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Signatures are one of the most important means to ensure the authenticity of documents and are commonly used in life and work.
In identifying imitation handwriting, it is easy to make mistakes that cannot correctly identify and evaluate different writing
characteristics. In this paper, from the perspective of dynamic handwriting detection, we propose RF sign, a signature
anticounterfeiting real-time monitoring model, which achieves passive recognition of signature behavior using only a single
antenna with a single tag. The RF sign identifies different users by extracting fine-grained reflection features from the original
RF signal. We introduced a dynamic time regularization and neural network technique for similarity calculation and signature
recognition matching to achieve template matching and classification. We compiled a real-time signature handwriting
detection system. The system effectively identifies the person’s signature by checking real-time spatial and temporal
information. Comprehensive experiments show that the recognition accuracy of my signature can reach over 93% and is
robust to input location, environmental changes, and user diversity.

1. Introduction

1.1. Motivation. As one of the important branches of bio-
metric identification technology, handwriting detection is a
hot topic in the field of information security technology.
The traditional handwriting detection method based on
visual images needs to collect a large number of users’ pri-
vate information, which has great risks. As a dynamic detec-
tion scheme, the handwriting detection based on radio
frequency (RFID) can solve the problem of encroachment
on user privacy to a certain extent. The RFID scheme detects
handwriting by collecting information such as the relation-
ship between handwriting strokes and time as well as writing
speed, which has higher resolution and lower accuracy than
the vision-based solution. In this paper, we aim to design a
robust contactless handwriting recognition system to
achieve accurate and robust handwriting recognition.

1.2. Prior Approach. The existing vision-based handwriting
recognition is easily affected by multiple factors, such as
environment, illumination, production process, and noise,
and has the disadvantages of small interaction space, insuffi-
cient algorithm ability, and low real-time performance.
Handwriting recognition methods based on RFID extend
the interaction space beyond the limited screen and avoid
the problems of screen inclusion and insufficient light, which
are divided into two categories: active behavior recognition
and passive behavior recognition. Active activity recognition
is to attach a label to the target object, although such a
method can locate the writing trajectory more clearly, carry-
ing the label affects the user experience. Although the prob-
lem of portability is solved by placing tags around the target
object to realize passive activity recognition, passive activity
recognition is more susceptible to multipath effects and has
low recognition accuracy.
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The above two methods are limited to the identification
of writing trajectories and cannot correctly distinguish the
identification of authorship. This paper proposes a dynamic
handwriting recognition model RF sign based on radio fre-
quency identification (RFID), which enables dynamic hand-
writing recognition in the signature process. It can verify the
authenticity of handwriting and distinguish different users
by collecting the writing track of the writer in real time
and has broad application prospects in case detection and
judicial identification. Good robustness and high accuracy.

1.3. Challenges. To implement RF-based handwriting detec-
tion, we propose an innovative work RF sign. We con-
structed an I/O system using a single antenna, a single tag,
a reader, and a PVC plastic homemade three-dimensional
container. At the same time, we use the multipath effect to
enhance the RF reflection signal to achieve high recognition
accuracy. The basic idea of RF sign is to use the I/O system
to identify different writers and authenticate at least five
handwriting samples of the writers on this basis. Three
major challenges have now been recognized:

(i) In order to enhance the universality of the system,
we use a commercial RFID reader, single tag, and
single antenna deployment experiment scenario.
However, in real life, small changes in the position
of the receiver or target will lead to changes in the
received signal mode. As a result, the signal mea-
surement of the moving target is inaccurate, and
the sampling accuracy is greatly reduced. How to
solve the problem of the low sampling rate of a
commercial reader and difficult to recover effective
motion signal is the key to realize real-time signa-
ture azimuth monitoring model

(ii) In the passive recognition deployment, the writing
action is too fine-grained, and the rich interaction
makes the backscattered signals inevitably mixed
together, obscuring the information written by indi-
viduals. How to separate and extract writing action
signals from mixed signals is an urgent problem
for us to solve

(iii) Radiofrequency technology captures moving objects
with coarse-grained, so it is impossible to identify
and acquire user biometrics with too fine-grained,
which is bound to affect the accuracy. Therefore,
how to use the extracted user characteristics to
accurately identify different users becomes a diffi-
cult problem

1.4. Our Solution. In order to solve the above problems, this
paper proposes a real-time monitoring model of signature
anticounterfeiting based on a single label. The system uses
single label and single antenna deployment mode to realize
handwriting recognition and uses compressed sensing algo-
rithm to recover effective moving target signals from low
sampling rate signals. A three-dimensional baffle made of
PVC plastic was used to reflect the signal, which produced
a small-scale effect. The interactive multipath effect

enhanced the signal and obtained more observable data.
The linear difference with strong autocorrelation was used
to remove the outliers in the received signal and automati-
cally eliminate the phase shift. A monitoring model combin-
ing machine learning and deep learning is built to solve the
challenges of fine-grained recognition and detection. The
training model constructed only requires a few parameters
for training, which makes experimental deployment and
training easier and lays a foundation for accurate handwrit-
ing identification. Overall, the proposed RF sign achieves an
overall accuracy rate of over 92% and is robust to environ-
mental changes and user diversity.

2. Related Work

Existing handwriting monitoring solutions can be divided
into two categories: wearable-based devices [1–5] and
wireless-based devices [6–9].

2.1. Wearable Devices. Wearable device-based approaches
typically require the user to wear a sensor, such as an RFID
tag [10] or a smartwatch [8] and track the motion of the sen-
sor to identify the handwriting. These studies usually derive
handwritten content by building theoretical models to
describe the signal variations received from the sensors.
However, device-based monitoring methods can result in
uncomfortable user experiences or short life cycles due to
high energy consumption. The device-free approach recog-
nizes handwritten fonts from environmental signals through
different types of technology without requiring the user to
wear any device. As the most popular solution for wireless
devices, camera-based solutions [11] apply real-time image
recognition, capture targets by camera shots, such as kinect
and leap motion, and build writing structures from the video
stream for accurate handwriting recognition. However, they
usually involve high computation and may raise privacy
issues for users. WiFi signal-based handwriting recognition
is easy to deploy, low cost, and not limited by light vision,
etc. However, a large number of WiFi devices have been
put into use, resulting in signal strength and channel state
information for feature extraction [12, 13]. CSI is subject
to severe multipath interference, making signal feature
extraction difficult, adapting to few scenarios, and not suit-
able for large scale deployment. Shangguan and Jamieson
proposed to locate the human body based on COTS RFID
technology through a device-free approach [14], which
shows the potential of device-free sensing in RFID systems.
The radio frequency-based approach uses radio frequency
signals for real-time tracking of hand movements to achieve
handwriting recognition. The target is located by measuring
the effect of the target on the reflected signal (eg., phase shift
[15–17], Doppler shift [18], or signal received intensity
(RSSI) [19]) metric. Based on the adopted metrics and
deployment methods, the previous wireless RF approaches
can be further classified as follows.

2.2. Wireless Device Based

2.2.1. Device-Free: Antenna Array. RF-IDraw [10], the first
RFID-based system, uses eight antennas to rigidly position
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and form an array that can accurately track a user’s writing
or gestures in the air. Because the distance between the
antenna and the tag requires much greater than the spacing
between the antennas, RF-IDraw is difficult to detect subtle
movement caused by changes in direction. Tagoram [20]
uses four reader antennas to track moving tags in real time
and uses the similarity between measured phase and theoret-
ical values to estimate the motion trajectory with centimeter-
level accuracy. However, Tagoram is also insufficient for
handwriting monitoring in a small area when the trajectory
is unknown. PolarDraw [8] deploys two antennas to imple-
ment the translation of the pen on the whiteboard and uses
RSS readings to estimate the direction of movement of the
tag, which is then combined with the estimated distance
traveled by the phase difference to track the trajectory. While
these systems can track the trajectory of tags, we focus on
handwriting detection, which is a fine-grained handwriting
recognition problem.

2.2.2. Device-Free: Tag Array. RFace uses a 7∗7 array of
COTS RFID tags to extract the 3D geometry and internal
biomaterial features of a human face. RF finger [21] uses a
7∗5 array of tags on letter-size paper to sense fine finger
movements executed in front of the paper, allowing precise
tracking of fine-grained finger trajectories and recognition
of multitouch gestures. RF-IPad [22] builds a 5∗5-tag array
and converts the tagging plane into a virtual touch screen,
allowing users to perform over-the-air handwriting and
touch screen operations in a common area and recognizing
human writing by detecting pen strokes. However, RF-IPad
cannot detect different users.

2.2.3. Device-Free: WiFi. Writing-fi [23] recognizes hand-
writing movements from channel state information (CSI)
and designs a signal generalization scheme to simulate the
possible changes in handwriting movements of different
people by synthesizing variable data so as to mitigate the
effects brought by the diversification of writing speed and
scale. WiWrite [24] is an accurate deviceless handwriting
recognition system. A CSI segmentation scheme is proposed
to deal with noisy original WiFi channel state information
(CSI), and a low-noise data is retained for recognition
by means of self-fixing dense convolutional networks
(SPDCN).

2.3. Deep Learning and Artificial Intelligence. Hong et al. [25]
proposed a general MDL framework consisting of two sub-
networks, Ex-Net and Fu-Net, which aims at providing a
baseline solution for pixel-level RS image classification tasks
using multimodal data, but its classification heavily depends
on the quality and quantity of samples. Wu [26] proposed a
simple and effective “U-Net in U-Net” framework, referred
to as UIU-Net, to detect small objects in infrared images
and realize multilevel and multiscale representation learning
of objects. Moreover, UIU-Net can be trained from scratch,
and the learned features can effectively enhance the global
and local contrast information.

3. Preliminary and System Overview

The main goal of our work is to detect the signature user and
identify the signature content by radiofrequency methods. For
this purpose, we designed an RFID-based system, RF sign,
which reads the signal on the tag for handwriting recognition.
As shown in Figure 1, RF sign has four main modules: two
core modules for signal acquisition and signal preprocessing
and two functional modules for user identification and hand-
writing content identification. Specifically, RF sign takes as
input the time-series signal si(t) received from the tag i, includ-
ing RSSI, phase, and Doppler shift information. The signal
preprocessing module first solves the problem of low reader
sampling rate by compressing the sense reconstruction algo-
rithm and then replaces the misread signal by linear interpola-
tion after acquisition and smooths and calibrates themeasured
signal using low-pass filtering. Next, we cut and extract key
feature values from the smoothed signal by analyzing the fluc-
tuation and strength characteristics of all signals.

After extracting the reflected features from the RF signal,
two functional modules are used to implement user authen-
tication and handwriting identification. For user identifica-
tion, the identification module analyzes user writing habits
based on the peak fluctuations of each signal, extracts three
main feature vectors from them, and clusters them using
the k-means algorithm to obtain an accurate user classifica-
tion. For handwriting content, the handwriting content rec-
ognition module convolves the visual features using the
neural network AlexNet to train and automatically classify
each handwritten word. Among them, our module takes a
Markov transform field to convert the extracted main fea-
ture vectors into two-dimensional pictures from the perspec-
tive of time series analysis, describes the phase changes of
hand movement at different stages of signature writing,
and learns neural network models for font classification
recognition from the independent MRF phase maps con-
structed from the writing features.

3.1. Indicator Selection

3.1.1. Signal Reception Strength. Received signal strength
indicator (RSSI), which indicates the metric of the tag signal
energy received by the reader, the relationships between
RSSI and signal energy can be expressed as follows:

RSSI = 10 log10
P

1mW

� �
: ð1Þ

For RF sign, we use a commercial reader, and the chan-
nel fading factor of the commercial reader is γ. Usually, the
value of γ in the system is taken as 4. In practice, the value of
RSSI has changed, and its value corresponds to 0 dBm and
-115dBm from strong to weak. For the accuracy of the
experiment, we usually place the distance from the reader
to the tag in the range of 1m, assuming that the value of 1,
brings formula (3) into formula (2), the simplification can
be obtained

RSSI = RSSId=1 − 10γ log10 dð Þ: ð2Þ
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3.1.2. Phasing. The phase is a specific point on the waveform
in the periodic motion. The phase information is the phase
difference between the transmitted signal and the received
signal. Two electromagnetic waves of the same frequency
and phase can be superimposed. Similarly, the superposition
of two electromagnetic waves of the same frequency and
opposite phase, i.e., those with a phase difference π, will can-
cel. The phase information is constantly transformed in the
(0, 2π) range and can be expressed as

θ =
d
λ

� �
mod 2πð Þ, ð3Þ

When the relative distance between the receiving antenna
of the reader and the tag, the electromagnetic wave scattering
distance changes, and the phase information (phase) of the tag
signal also changes. Phase information applies to more subtle
and fine-grained sensing. If the communication distance
between the tag and the reader antenna is d, λ represents the
transmission wavelength, and θdevice refers to the system noise
due to the hardware such as the tag and the reader

θ = 2π
2d
λ

+ θdevice

� �
mod 2πð Þ: ð4Þ

3.1.3. Doppler Shift. Commercial readers can directly measure
the signal strength of the tag and the phase value of the tag.
The reader obtains the Doppler frequency bias by differencing
the phases at different moments. Assume that the tag moves at
a rate of v concerning the reader antenna, and the angle
between the velocity vector and the length vector is α, the
reader antenna signal frequency changes for the tag ðv/λÞ
cos ðαÞ. Similarly, the tag signal frequency changes relative
to the reader ðv/λÞ cos ðαÞ. Therefore, the frequency of the
tag signal received by the reader antenna becomes relative to
the frequency of the transmitted signal which can be summa-
rized as follows:

f D =
2v
λ

cos αð Þ: ð5Þ

3.1.4. Index Selection. To achieve the innovation and univer-
sality of the system, we build the system and collect the signals
from commercial readers. The signal metrics that can be
received by commercial readers mainly contain RSSI, phase,
and Doppler. It is found that RSSI signals are sensitive to
change and susceptible to interference from the external envi-
ronment, which is not suitable for the signal characteristics
analysis in the multipath environment in this paper. The
Doppler shift signal is mainly determined by the displacement
value, which changes obviously only when the tags move rela-
tive to each other. In this experiment, there is almost no rela-
tive displacement between the tag and reader antenna, so it is
not suitable for signal analysis of gesture recognition in this
system. A phase signal is a measure of change from one state
point to another state, and it changes periodically. Therefore,
we acquire the phase signal under the deployment condition
of a single tag and single antenna.

The RF sign is composed of two main parts: the signal
foundation and functional design. From Figure 1, the first
part is the core module, which is mainly responsible for sig-
nal acquisition and signal preprocessing to solve the prob-
lems of insufficient sampling rate and phase shift of the
reader. The second part is the function module, which
mainly uses the k-means algorithm and classification model
to realize two functions of user identification and signature
content recognition. In the following sections of this section,
we will outline the core architecture and tag deployment of
RF sign.

3.2. Tag Signal Exploration and Analysis. As shown in the
upper part of Figure 2 for signal variation, we observe that
large changes in the surrounding environment can override
fine-grained handwriting actions and have a significant
impact on the reflected signal from the tag. To eliminate this
interference, as shown in Figure 3, the RF sign exploits the
effect of multipath effect by adding a PVC plastic transpar-
ent container, deploying the tag squarely on the antenna,
and analyzing the three views projected from the transparent
container while superimposing multiple signal waves of the
tag to make it better to perceive the gesture fine-grained fea-
ture values.

System 
architecture

Step 1: Acquisition of signal

Step 2: Signal preprocessing

Step 3: Feature extraction

Compressed sensing: Increase sampling rate

Low pass filter: Calibrated RF signal

Linear interpolation: Extracting user characteristics

Linear interpolation: Replace the outliers

Markov transition diagram: Image converter

Step 4: Classifier design
K-means: Subscriber identity module

AlexNet: Handwriting recognition

NetVault
core 

module

Functional 
module

Figure 1: Data processing of Doppler value.
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4. System Design

Commercial RFID readers and standard low-level reader
protocols (LLRP) can pick up tag signature signals such as
phase and Doppler shift. As pointed out in previous research
work [10], the accuracy of the read signals is not high
enough to be directly applied to activity recognition due to
factors such as low sampling rate, misreadings, and phase
shifts. To address these factors, we propose an innovative
design solution for RF sign to preprocess the measured
reflected signals while increasing the sampling rate of the
reader (as shown in Figure 4).

4.1. Data Acquisition. The iterative soft thresholding algo-
rithm (IST) solves the coefficient solutions of the linear sys-
tem of equations and the sparse solutions of the nonlinear
constraint problem and thus recovers the reflected signal.
Instead of keeping the signal above the threshold, the IST
algorithm performs an appropriate shrinkage. In brief, when
performing a thresholding operation using the soft thresh-
olding algorithm, a threshold iteration operation is per-
formed on a defined point until the value of that point
stabilizes. The threshold shrinkage-related operations used
are as follows:

Sλ =
xij j −w ∗ λð Þ ∗ sign xið Þ, xij j >w ∗ λ,

0, xij j < w ∗ λ,

(
ð6Þ

where x denotes the signal data in the sparse vs. λ is the
threshold value to be applied to, which will follow the
change of data. The advantage of the IST algorithm is
twofold.

4.1.1. Breaking the Constraints of Traditional Sampling
Theorems. The IST algorithm accurately recovers sparse sig-
nals that are compressed or under known change domains
by a nonlinear reconstruction algorithm. Among the prereq-
uisites that need to be satisfied for compressed perception
are sparsity and irrelevance. First, the signal should have
the property of sparse expression in a certain domain of var-
iation, i.e., there are fewer nonzero values in a certain
domain of variation. If the rotating signal SðtÞ has the prop-
erty of periodicity in the time domain, the signal will be
sparse in the frequency domain after FFT (as shown in
Figure 4), i.e.,

S = ψs,

y1 = h xð Þ + F xl,Wlð Þ,
ð7Þ

where S is the sparse coefficient of the signal in the frequency
domain and the matrix ψ is the Fourier basis matrix. Thus,
the sparse expression of the correlated signal in the fre-
quency domain is obtained.

4.1.2. Weak Interrelationship. Based on two major premises,
it is clear that the CS theory is mainly based on first selecting
the n sampled signal x with S sparsity on an appropriately
sparse basis ψ, and then the exact reconstruction can be
obtained by linear projection yðiÞ = <x, ϕi

T > , i ∈ f1, 2,⋯,mg
of the signal on mðS ≤m ≤ nÞ another incoherent basis ϕ =
ðϕ1T , ϕ2T ⋯ ϕm

TÞ.
RF sign adopts an iterative soft thresholding algorithm,

nonlinear reconstruction for accurate recovery of sparse sig-
nals, and weak mutual relations for interference suppression.
As shown in Figure 4, the RF sign solves the problem of the
low sampling rate of existing readers with higher adaptivity,
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and the accurate original signal is obtained by reconstruc-
tion and recovery of the IST algorithm.

4.1.3. Adaptive Adjustment Threshold. The IST algorithm
can be traced back to various types of iterative algorithms
and general splitting algorithms, where λ can be set to 1%
of the maximum mode value in the sparse domain thus
making it easier to achieve an adaptive adjustment thresh-
old. The iterative process we can divide into two phases:
the time domain data fidelity phase and the threshold
shrinkage phase for sparse domain data, viz,

x n+1½ � = x n½ � + Sλ Ψ−1 + b − Ψux
n½ �

� �h in o
, ð8Þ

where b is the undersampled time-domain data and Ψu is
the undersampled inverse Fourier change, i.e., the random
sampling matrix is combined with the operation of inverse
Fourier transform, Ψ−1 denotes the Fourier transform, x½n�

denotes the n reconstructed signal, and x½n+1� denotes the n
+ 1 reconstructed sparse domain signal.

Through the reconstruction and recovery of the IST
algorithm, the reader sampling rate in this paper is increased
from 10 frames per second to 200 frames per second, which
not only solves the problem of a low reader adoption rate
but also ensures the integrity and effectiveness of data sam-
ple collection. In Figure 4, the upper Figure 1 shows the
unimproved reader sampling frequency spectrum and the
lower Figure 1 shows the reader sampling spectrum obtained
after reconstruction and recovery using the IST algorithm. It
can be seen that the signal sampling rate has been signifi-
cantly improved.

4.2. Signal Preprocessing. In RFID systems affected by the
uneven frequency response of the tag antenna, the RF signal
received by the reader has inherent measurement defects
such as misread tags and noise. When signing, the hand
motion is in a highly dynamic state, which makes the fre-
quency of tag misreadings increase and outliers increase.
To address this problem, we improve the reliability of the
RF signal by linear interpolation and smoothing of the mis-

read tags. Referring to the fundamental threshold of the
phase obtained by sampling, we use 3 as the threshold factor,
and the value beyond the threshold factor is the outlier (as
shown in Figure 5). Linear interpolation of the misread RF
signals from adjacent sampling wheels based on continuous
finger movements. Take the phase stream ∂ðtÞ as an exam-
ple, which is the time series phase value from a tag. If there
is a misread phase ∂ðtiÞ, we calculate the linear interpolation
based on the other phase readings:

∂̂ tið Þ = ∂ ti1ð Þ + ∂ ti+1ð Þ∂ ti1ð Þð Þ titi1
ti+1ti1

, ð9Þ

where ∂ðti+1Þ and ∂ðti−1Þ are the two-phase readings adjacent
to each other before and after the time. After interpolation, the
signal is smoothed using low-pass filtering to further remove
high-frequency noise. Figure 6 illustrates the effectiveness of
our data calibration by comparing the phase flow before and
after the data calibration. The phase stream shown in the fig-
ure is a set of data in the tag reflection signal when the user
writes the letter B. From the enlarged plot, we can see that
the misread outliers are well interpolated and replaced, and
in addition, the high-frequency sawtooth waves in the
smoothed signal are removed.

4.3. Feature Selection

4.3.1. User Feature Extraction. To study the specific signal
pattern of the signature movement, we need to determine
the starting and ending points of the signal segment, which
corresponds to the user’s pen-fall and pen-retract postures.
Therefore, we propose a segmentation method for detecting
calibrated signature RF signals, which is used to segment the
signals by detecting the pen drop (start action) and the pen
retraction (release action) of the hand. In brief, we observe
that the signal is stable when one puts down the pen; the
phase wave signal of the tag changes significantly when the
user performs a signature movement. Based on the first
and last peaks of the calibrated reflection signal phase, we
can detect the action of the hand-held pen and the pen lift
and then use the signal flow between them as the signature
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signal. The cutting method is shown in Figure 7. The calibra-
tion signal is divided into three parts by us: pen drop, signa-
ture, and pen receipt, and the signal is segmented by using
the action signals of pen drop and pen receipt to cut the sig-
nal into three parts: raise hand, write, and release hand, and
finally, the signature signal of each user is extracted and
obtained. Based on the extracted signature signals, we can
see that different users have different writing speeds,
strength levels, and starting and closing speeds, and we can
use these three features to achieve recognition of different
user identities.

4.3.2. Time Domain Characteristics of the Tag Signal. We
analyze the three tag characteristic signals (RSSI, phase,
and Doppler shift) received by the reader separately. RSSI
signals are sensitive to changes and susceptible to external
environmental interference and are not suitable for signal
characterization in multipath environments. The Doppler
shift signal is mainly determined by the displacement value,
which only changes significantly when the tags move relative
to each other. As shown in Equations (10)–(12), there is
almost no relative displacement between the tag and the
reader antenna in this experiment, and when the relative
movement speed of the tag and the reader antenna is almost
0, the Doppler shift will not produce more obvious changes,

so it does not apply to the signal analysis of the gesture
recognition of this system. The phase signal is a measure
of the change from one state point to another and shows a
periodic variation. Because the phase information is a con-
tinuous signal belonging to a one-dimensional time series,
this paper further analyzes and processes the tag phase
signal to abstract the problem as a time-series-based signal
processing.

The variation in the emission process of the signal is
generated by the following expression:

S tð Þ = Re u tð Þei2πf at
n o

, ð10Þ

S tð Þ = Re u tð Þf g cos 2πf atð Þ − Im u tð Þf g sin 2πf atð Þ,
ð11Þ

d tð Þ = Re 〠
N tð Þ

n=0
Cn tð Þu t − τn tð Þð Þei 2πf a t−τnð Þð Þ+ΦDn tð ÞÞ

( )
:

ð12Þ
CnðtÞ is the time-varying attenuation of the signal ampli-

tude of different paths, determined by the path loss and
shadow fading; τnðtÞ indicates the time delay during signal

0 50 100 150 200 250

Sample index

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

Ph
as

e (
ra

di
an

)

The number of outliers: 12

Intput data
Cleared data
Outlier

Fill outliers
Outlier threshold
Outlier center

X 0
Y 1.74

X 250
Y 1.74

X 0
Y 1.794

X 149
Y 1.767

Figure 5: Signature signal outlier handling.

7Wireless Communications and Mobile Computing



transmission of different transmission paths; transmission
delay τnðtÞ = dnðtÞ/c, ΦDnðtÞ indicates the multispectral
phase shift of different paths, and the signature action is per-
formed by the user, causing the tag signal to change.

4.3.3. MKF Transformation. Since the phase signal received
by the reader belongs to the data set that conforms to the
time series and the value at the moment of the phase signal
on the time series is not necessarily related to the value at the
moment, this property is consistent with the Hidden Mar-
kov property. In contrast to the traditional Hidden Markov
model in which the transfer matrix is not sensitive to the
time on the sequence this feature, to make the final experi-
mental matching results more intuitive, the RF sign uses
the independent signals that have been separated for trans-
formation, so that the problem is abstracted from one-
dimensional time-series data to a two-dimensional image
of the model classification problem, more intuitive to reach
the purpose of convenience and speed. The steps are as
follows:

Step 1. The data in the time series is divided into n data
segments.

X = x1, x2,⋯,xnf g: ð13Þ

Step 2. The algorithm for constructing the Markov transfer
matrix wi,j, matrix range ½D,D�, where wi,j is determined
by the frequency of the immediately adjacent data in dj

and di:

wi,j =〠
∀x∈di ,y∈d j ,x+1=y

1
∑D

j=1wi,j
: ð14Þ

Step 3. Construct the Markov variational field M, with
matrix dimensions ½V , V � as to where the values of wi,j are
W½di, dj�

M =

wi,j x1j ∈ di, x1 ∈ dj wi,j x1j ∈ di, x2 ∈ dj ⋯ wi,j x1j ∈ di, xn ∈ dj

wi,j x2j ∈ di, x1 ∈ dj wi,j x2j ∈ di, x2 ∈ dj ⋯ wi,j x2j ∈ di, xn ∈ dj

⋮ ⋮ ⋱ ⋮

wi,j x2j ∈ di, x1 ∈ dj wi,j xnj ∈ di, x2 ∈ dj ⋯ wi,j xnj ∈ di, xn ∈ dj

0
BBBBB@

1
CCCCCA:

ð15Þ

After assigning a phase space to each position according
to a random distribution, the value in any one position is
only related to the neighboring positions and not to the
other positions. Using this property, we transform the tag
phase information conforming to the time series into a Mar-
kov transformation field (MTF), and Figure 8(a) shows the
independent phase MRF plot of the calibrated RF signal.

4.4. Classifier Optimization. This section describes the main
components of our deep model design. Our deep learning
design incorporates the results of data preprocessing into
the deep learning architecture, i.e., calibrated signed RF sig-
nals and hidden Markov graphs, as shown in Figures 8(a)
and 8(b), respectively.

As shown in Figure 9, we improve the convolutional
neural network AlexNet network and use the K-means clus-
tering algorithm to implement the recognition of user hand-
writing and user identity, respectively. K-means clustering
can group similar RF signals to achieve coarse-grained clas-
sification and identification of different users. In contrast,
the AlexNet network can learn dynamic temporal relation-
ships from continuous Markovian variograms to achieve
fine-grained recognition of signature handwriting.
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RF sign first uses the k-means clustering algorithm to
extract the user characteristics in the RF signal from the cali-
brated signature RF signal: signature speed, strength size, pen
starting and closing speed as the initial center of mass, calculate
the distance from each sample to each center of mass, divide
the samples into clusters corresponding to the nearest center
of mass, and then achieve the recognition of different users.

After implementing user recognition, we optimize the
AlexNet convolutional neural network to achieve recogni-
tion of the user’s handwritten content by recognizing the sig-
nature signal bipartite map. The dataset consists of
independent Markov images of calibrated signed RF signals

in 1D to 2D, mostly regular blocks of pixels at resolution
24. By comparing the traditional machine learning SVM,
and neural network models DensNet, GoogleNet, VggNet,
and AlexNet, we found that AlexNet has certain advantages
over other models in terms of accuracy, etc. The results are
shown in Table 1. On this basis, the structure of the AlexNet
model is adjusted and optimized, and the AlexNet convolu-
tional neural network model, which consists of 5 convolu-
tional layers and 3 fully connected layers with a total of 8
layers indepth, is simplified to 5 layers, making it more suit-
able for training and classification of MRF images and more
accurate discrimination of image features.
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In the optimized model training process, the first step of
the input data is a 224∗224 RGB image, which outputs a
55∗55∗96-dimensional image vector-matrix after an 11∗11
convolution kernel and 96 filters, i.e., hidden layer opera-
tions. After performing the relu function activation, the
27∗27∗96 dimensional data are output through a 3∗3 maxi-
mum pooling layer with local response normalization. After
four convolution operations, the final output 6∗6∗256
-dimensional matrix is fed into the fully connected layer of
the dropout function. Finally, we use the Softmax function
to activate and output 5 classifications to complete the task
of handwriting classification recognition.

4.4.1. Metrics. To validate the performance of RF sign, we
selected three main metrics, namely, false acceptance rate
(FAR), false rejection rate (FRR), and accuracy (ACC).
FAR is a measure of the likelihood of RF sign errors accept-
ing access attempts by unauthorized users (i.e., unauthorized
arrays), where it is calculated as

FAR =
FP

FP + TN
: ð16Þ

FRR is a measure of the likelihood that an RF sign error
will deny access to an authorized user

FRR =
FN

TP + FN
: ð17Þ

For each component, our main focus is on detection
accuracy. We use three metrics, namely, accuracy rate, false
acceptance rate (FAR), and false rejection.

4.5. Function Implementation. To implement the signature
recognition monitoring function, we further processed the
calibrated signature signal, extracted the feature values, gen-
erated the feature images, and finally used the improved
neural network model to achieve high-precision signature
recognition monitoring. This paper mainly implements the

user recognition function and the handwriting recognition
function.

4.5.1. User Identification. Based on the extracted signature
signals, after repeated experiments, we can roughly infer
the user’s writing habits from three aspects: the writing
speed, the size of the writing strength, and the time differ-
ence of the user’s stroke, to infer the writing user of the text
during the writing process. In this paper, the user’s writing
speed is judged from the amount of data corresponding to
a single font, starting from the following three aspects,
respectively, inferring the strength of the user’s writing from
the change in the size of the wave crest. From the duration of
the troughs, and thus the writing times corresponding to the
different changes are obtained. From these three aspects, we
can further infer that the writers are symbolized by the dif-
ferent fields. Writing and using these three feature vectors
to further infer the user to whom the monitoring handwrit-
ing belongs. Feature selection is shown in Figure 10.

4.5.2. Handwriting Recognition. In this work, we increase the
signal fluctuation of a single tag by artificially adding inter-
ferents and consider the identification of 5 handwritten let-
ters using calibrated RF signature signals. To reclassify the
signature signals when it has been determined that each field
represents a different user, a dataset of 5 handwritten letters
was created. The comparison of samples of the same letter
written by different users is shown in Figure 11.

5. Implementation and Evaluation Results

5.1. Implementation

5.1.1. Experimental Setup.We conduct experiments in a typ-
ical office environment. Figure 12 shows the default settings.
It includes a signal acquisition device based on an H47 tag
and antenna, a signature signal sensing device based on an
Impinj Speedway R420 reader, and a computer-based back-
end device for user data storage and processing, with the
commercial tag reader and computer connected via a
network cable and the antenna and commercial tag reader
connected. Meanwhile, we made a 0.15 mÃ—0.15m PVC
plastic transparent container to enhance the multipath
effect, and the tag was placed inside the plastic container
and formed an airtight environment opposite the antenna,
with an opening on one side to facilitate the user to sign.
During the experiment, max throughput was chosen as the
reader mode to improve the accuracy of the experiment so
that the measured values could reach the maximum

Conv layer 3 Pool layer

Output
layer

FC
layerConv layer 4Conv layer 2

Hidden layers 4

Input
layer

Conv layer 1

Figure 9: Neural network structure diagram.

Table 1: Accuracy comparison.

Classifier type Accuracy (%) Loss (%)

Resnet50 68.31 1.2314

AlexNet 93.88 0.1097

VGG16 79.67 1.2139

Mobilenet_v2 81.45 0.5097

SVM 85.12 1.2385
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throughput. And since the reader antenna is placed squarely
with the tag, the reader continuously interrogates the tag and
collects the signature signal. The signal is transmitted over
the network cable to the back-end PC running the RF sign.

5.1.2. Metrics. To validate the performance of the RF sign,
we selected three main metrics, namely, false acceptance rate
(FAR), false rejection rate (FRR), and accuracy (ACC).

FRR is a measure of the likelihood that an RF sign error
will deny access to an authorized user.

For each component, our main focus is on detection
accuracy. We use three metrics, namely, accuracy rate, false
acceptance rate (FAR), and false rejection rate (FRR), to
evaluate the overall performance of the system. Accuracy is
defined as the rate at which a tag is correctly matched to
its corresponding client. FAR is the rate at which the reader
incorrectly accepts tag information that is not of interest,
and FRR is the rate at which the reader incorrectly rejects
tag information for interaction.

5.2. Performance Evaluation. To evaluate the practicality and
robustness of the system, we selected the following five addi-
tional aspects to conduct experiments to comprehensively
evaluate the system performance in terms of distance factor,
tag factor, classifier factor, multiuser experience, and accu-
racy on the improved network model, respectively.

5.2.1. Distance between Tag and Antenna. In the tag-to-
antenna distance experiments, we change the communica-
tion range of the tag and antenna of the COTS RFID hard-
ware mainly from 40 cm to 60 cm in increments of 5 cm
each time. To comply with common sense and ensure signal
accuracy under the condition that the distance between the
tag and the hand is constant, the initial value of the range
was selected for this experiment, 40 cm. The same experi-
ment was performed several times at each distance, as is evi-
dent from Figure 13(a). The highest recognition accuracy
was achieved at 40 cm. It follows that as the distance
increases, the average error increases correspondingly. This
is all since the signal propagation distance in the air becomes
larger, which indirectly weakens the recognition accuracy.
And to achieve the best recognition performance, we also
recommend that the antenna and tag distance maintain at
about 40 cm, and then effectively in the device placement
conditions to improve the accuracy of frequency detection.

5.2.2. The Distance between the Tag and the Hand. For this
experiment, we varied the distance between the tag and the
hand from 10 cm to 30 cm in increments of 5 cm each time,
with a constant distance between the tag and the antenna.
We performed several trials at each distance and selected
the best, as can be observed from Figure 13(b). When the
distance between the tag and the hand is too large, the
reflected signal will be too weak due to the late speed recog-
nition accuracy being greatly reduced. To further enhance
the accuracy and sensing range, we can further select a more
effective directional antenna, which can greatly enhance the
experimental accuracy and sensing range by aggregating the
energy compared to the previous one.

5.2.3. Impact of Tag Types. In this experiment, we chose to
detect the handwriting of the same user with the tags
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Figure 13: Relationship between distance and accuracy.
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shown in the figure, which contain two commonly used
tags. One is 9662 with a size of 70∗17mm and the other
is T92 with a size of 93∗14mm. In addition, we also
selected the size of 44∗ 44mm H47; the comparison chart
is shown in Figure 14. These three tag positions were
replaced in the experiment, keeping the original environ-
ment unchanged, and the accuracy of the two major direc-
tions was studied separately. From Figure 15(a), it can be
learned that the recognition accuracy of using the H47
tag is higher, after thinking that the reason may be due
to the smaller cross-section of other tags, which will make
its coupling effect weaker than that of the H47 tag. How-
ever, it should still be noted that the coupling effect is
affected by the variation in tag reader distance, so overall,
different types of tags can achieve more similar accuracy
with a significant reduction in distance.

5.2.4. Different Angles. In this experiment, we changed the
angle of the tag from a 30° angle to a 90° angle, rotating
30° each time and subsequently transposing the tag to 180°,
choosing a total of 4 angles. In addition, the distance
between the tag and the antenna is constant at 40 cm, and
the distance from the hand is constant at 10 cm. To ensure
the accuracy of the test data, we conducted several tests on
each angle and selected the best, and the final test results
are shown in Figure 15(b). We can observe that when the
tag placement angle changes, the phase of the reflected signal
will produce a certain angle change, but still can be more
accurate recognition of the handwritten content. Therefore,
the variation of the tag angle has little effect on the experi-
mental results. To reduce the error and facilitate the experi-
mental sampling, our main experiment fixed the tag angle at
0°, which is directly opposite the antenna and hand.
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5.2.5. Confusion Matrix of Handwriting Recognition
Accuracy. In this work, we increase the signal fluctuation
of a single tag by artificially adding interferents and consider
the identification of 5 handwritten letters using calibrated RF
signature signals. To reclassify the signature signals when it
has been determined that each field represents a different
user, a dataset of 5 handwritten letters was created. To
achieve high accuracy in classification recognition, we
extract the feature values to generate feature images and
import the images into our improved AlexNet neural net-
work to further recognize the text content written by the
user and finally achieve the handwriting recognition func-
tion. The improved AlexNet neural network accuracy confu-
sion matrix is shown in Figure 14.

5.2.6. Different Experimenters. Another 10 volunteers, five
men and five women, were selected to demonstrate the
usability of the experiment. Among them, 10 volunteers col-
lected 5 groups of data of 5 handwritten characters A, B, C,
D, and E, respectively, according to the experimental
requirements, and 100 groups of real samples were collected.
Data extraction is performed according to the experimental
deployment, allowing volunteers to avoid carrying reader
antennas parallel to each other as much as possible during
the measurement process, thus reducing errors caused by
human factors. The data was tested on four volunteers, and

the test results are shown in Figure 16. In terms of user rec-
ognition, RF sign can distinguish different users with a stable
accuracy rate of 86% or more on average for all volunteers
tested thus proving that RF sign can perform more accurate
user recognition and handwriting recognition.

5.3. Comprehensive Assessment. In addition to the above five
groups of experiments, this paper conducted field simulation
tests to verify the performance of RF sign in terms of security
and real-time performance.

5.3.1. Anticounterfeiting. Randomly designate one volunteer
to sign 5 groups of signature samples, and randomly select
another volunteer to sign 5 groups of signature samples by
imitation of the volunteer, and import all samples into RF
sign for identification, so as to study whether RF sign can
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Figure 17: Signal comparison of two users writing the letter A (in the figure, the graph key uses the blue line to represent the red signal line).
(a) The strength of user 1's writing of the letter A. (b) The length of pause interval A when user 1 is writing. (c) How hard user 2 writes the
letter A. (d) How long the pause interval is when user 2 writes.

Table 2: Running time of RF sign.

Sample Duration(s)

A1 6.2223

B47 5.6332

C1 7.5557

D33 4.2390

E40 5.5777
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identify the authenticity of the handwriting under the condi-
tion that the user deliberately forges the handwriting.
Figure 17 shows the letter A written by different users in
the handwriting of volunteer 1. According to the test results
of this experiment, it can be seen that RF sign can still detect
the authenticity of the handwriting through different users’
writing strength and speed when the user deliberately imi-
tates the handwriting to take out the signature, which has
anticounterfeiting performance.

5.3.2. Real-Time Performance. In the test process, we
recorded the time required by the RF sign to collect and
identify each group of samples, respectively. The following
Table 2 shows that RF sign has short operation time, low
operation cost, and strong universality.

6. Conclusion

In this paper, we present the RF sign, a device-free note
detection system based on the COTS RFID system. Passive
recognition of signature behavior is achieved from the per-
spective of dynamic handwriting detection. The RF sign
achieves recognition of different users by extracting fine-
grained reflection features from the original RF signal. To
achieve template matching and classification, we introduced
a k-means algorithm with neural network technology for
similarity calculation and signature recognition matching
and compiled a real-time signature handwriting detection
system. The system achieves effective identification of my
signature by checking spatial and temporal information in
real-time. It has a broad application prospect in case detec-
tion and forensic identification. The experimental results
confirm the effectiveness of RF sign in user recognition
and handwriting detection. The proposed conversion mech-
anism and the improved neural network model can signifi-
cantly improve the recognition accuracy, with an accuracy
rate of over 88% and 93%, respectively. However, RS-sign
classification is very sensitive to the quality and quantity of
samples. To further improve its performance bottleneck, in
future work, we will augment the dataset and train the
model.
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