoT [10]. With the widespread
popularity of IoT, a massive amount of data is generated
and widespread at a relatively fast speed.

Thus, applications in different IoT domains have seen an
explosion of information generated from heterogeneous
devices every day. Recently, the data collection and mining
over IoT data streams have increasingly incurred research
interests [11–15].

However, due to weak privacy and security protection in
IoT devices, some smart applications of IoT expose sensitive

data and user privacy to security threats [16]. Thus, data
mining over raw data will collect and expose user-sensitive
information. As with stream data mining [17], interesting
knowledge, regularities, or high-level information, they can
easily introduce privacy protection policies. At present,
MIP (maximum inner production) search is prominent,
and it was used in a wide range of applications, such as
matrix factorization-based recommendation systems
[18–20], multiclass label prediction [21, 22], SVM classifica-
tion [23], and even deep learning [24]. However, it is time-
consuming to conduct the MIP search in high-dimensional
space. Moreover, it may cause user’s privacy leakage. A
query system needs to collect the raw data from devices of
the IoT system. Many types of research try to construct an
appropriate approximate structure for the search. It is usu-
ally called approximate maximum inner product (AMIP)
search [25–29], in which a given query q and a data object
x ∈D, D is the set of target objects, and the AMIP algorithms
will compute the approximate maximum inner product
results for q in D.
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The techniques of AMIP are often based on locality-
sensitive hashing (LSH) [30], which can solve the AMIP
problem in sublinear time. Currently, many algorithms
based on LSH are also proposed, such as L2-ALSH [28],
Sign-ALSH [31], Simple-ALSH [27], XBOX [32], and H2-
ALSH [33]. Additionally, many data mining tasks over mas-
sive datasets are also applied using LSH based algorithms
[34–37] to accelerate the MIP search. The common AMIP
data mining algorithms, such as L2-ALSH [28] and
Simple-ALSH [27], converts AMIP searching problem into
c-ANN searching problem. Recently, some novel methods
proposed to solve the high-dimensional AMIP search prob-
lems by introducing approximate features into the indexing
vectors.

Motivated by the promising techniques, we can extract
target features from raw data objects of IoT devices and con-
duct the maximum similarity search between the input vec-
tor q and the set of extracted indexing vectors, and only the
object of the matched features is needed to be transmitted to
the user for a final decision. Thus, it will protect the user’s
privacy from sensitive information collection and exposure
to third-parties query services [38, 39]. The contributions
of the paper are as follows:

(1) We propose a novel privacy-preserved indexing and
searching schema, termed H2SA-ALSH for high-
dimensional data objects collection and mining.
The indexing scheme is based on homocentric
hyperspheres and similarity-aware algorithm
(H2SA). The searching is applied to compute the
cosine similarity between a query vector and data
objects. The proposed schema can support AMIP
search, top-k search, etc., without exposing raw data
privacy

(2) We optimize the proposed indexing solution to fit
IoT data collection and mining. In the process of
IoT data collection, we establish an incremental
indexing mechanism, which indexes an input item
immediately, when a data item arrives. For IoT data
mining, we design SRP-LSH to accelerate the search
by filtering the low-similarity objects. Moreover, the
algorithm is not sensitive to the data, i.e., it presents
acceptable performance over different distribution
datasets

(3) We conduct comprehensive experiments to evaluate
the H2SA-ALSH indexing and searching scheme
using three real-world data sets. The experimental
results show that the proposed approach is more
accurate and efficient than the state-of-the-art algo-
rithms. As a result, a searching query will not be
directly conducted over the raw data objects in IoT
environments

2. Problem Definition

In the section, we briefly present preliminaries of the pro-
posed techniques and state our research problem formally.
Then we use the common notations in AMIP literature

and present the MIP and corresponding AMIP searching
problem formally.

Definition 1. Maximum inner product (MIP) search. For a
data collection T that already received n data objects and
an arbitrary query q ∈ Rd , the MIP search aims to find t ∈
Rd that satisfies

t = argmaxt∈T q, th i: ð1Þ

Definition 2. The c-approximate maximum inner product (c-
AMIP) search. Given an approximate ratio cð0 < c < 1Þ, the
goal of the c-AMIP search is to construct an approximate
structure, and a user can find the approximate result t, t ∈
T , which satisfies the following condition for a query q ∈
Rd , i.e., ht, qi ≤ cht∗, qi, t∗ is the accurate result of the MIP
search.

In the paper, we convert the c-AMIP search problem to
the c0-ANN problem. The c0-ANN problem aims to find
the nearest neighbour according to the Euclidean distance.
The definition of the c0-ANN problem is as follows:

Definition 3. Given an approximate ratio c0ðc0 > 1Þ, and for a
query vector q ∈ Rd , c0-ANN aims to find data object t, t ∈ T ,
which satisfies the following formula:

t, qk k ≤ c0 t∗, qk k; ; ð2Þ

where t∗ is accurately obtained by the MIP search.

The LSH is a common method to solve the c0-ANN
problem. We use the definition of the nearest neighbour
whose distance measure is measured as Simðq, pÞ to depict
the LSH paradigm. Let h be a hash function that maps an
item to a hash value, and the corresponding definition is as
follows.

Definition 4.When a hash family H meets the following con-
ditions, it can be called ðS0, cS0, p1, p2Þ sensitive. For multidi-
mensional data objects x and y, the hash function h from H
satisfies:

(1) If Simðx, yÞ ≤ S0, then, the probability of hðxÞ = hðyÞ
is at most p1

(2) If Simðx, yÞ ≥ cS0, then, the probability of hðxÞ = hðyÞ
is at least p2

where c < 1 and p1 > p2, respectively.

We adopt the common LSH technology to solve the
ANN search problem, and similar data objects have higher
probability of getting the same hash function results than
those with lower similarity. Thus, the LSH can solve the
nearest neighbour and similarity problems of multidimen-
sional data even in linear time [40].

Furthermore, we transform the AMIP search problem
into the nearest neighbour problem via asymmetric locality
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sensitive hashing (ALSH). There have been some researches
on ALSH technologies [27, 30, 31, 32, 33]. In this paper, we
use the QNF transformation [32]. For a data object t = ðo1,
o2,⋯,:odÞ and a query = ðq1, q2,⋯, qdÞ, the transformation
is as follows:

P tð Þ = o1, o2,⋯, od ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − tk k2

q� �
, ð3Þ

Q qð Þ = λq1, λq2,⋯, λqd ; 0½ �, where λ = M
qk k : ð4Þ

In formulas (3) and (4), the constant M is used to pres-
ent the largest Euclidean norm among the data collection T .
The maximum Euclidean norm may constantly change
when it collects more data from IoT devices. In our schema,
we assign an appropriateM to each ALSH unit, and theM is
the maximum Euclidean norm. For a data object t, ∥t∥≤M2.
Through the QNF transformation, the AMIP search prob-
lem can be converted into the nearest neighbour search
problem. The following formula can be used in the trans-
form:

Q qð Þ − P tð Þk k2 =M2 + λ2 qk k2 − 2λ t, qh i: ð5Þ

In Equation (5), for a query q,M2 and λ2kqk2 are con-
stant, so we have

argmax
t∈T

t, qh i⟺ argmin
t∈T

Q qð Þ − P tð Þk k2: ð6Þ

The argmin
t∈T

kQðqÞ − PðtÞk2 is the nearest neighbour

search problem, and it can be solved by the L2-LSH technol-
ogy quickly. We will present the signed random projections
LSH (SRP) and L2-LSH, where similarity measurement
methods are the correlation similarity and the L2 distance,
respectively. When the distance is the correlation similarity,
let θ be the angle of two multidimensional vectors, A and B
be the multidimensional vector, where 0 ≤ θ ≤ 180. The dis-
tance of correlation similarity is

d A, Bð Þ = θ = arccos A, Bh i
Aj j ∗ Bj j

� �
: ð7Þ

The correlation similarity is 1 − dðA, BÞ, and the SRP-
LSH can solve the maximum correlation similarity search.
The procedure can be depicted as follows: first, a random
vector v with vi ∼Nð0, 1Þ is obtained. The random vector
determines a hash function hv, and the hash function hv will
return dualistic results. If hv, xi < 0, then, hvðxÞ = 0, else hvð
xÞ = 1. The LSH family H is formed by several random vec-
tors. By the SRP-LSH, we can conclude

Pr hv Að Þ = hv Bð Þ½ � = 1 − d A, Bð Þ
π

, ð8Þ

i.e.,

cos A, Bð Þ = cos π 1 − Pr hv Að Þ = hv Bð Þ½ Þð �ð Þ: ð9Þ

Now, we briefly propose the indexing schema based on
the asymmetric LSH scheme for high-dimensional AMIP
search. We also adopt the L2-LSH and SRP-LSH. The
indexing features from IoT devices were calculated by
the Euclidean norm and cosine similarity among the data.
More details, when a data object t comes, the schema cal-
culates the t’s Euclidean norm and keeps the feature into
an exact block according to the cosine similarity. The
exact block and the exact bucket determine the data item’s
storage unit. When conducting a query, the schema adopts
QNF transformation and searches the c-AMIP results
through the L2-LSH, precisely through the QALSH [32].
We have kept the block partition principle of H2-ALSH.
The blocks are divided by the Euclidean norm of the data
objects with the division ratio. Besides, we consider
another factor determining the inner product which is
the angle between the given query and the data objects.
We use SRP-LSH to divide one block into buckets, so
the buckets are the minimum storage unit in our schema.
The overview of our indexing schema is shown in
Figure 1.

When we conduct the AMIP search, we traverse the
blocks in order, traversing blocks from a large Euclidean
norm to a small block. Then, we traverse from high similar-
ity to low similarity according to the cosine similarity within
one block.

In our schema, the calculation can focus on the data
objects that can be considered as candidates, which have a
higher possibility of becoming the AMIP search results,
and the search process finishes when there is no necessary
to traverse the rest data objects. Thus, filtering the unneces-
sary data objects allows the schema to reach a remarkable
time performance.

Our work is different from the article [32], in which the
data object is treated as the static items, and all data are only
divided into buckets by Euclidean norm. Our schema con-
siders IoT environments, where the data is updated fre-
quently, and we cannot sort the whole static sets. Instead,
the input object will be inserted into our H2SA-ALSH unit
when it comes. The indexing construction does not decrease
the accuracy of the following queries. Therefore, our index-
ing schema is more appropriate for IoT scenarios where
the features are dynamically generated through distributed
devices and applications.

3. Indexing Construction

Given a continuous object series T , and an incoming object
ti ∈ T , we first calculate the Euclidean norm ktik. To effec-
tively divide the blocks ½S1, S2,⋯, SK �, we introduce the
interval rate b. Given an AMIP search approximation rate
c and the query angle β in the bucket, c0 is the
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approximation rate of ANN, and the b can be expressed as
follows:

b =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − c

c40 − c

� �
· l

s
, ð10Þ

where l = ð1 − β0 · ðtan β + 1/3 · tan3βÞÞ.
We present explanations about b and use S to represent

blocks. We assign a data object t into different blocks and
different buckets. There are several buckets B in Si, and dif-
ferent buckets represent the classification of different objects
according to the cosine similarity. Every indexing unit has a
unique identifier that consists of a block identifier (S) and
bucket identifier (B). The schema determines the specific
bucket identifier of the data object according to the hash
family of SRP-LSH. Assuming that the hash family of SRP-
LSH uses ks hash functions, the bucket number can be
expressed as ks bits. The bucket Mk can be initialized later.
All data objects that satisfy bMk < ti <Mk will be assigned
into the block Sk. When putting the data objects into the
buckets, the number of buckets gets larger. We set a thresh-
old N0, and the bucket will use QNF to convert the d
-dimensional data into the ðd + 1Þ-dimensional if the num-
ber reaches N0 and then builds QALSH indexing. For the
buckets which number of data objects is less than the thresh-
old N0, the raw feature is stored directly. When dividing the
block, the schema will determine the first block based on the
first data object t0 of T . The maximum norm Mbase of this
block is t0, and the block will set as the benchmark block.
Then, we can determine other data objects’ blocks. For the
subsequent data, we can calculate the specific block based
on the norm ti and the benchmark Mbase. The process can
be presented as the following Algorithm 1.

4. Similarity-Aware AMIP Searching

To respond to the arbitrary maximum inner product query q
, we first need to calculate the Euclidean norm q and then we
set the MIP value as φ = −∞. Since the maximum norm of
the data objects in the first block is the largest one, it is most

likely that the block contains the MIP data object. Thus, we
traverse the block from S1 to SK . Each block contains many
buckets according to the angle similarity. Moreover, the MIP
data objects are most likely to have high cosine similarity
with the query q, and the traversal of the buckets is per-
formed in ascending sequence as the angle.

For a block Si, the AMIP process can be described as the
three main stages. First, for a query q and block Si, we first
calculate a deadline condition ub. All t ∈ Si satisfy bMi−1 <
∥t∥≤Mi, and ht, qi = ∥t∥∥q∥cos aβ≤∥t∥∥q≤Mi · q∥. For a
block, we can have ub =Mi · ∥q∥. In the AMIP algorithm,
we consider the effect of data norm ∥t∥, and the angle θ
between the query q and t ∈D. Since ht, qi = ∥t∥∥q∥cos β,
within each bucket, we use SRP-LSH to estimate the cosine
similarity β∗ between q and t ∈ Bi. If the similarities of the
buckets satisfy the given similarity, the schema will conduct
the AMIP search process. The cosine similarity calculation
will cause errors, and in the later section, we will demon-
strate the specific error. Then, we use these two deadlines
ub and given cosine similarity to AMIP in the buckets. (1)
Before starting to traverse the blockMi, the schema will stop
traversing the rest blocks if ub ≤ β0 and then the algorithm
will return the AMIP data object. (2) If ub > φ, we traverse
the buckets in the block, and if the cosine similarity does
not satisfy the given similarity, the schema skips the buckets
and traverses other buckets.

In the process of cosine similarity searching, we apply
hashing banding to improve the calculation accuracy. For
details, an identifier of a bucket can be represented by ks bits.
When we use the hashing banding, in which the ks bits are
divided into ks/bs bands, and each band has bs bits. For a
query q, the SRP-LSH hash functions will calculate ks bits,
which are also divided into ks/bs bands. If one of ks/bs bands
from q is the same as the corresponding band of the bucket’s
band, we term it as having a hash similarity collision, and the
angle meets our calculation requirement. The total AMIP
searching algorithm can be described in Algorithm 2.

5. Theoretical Analysis

5.1. Accuracy Analysis

A query vector q
Query

Query results {t
AMIP

}

.. .. .. .. .. .. t
2

t
1

t
n

.. .. .. .. .. .. ..···

Time series T
A data object t

i
 

A block that decided by the norm of t
i
; 

in each block we compute buckets according
to the angle between t

i
 and the query vector q.

Indexing

Figure 1: Overview of the method.
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Theorem 5. Set the approximation of c-AMIPS to cð0 < c < 1Þ
, and the approximate value of c0-ANN is c0. By setting b, the
probability that the result returned by Algorithm 2 meets c-
AMIP is ð1/2 − 1/eÞ.

Proof. According to the paper [33, 37], we know that the
probability that QALSH returns the result of c0-ANN is at
least ð1/2 − 1/eÞ. If we fix the QALSH error rate is 1/e, then
the AMIP algorithm that searches for MIP will return a

Input: a time series T with objects t1, t2,⋯, tk, an interval ratio b, and a threshold N0
Output: The number of disjoint K, K disjoint sets with blocks fS1 = fB1,⋯g, S2 = fB1,⋯g,⋯SK = fB1,⋯gg.
k = 1;
Compute ti, ti ∈ T ;
Mbase = ti;
While!EndðTÞdo

Si,Mi = get Block ðMbase, tiÞ;
Compute the bucket Bj of the block Si using SRP-LSH hash family;

PðtkÞ = ðtk,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

i − oj2
q

Þ;
Bj = Bj ∪ PðtkÞ;
IfjBjj ==N0then

Build hash tables for bj of using ALSH;
End
IfjBjj >N0then

Insert into QALSH indexing of Bj;
End

End
K = jSj;
Return K, fS1 = fB1,⋯g, S2 = fB1,⋯g,⋯SK = fB1,⋯gg.

Algorithm 1: Indexing of H2SA-ALSH.

Input: The query q, threshold N0, the number of disjoint sets K, and the structure of H2SA-ALSH: fS1 = fB1,⋯g, S2 = fB1,⋯g,
⋯SK = fB1,⋯gg;
Output: The approximate MIP objects tAMIP ⊂ C:
Compute q;
C = ϕ;
φ = −∝;
for i = 1 ; i ≤ K ; i + +do

ub =Mi∥q∥;
Ifub < φthen

Break
End
ForBj ∈ Sido

Compute the hash value BðqÞ of q using SRP-LSH hash family;
If the BðqÞ causes hash collision with Bj using “hash banding” technique then

IfjBjj <N0then
ftg = linear−scanðBj, qÞ;

Else
λ =Mi/∥q∥;QðqÞ = ðλq1, λq2,⋯, λqd ; 0Þ;
ftg =QALSHðQðqÞÞ;

End
End
C = C ∪ ftg;
ðφ, tAMIPÞ = update ðCÞ;

End
End
ReturntAMIP:

Algorithm 2:c-AMIP search of H2SA-ALSH.
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result of c-AMIP. Below, we focus on proving that the
AMIPS meets c-AMIP.

We first derive the expression ht, qi/ht∗, qi, assuming t∗ is
the MIP for a query q, and in the block Si, bMi < t∗ ≤Mi,
λ =Mi/∥q∥. According to the previous formula, we have

Q qð Þ − P t∗ð Þ2 = 2M2
i −

2Mi

qk k t∗, qh i: ð11Þ

As with c0-ANN, according to [33], for QðqÞ and PðtÞ,
QALSH returns a result of c20-ANN, which is ∥QðqÞ − PðtÞ∥
/kQðqÞ − Pðt∗Þk ≤ c20, let β

∗ be the angle of t∗ and q. Com-
bining the above formula, we have

t, qh i
t∗, qh i ≥ c40 −

c40 − 1
� �

·Mi · ∥q∥
t∗, qh i ≥ c40 −

c40 − 1
bcosβ∗ : ð12Þ

By SRP-LSH, we know

E cos t, qð Þð Þ = cos 1 − Pr hv tð Þ = hv qð Þ½ �ð , ð13Þ

E
o, qh i
o∗, qh i

� �
= c40 −

c40 − 1
b

E
1

cos β∗

� �
= c40 −

c40 − 1
bcos 1 − Pr hv o∗ð Þ = hv qð Þ½ �ð Þ :

ð14Þ

Now we try to calculate Eð1/cos β∗Þ, assuming α is the
angle variable that changes as a threshold for a query, and
β represents the angle between q and t, where t ∈M ðiÞ, αϵ
½0, π�. For theoretical analysis, we assume the angles of data
items obey the uniform distribution,
i.e., Pr½β > α� = 1 − Pr½β ≤ α� = 1 − α/π, and β is the angle of
the smaller similarity bucket traversed in Mi for the q. Then,
we assume that the number of data items for a block Mi is,
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Figure 2: Recall on year datasets.
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then

Pr β < α½ � = Pr β1 < α, β2 < α,⋯, βsnα
π
< α

h i
= 1 − α

π

	 
snα/π
:

ð15Þ

Thus, we can get the cumulative density function of α as
follows:

Fβ αð Þ = Pr 0 ≤ β ≤ α½ � = 1 − 1 − α

π

	 
sn−α/π
: ð16Þ

Also, we can calculate the deviation of FβðαÞ to get the
probability density function:

f β αð Þ& = Fβ
′ αð Þ = −

n
π
· 1 − α

π

	 
nα/π
ln 1 − α

π

	 

−

α

π − α

	 

:

ð17Þ

Assuming β0 as the threshold, β ∈ ½0, β 0�, we have

E
1

cos β∗

� �
=
ðβ0

0

1
cos α f β0

αð Þdα =
ðβ0

0

1
cos α d Fβ αð Þ − 1

� �

= 1
cos α − 1 − α

π

	 
sn·α/π� �� �β0

0
+
ðβ0

0
1 − α

π

	 
5n·α/π
· sin α

cos2α dα

≤ 1 −
ðβ0
0

1 − α

π

	 
2nc·α/π
dα ·

ðβ0
0

sin4α
cos4α dα ≤ 1 − β0 ·

ðβ0

0

1
cos4α dα

= 1 − β0 · tan α + 1
3 · tan3α

� �β0

0
= 1 − β0 · tan β + 1

3 · tan3β
� �

:

ð18Þ

Finally, we have

E
t, qh i
t∗, qh i

� �
≥ c40 −

c40 − 1
b2

E
1

cos β

� �
≥ c40 −

c40 − 1
b2

1 − β0 · tan β + 1
3 · tan3β

� �� �
:

ð19Þ

Let l be ð1 − β0 · ðtan β + 1/3 · tan3βÞÞ. We can depict the
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Figure 3: Recall on Sift datasets.
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interval rate of the block b as

b =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1 − c

c40 − c

� �
· l

s
: ð20Þ

5.2. Complexity Analysis. In this section, we conduct an anal-
ysis of the space and time complexity of our algorithm.

Theorem 6. Given an approximation ratio cð0 < c < 1Þ for a c
-AMIP search, we use Oðnd + n log nÞ space to construct
indexing structure and cost Oðn log nÞ time at most for a c-
AMIP object searching.

Proof. The storage structure of the H2SA-ALSH does not
have essential differences with the H2-ALSH, and we also
use QALSH to store and index the data. Algorithm 1 has

two parts of overhead: the space of cost by arrived data Tð
OðndÞÞ and space cost by indexing LSH (QALSH). Accord-
ing to H2-ALSH [33], the space overhead of QALSH hash
table is Oðn log nÞ. Thus, the space overhead of Algorithm 1
is Oðnd + n log nÞ. To answer a c-AMIP query, in the worst
case, Algorithm 2 needs to check objects in all disjoint units,
and the schema searches all the units and the search will cost
Oðn log nÞ query time.

More details, the overhead of Oðn log nÞ for query time
represents the worst case. For the real data sets, the H2SA-
ALSH will filter out most of data units, even the data is ran-
dom distribution or even skewed. The H2SA-ALSH will stop
in the first few blocks, and in one block, the schema only
searches a few buckets. Therefore, the average query time
of a c -AMIP object will be much better than in the worst
case.
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Figure 4: Recall on Mnist datasets.
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6. Experimental Evaluation

We conduct experiments on three real-world data sets
(Mnist [41], Sift [42], and YearPredictionMSD [43] (be
termed as Year)) and compare our algorithm with three
state-of-the-art AMIP algorithms. The experiments mainly
evaluate the precision of AMIP results, the time efficiency
of constructing the index, and the query efficiency. We run
all the experiments on an Intel Xeon E5-2620 machine with
eight cores and 32GB of memory. All the algorithms in the
experiments are implemented by the C++ language and
run on Centos 7 OS.

The main evaluation metrics of the experiments are the
recall and precision of the AMIP results, overall approxima-
tion ratio, and running time of AMIP search. To evaluate the
performance of our algorithm, we compare our approach
with Simple-ALSH [27], H2-ALSH [32], and Sign-ALSH
[31]. The experiment verified the performance of all
methods for 0.5-k-AMIP search by varying k from 1 to 10

to show the evaluation results of recall and precision. Thus,
we get the top-k MIP objects by 0.5-AMIP. Figures 2–4
describe the recall and precision curves of the evaluation. We
can see from the curves of Figures 2–4, the H2SA-ALSH is bet-
ter than those of other algorithms in the top-k searching
(k = 1, 2, 5, 10), which means that the H2SA-ALSH can obtain
more precise search results compared with other algorithms
(Simple-ALSH, sign-ALSH, and H2-ALSH).

Furthermore, we use the metric of approximation ratio
to evaluate the precision of the search results. For the
approximate c-k-AMIP search, we set the given approxima-
tion ratio c to be 0.5. Then, we compare the approximation
ratios of our algorithm with other algorithms. The compar-
ison is conducted under c-k-AMIP searching using top-k
searching (k = 1, 2, 5, and 10).

The approximation ratio is expressed as ðho, qi/ho∗, qiÞ,
whose value is less than 1. The overall approximation ratio is
the average approximation of all queries that can show preci-
sion. Additionally, when the ratio is greater, we can obtain
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better AMIP search results. As shown in Figure 5, the overall
approximation ratios of all algorithms are higher than the
approximation ratio = 0:5. Our algorithm has a better approxi-
mation ratio than all the other algorithms, which means that
our algorithm will reach better precision for an arbitrary query.

To examine the query efficiency, we evaluate our algo-
rithm performance on approximate object searching. We
compare the average computation time for a query with
the latest H2-ALSH algorithm. Figure 6 shows that the aver-
age query time of our algorithm is less than the time used in
H2-ALSH over the three data sets. Especially in the year
dataset, the query efficiency of our approach improves nearly
60% compared with H2-ALSH.

7. Conclusion

In the paper, we propose a novel indexing and searching
schema, termed as H2SA-ALSH, in IoT environments. The
H2SA-ALSH can construct indexing for multidimensional

data objects according to the Euclidean norm and cosine sim-
ilarity without collecting the raw data objects. At the same
time, the extracted indexing features are built with approxi-
mate disturbance elements into the features. By collecting
and indexing the disturbed features on the fly, we design a c
-k-AMIP searching algorithm, to achieve accurate and effi-
cient maximum inner product searching and top-k searching
for a given vector. Experiments demonstrate the accuracy
and efficiency improvement of our approach compared with
three AMIP-based algorithms using real-world data sets.
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