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Radar multitarget tracking in a dense clutter environment remains a complex problem to be solved. Most existing solutions still
rely on complex motion models and prior distribution knowledge. In this paper, a new online tracking method based on a long
short-term memory (LSTM) network is proposed. It combines state prediction, measurement association, and trajectory
management functions in an end-to-end manner. We employ LSTM networks to model target motion and trajectory
associations, relying on their strong learning ability to learn target motion properties and long-term dependence of trajectory
associations from noisy data. Moreover, to address the problem of missing appearance information of radar targets, we
propose an architecture based on the LSTM network to calculate similarity function by extracting long-term motion features.
And the similarity is applied to trajectory associations to improve their robustness. Our proposed method is validated in

simulation scenarios and achieves good results.

1. Introduction

In an environment with much clutter, multitarget tracking
based on radar detection results is a challenging task. An
important branch of its solution is the multitarget tracking
algorithm based on data association, which can be generally
decomposed into the following three aspects: modeling the
motion of the tracked target to estimate trajectory parame-
ters and filter measurements, associating the measurements
with the motion trajectory to distinguish the measurements
from different targets or background noise and clutter inter-
ference, and effectively managing different motion trajecto-
ries to determine the birth, retention identity, and
termination of different target trajectories.

For modeling the motion of the tracked target, the tradi-
tional method is based on the Bayesian filtering theory [1, 2].
Earlier, the Kalman filter is used to obtain unbiased optimal
estimation of Gaussian linear targets. For nonlinear motion
targets, the following developed methods consist of extended
Kalman filter (EKF) [3], unsensitive Kalman filter (UKF) [4],

interactive multiple model (IMM) [5] algorithm, and so on.
All of these methods require limited motion models in
advance. Particle filtering (PF) [6], which does not need
the aforementioned assumptions, however, has low compu-
tational efficiency and sample poverty problem.

For tracking trajectory association and trajectory man-
agement, it can theoretically be regarded as a maximum
matching problem of a bipartite graph. For this problem,
the Hungarian algorithm (HA) [7] and Kuhn and Munkres
algorithm (KM) are first used. Later, many more complex
algorithms have appeared, including multiple hypothesis
tracker (MHT) [8], which establishes a potential tracking
hypothesis tree for each candidate target and calculates the
tracking probability to select the most likely tracking combi-
nation. Another popular technique is joint probabilistic data
association (JPDA) [9]. By building a validation matrix, it
can calculate all feasible joint association event probabilities
and associate targets based on the obtained scores. However,
these traditional methods not only require knowing the
number of targets, starting positions, and clutter distribution
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but also result in “combination explosions” increase of cal-
culation when the number of targets or clutter is enlarged.
This will not only reduce the tracking accuracy but also
may lead to trace association errors.

Recently, deep learning has made great progress in clas-
sification and detection applications in many fields. For
example, it is widely used in identifying interference in wire-
less communication systems [10] and lightweight radio fre-
quency fingerprint identification (RFFID) systems [11].
Especially in computer vision, the target tracking methods
in video based on deep learning have also improved, such
as pedestrian monitoring [12, 13], car driving monitoring
[14, 15], and biological sequence tracking [16]. However,
deep learning-based multitarget tracking algorithms that
are applied to radar targets are relatively rare. This may be
caused by several reasons. First, deep learning requires a
large amount of annotated training data, but real data is dif-
ficult to obtain in radar multitarget scenarios. Secondly, the
measurement of radar targets nearly has no apparent infor-
mation, which prevents the appearance detection informa-
tion commonly used in video target tracking. Thirdly,
radar target tracking and detection have real-time require-
ments, and the tracking algorithm generally needs to be used
online.

The main contributions of this paper are as follows:

(1) To overcome these problems in traditional radar
multitarget tracking based on data association,
inspired by deep learning ideas, we propose an
end-to-end multitarget tracking structure based on
recurrent neural networks. We use LSTM networks
to model the state prediction and measurement asso-
ciation parts of the multitarget tracking algorithm,
respectively. Relying on the powerful learning ability
of LSTM networks, it is able to obtain the long-term
dependence of multiple tracking target motion states
and measurement association by learning from a
large amount of training data. Then, it combines sta-
tus update and tracking management into a unified
network structure and finally realizes multitarget
tracking. The advantages of this method are that
the target motion models and clutter distribution
are not required to be known in advance, and the
combination explosion problem in the traditional
data association method is alleviated. Meanwhile,
the tracking process runs online without caching
any future frame information

(2) To solve the problem of missing appearance infor-
mation when the neural network is applied to the
radar multitarget tracking algorithm, we creatively
design a motion feature extraction LSTM to extract
motion features from the speed of the targets and
calculate the similarity scores, which are used to
learn long-dependent measurement associations

(3) To address the problem of insufficient training data,
we propose a method to obtain extensive training
data from simulation models. Our multitarget track-
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ing architecture is also confirmed by a simulation
analysis of the simulated data

2. Related Work

Lately, target tracking in the video application field has been
extended from a single target to multitarget tracking [17].
And the specific methods have also been extended from con-
structing complex appearance models to focusing on the
motion model and interaction of the targets simultaneously
[18]. In these applications, deep learning methods play an
important role, mainly reflected in the following three
aspects:

(1) Using the deep neural network to extract high-order
features of the tracking targets, especially for the
appearance model, this can effectively improve the
target tracking performance. Earlier, Reid [8] use
AlexNet for extracting deep features from targets
for the use of the MHT framework. Leal-Taixe
et al. [19] use the Siamese network structure to
extract deep features. By combining the depth fea-
tures and motion information with a gradient
enhancement algorithm, the tracking problem is
expressed as linear programming and solved effec-
tively. However, there is no apparent information
in the radar signal, so these methods are not suitable
for extracting the depth features of the radar signal

(2) Deep neural networks are used to directly learn key
components of a multitarget tracking framework.
Chen et al. [20] construct two CNN-based classifiers
using the features of fasterRCNN [21] from the
VGG-16 model [22] as input and combining the
confidence degree of the classifier as particle weights
to obtain tracking results by particle filtering. Xiang
et al. [23] propose a CNN based on triplet state loss
to learn the distance measure between tracker and
detection and thus constitute the cost of the bipartite
graph, which can be effectively solved by the Hun-
garian algorithm. However, radar targets are differ-
ent from video targets. It often has a poor
performance to extract radar target features and clas-
sify them using the CNN network

(3) Deep neural networks are designed directly in an end-
to-end manner to obtain multitarget tracking results.
The multitarget tracking task involves many interwo-
ven components and is difficult to be modeled as a
whole for learning. There have been some preliminary
researches recently. Milan et al. [24] unify target state
prediction, state update, and existence probability cal-
culation under a whole RNN. Also, they design a set of
LSTM networks for data matching matrix calculation
and act on the state update process. These architec-
tures achieved good results. Sadeghian et al. [25]
design a more complex RNN structure, which is
divided into three subnetworks to extract multiframe
appearance features, motion features, and interaction
features, respectively, and integrate them into a top-
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level RNN for time-dependent comprehensive infer-
ring, so as to obtain the final matching probability.
Experimental results show that this method is more
robust

Our architecture is similar to that of [24] but different in
three key aspects: First, RNN is used in [24] to deal with
motion state prediction. If the time interval is too long, the
time dependence will be weakened. Instead, we use the
LSTM network for motion state prediction, which enhances
the long-term dependence learning ability of target states.
Secondly, in the measurement association part, we use the
motion feature extraction network based on LSTM to calcu-
late the similarities for data associations, which has stronger
anti-interference ability than the method in [24] only using
the Euclidean distance between the target and each measure-
ment to carry out data associations. Thirdly, we use different
loss functions due to different network architectures.

3. Our Approach

For addressing the aforementioned radar target tracking
problem, we propose an online end-to-end radar multitarget
tracking network architecture based on LSTM (see Figure 1).
Our architecture implements target state prediction, mea-
surement association, state update, and tracking path man-
agement under a unified LSTM network architecture, and
all model learning is completed in an online end-to-end
manner.

3.1. Notations. In our application scenario, the target state
vector we care about is x, € R¥P, including x coordinate, y
coordinate, x axis velocity v,, and y axis velocity v,, as repre-
sented (x, y,v,,v,), D=4, N represents the maximum num-
ber of targets tracked simultaneously in a frame. The
measurement value vector is z, € RMP, whose dimension D
is the same as the target state vector, and M represents the
maximum number of detected values in a frame, including
the targets and clutter. The association probability matrix

of the measurement association part is expressed as A, €

[0, I]N'(M“>, each row of which represents the probability
that each measurement value belongs to a certain target.

That is, A; presents the probability of the jth measurement
value belonging to the ith target. The added column indi-
cates the probability that the target lacks measurement, so
that each row is satisfied V; : ) ]-A;] =1. The path manage-
ment section uses a probability vector #, € [0, 1]" to express
the probability of each target’s existence, which can accu-
rately describe the target generation and termination
processes.

3.2. Motion-Association Multitarget Tracking with LSTMs
(MA-LSTM). In our architectural design (see Figure 1), we
partition the state prediction, state update, and path man-
agement into a target motion module and measurement
association into another target association module. This pri-
marily deals with the diversity of measurement association
algorithms and facilitates the replacement of this part for

tracking effectiveness comparison. At the same time, the
two modules are trained separately for easy convergence.

3.2.1. State Prediction in Motion Module. State prediction is
the first submodule of the motion module. The task of this
module is to learn a complex motion pattern, which can be
noisy and nonlinear, and predict the future motion states
based on the trend of the past motion states. This is actually
a time series prediction problem, which we designed to
achieve by using a LSTM network structure, as shown in
Figure 2. We train the network on noisy motion trajectories
so that the network can completely learn the long-term
dependent motion pattern from the training data without
prior knowledge.

More specifically, at the current moment ¢, both the hid-
den state h, and the cell state ¢, of the prediction LSTM
come from the learning of the previous target motion state,
and the input x, is the target motion state at the current
moment. Through the internal processing of the LSTM net-
work, as described below, the predicted motion state X,,, at
the next moment as well as the hidden state h,,; and cell
state ¢,,, can be obtained to continue the transmission.

The formula is expressed as follows:

!
h =W, h+W_,x,

Cre1 =a(h')ct+a(h') tanh (h'),
by =0 (1) tanh (c,.),

X1 = Whohtﬂ’

where () is the sigmoid and tanh () is the hyperbolic tan-
gent activation functions, and the learnable parameters are
expressed as W, W, W, .

3.2.2. State Update and Track Management in Motion
Module. Status update and track management is the second
submodule of the motion module. The task of this module
is to update the motion state of the target and identify and
judge the start and end of the target trajectory on the basis
of the obtained target prediction, measured values, and asso-
ciation matrix. This is an important step in the multitarget
tracking architecture, for taking into account the clutter
interference in the multitarget measurements and the associ-
ation of the measured data. The network structure we
designed is shown in Figure 3.

In detail, the measured values z,,, at t + 1 moment are
combined with the predicted values %,,, output by the state
prediction submodule, as [X,,, ;z;,,]. Then, using the dot
product with the association matrix A,,; output by the target
association module, the possible state of the target is [X,,; ;
Z441) *Apyp- Then, it is multiplied by the target existence
probability #,. With the multiplied result and the hidden
state of the prediction module #,, ;, the updated motion state
x/,, is obtained after a nonlinear transformation, and the
target existence probability #;,, is also calculated.
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FIGURE 1: Overview of our architecture. In a time step t, the architecture is composed of two parts as target motion module and target
association module (see Section 3.2 for details). The input can be expressed as the following: at the current moment ¢, the target motion
state x,, the hidden state h,, and the probability vector #, (see below) come from the learning of the previous moment ¢ — 1. After the
processing of our architecture, the output is the estimated target motion state x,,, the hidden state &, ;, and the probability vector #,,,

of the next moment ¢ + 1.
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F1GURE 2: Prediction submodule of motion module on the basis of
LSTM is used to estimate target state without the help of
measurement.

The formula is expressed as follows:

X1 = [xtﬂ ;zt+1} ‘A
ht+1 = ht+1 + Wxﬂ (5Ct+1’7z)’

* 7 2
le = Wx*a tanh (ht+1>> ( )

M :G(Wq*o tanh (fzm)),

where o() is the sigmoid and tanh () is the hyperbolic tan-
gent activation functions, and the learnable parameters are
expressed as W ; W.. . W, ..

3.2.3. Loss of Motion Module. In our architecture, we are
interested in tracking performance-related losses and pro-
pose the following loss functions that meet our needs:

L(Rpo1> Xpa1> Mrsr> Xpat> Mean ) = “Z”’?tﬂ X ||2

_ (3)
+ ﬁZHXM = X1 ||2 + HLW Y

Ly (M5 Mes1) =M 10g 1174y + (L= 17,41) log (1= 17,,), (4)

;lt+1 = abs(r’;:l - ﬂt)’ (5)

where X,,, is the predicted value of the prediction module,
X/, is the predicted value of the update module, and #;,,
is the predicted value of the existence probability. x,,,, #,,,
are true values.

This loss function in formula (3) we designed consists of
four parts. The first part is to predict the motion state X,,; of
the targets without measured values, and we take the mean
square error (MSE) of the predicted values and the real
values. The second part is the state prediction x;,, after the
measurement update. We take the mean square error of
the updated values and the real values. The third part is to
predict the probability of the target’s existence #;,, at each
moment, and we use binary cross entropy loss function, as
shown in formula (4). The fourth part is the additional
smoothing variable #,, ,, in order to smooth the absolute dif-
ference between two consecutive # values, so as to prevent
the loss of the target in the tracking process.

3.24. Target Association Module. The target association
module is the most challenging and creative part of the mul-
titarget tracking architecture. We design it as an indepen-
dent association module and further subdivide it into two
parts: motion extraction LSTM and association LSTM.
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FiGurg 3: Update and management submodule of motion module
is used to update target state and identify and manage the target
trajectory with the help of the known target state prediction,
measured values, and association matrix.

The fundamental task of target association is to uniquely
partition the corresponding measurement values for each
tracking target in a clutter interference environment, which
is essentially a maximum matching problem of a binary
graph. Different from the traditional solution mentioned
above, we construct the association LSTM in an end-to-
end manner. Relying on the powerful memory learning abil-
ity of LSTM, by learning and remembering the long-term
dependence of target and measurement associations from
abundant data, the association probability of each target to
all measurement values is predicted, and finally, the associa-
tion matrix of all targets is obtained. Our association method
satisfies the one-to-one association constraint and is online
without viewing future frames. This network structure is
shown in Figure 4.

To be more specific, at time ¢, its input is feature vector
pM from the extraction LSTM (see below), and the hidden
state h, and cell state ¢, both come from the learning of the
previous target assignment. Through the LSTM network,
we can get a target distribution probability vector Al,, for
all available measurements at the last softmax layer, and
multiple targets constitute the association matrix A, ;.

The input of the association LSTM requires eigenvectors
representing similarity measures. The traditional similarity
measure function solutions are handmade, and as aforemen-
tioned, radar target appearance feature information is absent.
In order to solve these problems, we put forward the motion
extraction LSTM, an architecture of computing similarity
function based on the LSTM network (see Figure 5). Through
the long-term time-dependent learning of the target motion
velocity features, the similarity score of the target and the mea-
surement can be calculated end-to-end without manually
specifying parameters or weights, so as to determine whether
the new measurement value is similar to the target motion fea-
tures in the previous period of time.

As shown in Figure 5, we designed the motion extraction
LSTM. The input v} --- v} are the motion velocity features of
the ith tracked target at the specified time step 1--- ¢, pro-
ducing the H-dimensional output p’ after processing

Association
LSTM

(@)
e y

v v v

i
AHI ht+1 Cre1

FIGURE 4: The association LSTM submodule of association module
is used to learn the long-term dependence of targets and
measurement association. The input p are motion eigenvectors
from the extraction LSTM.

through LSTM networks. The other input v/,, is the jth
measured velocity vector at the t+ 1 time step, which we
map to an H-dimensional vector p/ via an FC layer. The
two vectors are then connected and passed to another FC
layer, which transforms the 2H-dimensional vector into a
K-dimensional eigenvector p™. In the pretraining process,
we use the softmax classifier at the end to train our model
parameters to judge whether the measured velocity feature

Vi corresponds to the real trajectory’s velocity feature v
cee Vlt'

3.2.5. Loss of Association Module. For motion extraction
LSTM, we use the classifier and cross-entropy loss function
for pretraining.

For association LSTM, in order to measure the cost of
inappropriate associations, we adopt the common negative
log likelihood loss, as below:

L(Ain’ m’m) =—log (Ai'fl)) (6)

where m,, is the correct assignment of target i and Ai{rl is
the probability of measurement j assigned to target i at time
t+1.

3.3. Implementation Details. We use the TensorFlow archi-
tecture to implement our design. We designed the state pre-
diction LSTM with a single layer of 256 hidden cells. The
measurement of association task requires more representa-
tion ability. The association LSTM uses 256 hidden units
in two layers, and the motion extraction LSTM uses 128 hid-
den units in one layer. The output feature vector is 100
dimensions, and the length of the specific extracted sequence
is 10. We use grid search to select the optimal network
hyperparameters [26]. We use Adam to update and optimize
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F1GURE 5: The extraction LSTM submodule of association module
is used to extract the velocity features of the target’s long-term
motion and calculate the similarity between the new
measurement and the existing trajectory.

our framework. The learning rate is initially set at 0.001
decreasing by 10% for every 10 periods. We set the maxi-
mum number of iterations to 10,000, which is enough to
achieve convergence. Training for these network architec-
tures takes about 10 hours on a GPU.

3.3.1. Training Data. As mentioned above, deep learning
network learning requires a large amount of training data.
However, there are very few open marker datasets for multi-
target tracking of radar signals. Therefore, we generate train-
ing data from radar motion simulation models. The training
trajectories we generated are set with multiple targets, whose
birth time and lifetime are random, and incorporate a large
number of random uniformly distributed clutter. The initial
position and velocity of each target are randomly distributed
within a certain range, and the conventional constant-
velocity motion model and constant acceleration motion
model of the radar target are adopted. The radar measure-
ments are sampled every 2 seconds, and a Gaussian mea-
surement noise is added, while the annotations for
multitarget associations are manually added.

4. Experiments

We have proposed a radar multitarget tracking network
architecture. To demonstrate its functionality, we first pres-
ent experiments on simulated data and then give more
insights and analysis of our performance.

In the simulation experiment scene, we choose 2D radar
to track multiple moving targets, assuming that the target
movements are independent of each other, and trajectory
crossing may occur. The equation of motion for each target
is

X =Fi 1 Xi + G wye_ys (7)

where X =(x,y,v,,v),a,,a,) is the target state. W,_; is
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process noise representing random acceleration in the x
and y axis direction, w, ~ N(0,021,),0,, = 10 m/s*.

We assume that the target follows the constant accelera-
tion (CA) model and the constant velocity (CV) model [27].
Their process equation F and process noise G are

_ T2 _
1 0 T 0 — 0
2
T2
o1 0 T 0 —
2
Fca=10 0 1 0 T 0|
0 0 0 1 O T
0O 0 0 0 1 0
L0 0 0 0 O 1 |
_T2 -
— 0 T 0 1 O
2
Gea = T >
0 — 0 T 0 1 (8)
1 0 T 0 0 O]
0 1 0 0 O
0 01 0T O
Fer= ’
0O 0 0 1 0 O
0 0 0 0 1 O
(0 0 0 0 0 1]
TZ
— 0 T 0 1 0
2
GCT: ) >
0O — 0 T 0 1
2

where T is the sampling period.
The target observation equation is

Zk:Hka‘l'Vk, (9)

where H, is the observation matrix; the measurement noise
v, is the Gaussian white noise with zero mean and covari-
ance matrix R;.

The observation vector of radar is Z;, = (6, r,), where 6,
is the azimuth of the sensor observation target and r, is the
distance of the sensor observation target. The target observa-
tion model is

[ek ] ) arctan x—k e
Tk \/ (

where vy ~ N(0,03),0=1x (/180)rad/s and v, ~ N(0, 02
),0,=10m.
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FI1GURE 6: The tracking results of our method on 5 targets. The different color curves represent the different predicted target trajectories. The

black curve is the ground truth.
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FiGUre 7: The predicted value of the existence probability # of the 5 targets in the time frame. The threshold is set as 0.6.

TaBLE 1: OSPA distance of the four methods.

Method OSPA | OSPA Loc | OSPA card |
KF-HA 83.79 77.48 8.09
JPDA 79.86 75.39 8.22
M-HA 79.12 73.15 12.44
MA-LSTM 70.08 65.78 7.86

On this basis, we set an observation area of 1 km x 1 km,
5 radar tracking targets with random birth and death time.
Each target has detected probability P, =0.99. In the
observed region, the clutter follows a uniform Poisson distri-
bution, and the clutter intensity is set asA; = 30.

To generate large amounts of training data, the initial
position of the target is randomly distributed within the
observation area, the initial linear velocity is randomly dis-
tributed from 100m/s to 300m/s, and the acceleration is
randomly distributed from 0m/s* to 8 m/s>. The times of
birth and death for each target are randomly distributed
between 3 and 18s. At the same time, the number of targets

at each sampling time is manually annotated. From this, we
produce 10,000 random paths and their observation data,
respectively. These are sufficient to train our network
architecture.

The results of the tracking are shown in Figures 6 and 7.
From this, we can qualitatively conclude that our method
can track multiple moving radar targets in a large number
of clutter environments, although the trajectories of these
targets may be crossed. Furthermore, we also see that the
predicted trajectories always start and end one or two points
later than the real trajectories, which is difficult to avoid with
the online method.

For quantitative analysis, we compare our proposed
method (MA-LSTM) with three baseline methods. The first
baseline method is the traditional KF-HA, which employs a
combination of Kalman filter and data association via the
Hungarian algorithm. The second baseline approach is
JPDA mentioned above. The third comparison is comprised
of our motion module and the data association using the
Hungarian algorithm (M-HA). The optimal submode allo-
cation (OSPA) [28] distance for each method is calculated.
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F1GURE 8: The OSPA values for different methods.

OSPA is a consistency measurement method for the overall
performance evaluation of the target tracking system, which
can be used to measure the error between real track and esti-
mated track and can separate the total error into distance
errors and correlation errors. For the tunable parameter dis-
tance sensitivity parameter p and associated sensitivity
parameter ¢, we set p =20 and ¢ = 350, respectively.

The calculation results are shown in Table 1. MA-LSTM
outperforms the other methods in all three aspects. It has
great advantages in overall OSPA and associated OSPA
and is slightly better than JPDA in terms of distance OSPA.
It is worth noting that compared with the HA method for
data association, the proposed method of using LSTM for
data association and using motion velocity features to calcu-
late similarity has a positive impact on the overall tracking
effect, especially on the reduction of association error.

As shown in Figure 8, this intuitively shows the trend of
different method OSPA values over time under a long period
of test data. It can be seen that in the early stage of the test,
the OSPA value of the learning method is high and then
decreases rapidly after that, because of the learning of
motion properties in the early stages of tracking. The OSPA
value of our method is significantly reduced from the 10th
frame, because the speed feature extraction sequence length
in the data association module is set to 10. That is, the role
of data association can be fully played after 10 frames; after
that, the performance of our method is better than other
methods.

5. Conclusion

This paper presents an LSTM-based network architecture
for radar multitarget tracking. This architecture can effec-
tively solve the problems of state prediction, measurement
association, and trajectory management for radar multitar-
get tracking under much clutter. In addition, we propose
to use the motion extraction LSTM to extract motion fea-
tures to calculate similarity scores and use it to learn long-
dependent target associations, which achieves good results.
Our architecture is able to accomplish tracking tasks online
and has been verified in simulation scenarios. In future

work, we plan to expand it into the video tracking field
and make association strategies more robust by combining
more clues to achieve better performance.
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