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Mobile edge computing (MEC) has produced incredible outcomes in the context of computationally intensive mobile applications
by offloading computation to a neighboring server to limit the energy usage of user equipment (UE). However, choosing a pool of
application components to offload in addition to the volume of data transfer along with the latency in communication is an
intricate issue. In this article, we introduce a novel energy-efficient offloading scheme based on deep neural networks. The
proposed scheme trains an intelligent decision-making model that picks a robust pool of application components. The
selection is based on factors such as the remaining UE battery power, network conditions, the volume of data transfer,
required energy by the application components, postponements in communication, and computational load. We have designed
the cost function taking all the mentioned factors, get the cost for all conceivable combinations of component offloading
decisions, pick the robust decisions over an extensive dataset, and train a deep neural network as a substitute for the
exhaustive computations associated. Model outcomes illustrate that our proposed scheme is proficient in the context of
accuracy, root mean square error (RMSE), mean absolute error (MAE), and energy usage of UE.

1. Introduction

Nowadays, technological advancement is emerging drasti-
cally fast, along with numerous applications. The future
wireless communication grasps various application setups
in the form of augmented reality and cognitive assistance.
Billions of smart devices are equipped with high computa-
tional resources and considerable memory size but also
necessitate performing larger number of tasks. To tackle
these challenges, researchers suggested a substantial solu-
tion, namely, mobile cloud computing (MCC). Aside from
providing a solution, it also imposes an extra load on back-

haul and radio mobile networks which consequences into a
high or variable latency to remote data centers. Therefore,
the concept of mobile edge computing (MEC) emerged
which offers users storage and computing resources. It also
minimizes the load on network resources, the energy con-
sumption of user equipment (UE), and the network delay.
Within the MEC, resource allocation along with offloading
approaches precisely afflicts the performance of the frame-
work which has turned out to be a research trend recently.

In [1], a two-phase traffic distribution method was pro-
jected for mobile edge server (MES) computing resources
and mutually optimizing channel bandwidth to minimalize
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latency. In [2], an algorithm by the game theory was offered
to mutually optimize channel bandwidth and MES comput-
ing resources to minimize energy consumption and overall
time. Within MEC, enhancing the mobile applications’ per-
formance mainly relies on effective task offloading decisions
[3–6]. Thus, offloading decision-making has shown promis-
ing results over the past few years [7–12]. The authors in
[11] measured the capacity limitations of backhaul links
and real-time and maximum delay limitations of users and
presented an unloading strategy to minimize the overall net-
work energy consumption. In [12], the authors presented a
computation offloading strategy considering energy percep-
tion through the consumption of weighing energy and time
delay. The authors also contributed the residual energy of
smart device battery within the characterization of the
weighted factor of delay and energy consumption, decreas-
ing consumption of the entire system. Both approaches
mentioned above neglected to allocate computing resources
and a limited spectrum. In [13], the authors presented an
adaptive resource allocation and task offloading system for
MEC. The proposed algorithm utilized deep reinforcement
learning (DRL) technique to identify whether or not a task
demands to remain offloaded and allocate computing
resources for the particular task. However, this technique
has drawbacks such as tough to regulate parameters and
long training time. In the scenario with multiple resources,
[14] considered an algorithm based on task scheduling of
energy consumption minimization particle swarm optimiza-
tion aimed at multiple resources corresponding to decrease
edge terminal equipment energy consumption. In [15], a
privacy viewpoint computing offloading algorithm is pro-
posed, which is based on the Lyapunov optimization theory.
The authors in [16] considered deep learning task offloading
to deploy deep learning applications along with improving
network energy consumption, a group of sparse beamform-
ing structure based upon mixed L1/L2 norms.

While there are various works of literature concerning
the computation offloading system for a user single-cell
MEC framework, the vast majority of earlier offloading
works based on machine learning (ML) presume either an
infinite quantity of accessible communication or computa-
tion resources in cloudlet or coarse-grained computation
offloading [1, 2]. This motivates us to propose a new offload-
ing method that utilizes deep neural networks to achieve
energy efficiency. The proposed approach trains an intelli-
gent decision-making model that selects a reliable set of
application components based on various factors, including
remaining battery power, network conditions, data transfer
volume, energy requirements of the components, communi-
cation delays, and computational load. To accomplish this, a
cost function is developed that considers all these factors,
and then, the most robust offloading decisions are chosen
from a large dataset. Finally, a deep neural network is trained
to serve as a more efficient substitute for the exhaustive com-
putations required by the cost function.

The main contributions of this article are the following:

(i) To deal with the offloading issue, an effective tech-
nique is proposed, which selects an optimum com-

ponent’s part to offload to MES. The proposed
technique calculates the costs of implementing a
component on both MES and local end. In addition,
the cost is the offloading decision-dependent vari-
able that finds the perfect offloading procedure for
some particular states of a component

(ii) An efficient computation offloading system based
upon supervised feed forward architecture has been
created, along with random offloading scheme
(ROS) and total offloading scheme (TOS) that are
employed to evaluate the cost consumption and
accuracy rate

(iii) Performance of our proposed strategy shown by
numerical simulations, which validate that we
achieved the lowest possible cost compared to alter-
native methods and also observed the lowest slope
curve by a parameter constraint mathematical model

The rest of this paper is ordered as follows: Section 2
introduces an outline of the related works. Section 3 dis-
cusses the proposed model and methodology followed by
experimental results presented in Section 4. Finally, the
“Conclusion” section concludes this paper.

2. Related Work

Several methods have been presented to handle mobile off-
loading problems in dynamic situations. The approaches
presented in the literature are based on optimization
methods that aid in allocating the MEC resources [17, 18].
Nevertheless, a system based upon MEC is typically quite
complex, and occasionally, it is tough to be portrayed in a
mathematics arrangement. Similarly, optimization challenge
is primarily expressed based upon a snap of the system, then
reformulated when the situation fluctuates eventually.
Besides, most of the conventional optimization approaches
necessitate a hefty number of iterations to seek a local opti-
mum preferably the global optimum.

Even though mobile cloud computing (MCC) attempts
to drive restrictions of mobile applications through involv-
ing centralized resources to accomplish computational off-
loading, mobile edge computing (MEC) further proceeds
by allocating the key portion of distant operations directly
to nearby structures. These resources, characteristically situ-
ated at the logical edges of a network, might consist of LTE
base stations, where routers deliver joint resources [19]. Mit-
sis et al. [20] presented a usage-based pricing mechanism
and a user’s risk-based behavior-aware data offloading
decision-making scheme in a UAV-assisted MEC system.
Considering the pricing mechanism, prospect theoretic util-
ity functions are formulated to capture users’ decision-
making behaviors. Moreover, the theory of the tragedy of
the commons is utilized to model the UAV’s resource utili-
zation. Each participant in the game is expected to maximize
its utility function in a noncooperative manner. However,
due to the growing number of UAVs, network resource
management faces challenges such as power control, spec-
trum allocation, and task allocation.
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The deep learning [12] technique has accomplished its
astonishing performance. Deep learning has surpassed
techniques based upon machine learning in entire artificial
intelligence areas, comprising of speech recognition [21], com-
puter vision [22], natural language processing [23], and so on.
Referring to the traditional machine learning-based offloading
techniques, namely, the offloading scheme based upon the
Markov decision process in [2], the deep learning scheme con-
veys two superiorities: (i) remarkable accuracy potential of
achieving in decision-making and (ii) radical speed of calcula-
tion used for the test by a trained model.

Another eminent method of reinforcement learning is
suitable for distributed decision-making. In this technique,
autonomous agents acquire the most appropriate action by
using penalties and rewards obtained during each round of
play. Meanwhile, agents are unaware of which action is suit-
able to take; the agents learn through balancing search of
unidentified actions and utilization of the existing data of
already utilized actions. Simply put, agents utilize trial and
also error tactics to capitalize on their functions over the
horizon. Few eminent reinforcement learning approaches
comprise learning automata, Q-learning, and Roth-Erev.
However, reinforcement learning tactics are quite well suit-
able for learning in minority game (MG) [24]; subsequently,
adjustment to the joint action of other agents in the exis-
tence of information deficiency can be accomplished by such
approaches [25].

Moreover, in MEC literature, quite a lot of research work
is available to mitigate the transmission latency issue and
offer more optimized system performance. In [26], an RL
framework based upon a deep Q-learning approach was uti-
lized to estimate action-value action. They also provided a
strategy to get the overhead-aware optimal computation
offloading. Further, each user can learn via surrounding
environment interactions and then approximate its perfor-
mance in value function form. In the next step, the user
can choose the overhead-aware whether edge computing or
local computing by its condition. Another study also utilized
a reinforcement learning algorithm-based technique called
deep Q-network [27]. The key finding of their work was to
automatically learn the offloading decision to improve the
system performance and greatly decrease the latency and
energy consumption.

In [28], they studied long-term throughput maximiza-
tion problems considering a multicell multiuser framework
for MEC. They did not solely emphasize two key issues,
namely, energy and latency minimization issue, but a novel
strategy is presented from the service provider’s perception
to improve the system-wide throughput with latency limits
through equally getting user accord along with resource dis-
tribution for communications and computing in consider-
ation. Additionally, the Markov decision process (MDP) is
applied to model the queuing conditions for mobile devices
and also MEC servers.

In addition to latency and energy issues, computational
offloading has risen. In [28], a way to alleviate offloading is
presented, that is, distributed deep learning-based offloading
(DDLO) algorithm. This approach uses multiple parallel
DNNs to produce offloading choices. They follow a joint

replay memory to save newly produced offloading choices
which are then trained along with improving all DNNs.
[29] presented MEC-enabled long-term evolution (LTE)
framework and analyzed the impact of numerous vehicular
communicationmodes on the performance of task offloading.
They employed extensively used deep Q-learning method for
optimal target MEC server decision to assist in maximizing
utilities of offloading scheme subjected to specified delay
limitations. Further, to improve task offloading reliability
suggested an effective redundant offloading algorithm.

Finally, this persuades us to scheme a flexible deep
learning-based offloading technique. In our approach, we
assume that the mobile users are in a still position when they
are performing to offload the mobile task to edge devices,
considering that the communication between edge devices
and mobile users is always consistent. Therefore, we did
not include the mobility of users in our approach. Addition-
ally, the network can become more critical with the user's
high mobility.

3. Methodology

The process of implementation of an approach can be dis-
tributed into various stages. Every stage with associated data
is a component of the approach implementation. The com-
ponent can be installed either on the mobile edge server or
local end. An effective offloading method should choose an
optimum component part to offload to MES but not to
entire, targeting to which. There are vital stages proposed
in this approach, starting with calculating the implementa-
tion cost of a component on the MES end and local end,
respectively, proving the implementation of the cost func-
tion offloading procedure, whereas the value of the cost var-
iable is dependent on the offloading decision, finding the
perfect offloading procedure for some particular states of a
component with extensive methodology and the perfect off-
loading procedure including their states of component,
respectively, and these two segments are then measured as
the inputs and outputs of our training dataset. Lastly, apply-
ing a convolutional neural network, with that, we can
achieve the perfect offload method of any states of a compo-
nent through the training dataset. Moreover, Abbreviations
represents all the notations to be used in this section.

3.1. Implementation of Local End Cost. The implementation
of local end cost contains execution and consumption time.
The work in [30] presented that implementation time can be
computed through the amount of input data required for a
single component. However, this approach neglected that
the processed data with input data were not identical in size.
Suppose we accept that the component output data is the
input data to the incoming component, then we can apply
kn−1,n to show the component ln−1 input data; thus, the
amount of work of component is given as

Cl = B · Pn · kn−1,n, ð1Þ

where Cl is calculated in the clock cycle of CPU and B shows
the amount of clock cycle a microprocessor will process each
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byte, and it is computed in cycles per byte. [31] introduced
the research of this parameter. Pn is the cost of computation
of ln and denotes the data augmentation feature of ln.
Understandably, the processed data and input data differ
in size because a single component might handle the same
input data many times; that is the reason the significance
of Pn is presented in this work. As a result, if the component
l is installed and performed on the local UE end, its imple-
mentation time is equivalent to the time required to com-
plete the amount of work Cl and is stated as follows:

Tm lð Þ = Cl

f m
, ð2Þ

where is CPU rate for UE denoted by f m, where million
instructions per second (MIPS) are calculated. The energy
usage because of this amount of work represented by Kl
and energy is given below:

Kl = Cl × V , ð3Þ

where V shows the consumption of UE’s unit power, and
each CPU cycle is calculated in MAH. Assuming the entire
energy of UE is Kt , the lingering energy for the coming com-
ponent l + 1 can be calculated by

Kr = Cl × V − Ktð Þ: ð4Þ

Later, the energy usage and implementation time were
computed by the above equations, and the local end imple-
mentation component l cost can be measured by the follow-
ing equation:

Gm lð Þ = λ1Tm lð Þ + λ2Kl, ð5Þ

where λ1 and λ2 are coefficients of weights which can make
equilibrium of energy usage and time delay in the cost func-
tion of local end, respectively.

3.2. Implementation of MES End Cost. With the local end
implementation, the user equipment can also afford a com-
ponent offloading to the remote end, such as MES to imple-
ment. Similar to the local end, the MES end implementation
cost also has the implementation time but is much smaller
compared to the local end time. We can assume implemen-
tation time same as local end time:

Tu lð Þ = Cl

f n
, ð6Þ

where f n is MES CPU rate. The time used on data transfer
from UE to MES has to be kept in mind. This UE mobile
Internet environment defines this time; however, at this
stage, we have only considered the most regularly applied
4G environment. The orthogonal frequency division multi-
ple access (OFDMA) technology is utilized to deploy the
4G environment. With this kind of access, the download
and upload speed relies on the transmission subcarrier num-
ber N and bandwidth B. Considering that the similar addi-

tive white Gaussian noise (AWGN) channel is broadcast
for uplink and downlink, the obtainable uplink and down-
link data rate can be simply computed as [32]

ru = n
B
N

log2 1 + pu hulj j2
Γ gulð ÞdβNo

 !
,

rd = n
B
N

log2 1 + ps hdlj j2
Γ gdlð ÞdβNo

 !
,

ð7Þ

where B denotes as bandwidth; the path loss exponent is rep-
resented by β; the distance between MES and UE is d; fur-
ther, n is the total subcarriers which are given for from UE
to MES transmission; power noise is No; ps and pu represent
the MES and UE transmission power, respectively; the coef-
ficient of channel fading for downlink and uplink is repre-
sented by hdl and hul; and, finally, the required rate of bit
error for downlink and uplink is shown by gdl and gul. Fur-
thermore, the SNR margin for obtaining the bit error rate
using quadrature amplitude modulation which is equal to
−2 log 5gul/3 is represented by ΓðgdlÞ. Applying the above
equation, we can calculate the time taken for UE to dispatch
the component l input data to MES can be achieved by

Tv lð Þ = kl−1,l
ru

× 1 − pl−1ð Þ, ð8Þ

where pl−1 describes the offloading decision of the past com-
ponent l − 1. The following equation will define the execu-
tion of the component:

execution =
MES, pl−1 = 1,
Locally, pl−1 = 0:

(
ð9Þ

If the past component l − 1 was done on MES, then the
output of that component, for instance, the component l
input, requires not to be communicated between MES and
UE. Therefore, the time consumed will be zero. On the other
hand, the past component l − 1 was run locally. Therefore,
the data communication will be essentially required. Like-
wise, once the component l execution is completed, the out-
put of that component is likely to be dispatched back to UE
if the coming component l + 1 will be set to execute locally,
whereas the communication is not necessary if component
l + 1 will be set to execute on MES; finally, the time con-
sumed for UE to allow the component l output data of
MES is given below:

Tw = kc,c+1
ru

× 1 − pl−1ð Þ: ð10Þ

Lastly, the cost of MES end implementation is given
below:

Gn lð Þ = λ3Tu lð Þ + λ4Tv lð Þ + λ5Tw lð Þ, ð11Þ
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where λ3, λ4, and λ5 are weights that can work as balancing
the time, respectively.

3.3. Design a Cost Function. As we all know, a component
can perform a task either remotely or locally, where equa-
tions (5) and (11) represent the cost function, respectively.
To formalize the offloading cost function efficiently, we
introduce the single component cost l as

cost =
Remotely Gremoteð Þ, pl = 0,
Locally Glocalð Þ, pl = 1:

(
ð12Þ

The offloading procedure cost function is the sum imple-
mented of all the components and thus can be denoted as

G =〠Gremote +Glocal: ð13Þ

Suppose the decisions of offloading of all components
make the decision environment as D = d1, d2,⋯, dM ,
whereas M denotes the total number of components used.
After, our method is aimed at searching out an authentic
decision environment as D∗ to minimize the above equation,
which we can derive as

D∗ = argD min〠G lð Þ: ð14Þ

4. Simulation of Algorithm

To calculate the efficient offloading model as presented in
the above equation, a deep ANN structure is done in this
article. The most vital stuff is generating the datasets for
training for our ANN model. The steps to collect datasets
for training are given below:

(i) The decision of component offloading relies on its
condition; thus, the condition components and the
related decisions of offloading must be the outputs
and inputs of the ANN, respectively

(ii) A component possesses a condition (v, c, d, and b)
showing the current component mobile environ-
ment, where v is denoted as the amount of input
data, the component number is denoted as c, the
distance between MES and UE is measured as d,
and, finally, b shows the bandwidth

(iii) Let us suppose there are total L components, and we
arbitrarily produce a condition for every compo-
nent; therefore, we finally obtain L different condi-
tions. A know possesses two offloading selections;
therefore, there would be 2L distinct offloading
states. Applying the exhaustive approach, we com-
puted each state cost and choose among the best
which can minimize equation (17)

(iv) After, if the ANN is trained accurately and if we give
L states as input, it should give an accurate offload-
ing scheme as output

(v) We train the ANN model for P number of times
as done in step number 3; then, we can obtain dif-
ferent conditions and the related better offloading
procedures, which make P number of rows data
for training. The k-th training data row is shown
below:

samplek = Sk,D∗
kf g, ð15Þ

where Sk shows the condition of all L components.
Hence, Sk is composed of 4L data features since each
condition consists of 4 condition features. The number
of units of the input layer has the same 4L to obtain Sk
perfectly. D∗

k is the preferred robust L component offload
scheme. Expand equation (16) according to the following
conditions:

Sk = vk,1, ck,1, dk,1, bk,1ð Þ,⋯⋯, vk,L, ck,M , dk,M , bk,Mð ÞÈ É
,

D∗
k = D∗

k,1,D∗
k,2,⋯,D∗

k,M
À Á

:

ð16Þ

For instance, ðvk,1, ck,1, dk,1, bk,1Þ is the component 1
condition which is arbitrarily produced in the k-th itera-
tion in step number 5, and D∗

k,1,D∗
k,2,⋯,D∗

k,M is the
related offloading scheme of the same iteration.

The feed forward architecture is shown in Figure 1,
which consists of fully connected layers. While we input
a training dataset into our ANN, we set a fixed batch size;
it will take the first batch as a set of component conditions
into it. The training data is generated from a small num-
ber of conditions. However, the pretrained ANN is capable
of predicting the robust offloading decision of any set of
conditions.

Moreover, deep learning is used on offloading policies
where computations are managed according to data flow in

First component
inputs 

Last component
inputs 

Last component
Outputs 

First component
outputs 

Second component
outputs 

Second component
inputs 

Figure 1: Proposed feed forward neural network.
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the network. Deep learning performs as a smart agent
according to the data provided. Data can be lost from low-
resource communication channels. However, loss function
and stochastic gradient descent can overcome this problem
with a loss of negligible accuracy.

4.1. Computational Complexity. The reason for choosing the
proposed method is to solve the energy usage by application
components, postponements in communication, and com-
putational load, which mainly relies on its benefit of low
complexity compared to benchmark solutions, e.g., random
offloading and total offloading schemes. In particular, the
complexity of random offloading grows exponentially to О
ð2nÞ as the number of fine-grained components n of an
application grows, whereas the complexity of the proposed
method is typically on the order of ОðmnÞ2 , where m is
the number of neurons in a hidden layer that indicates the
scale of the learning model.

5. Experiment Settings

We performed the experiments with NVIDIA GTX TITAN
Xp GPU. We used L = 100 and randomly produced 10K
conditions for every component after we obtained the data-
set for training fsamplek = fSk,D∗

kgjk = 1, 2,⋯,10Kg. We
implemented different batch sizes of the datasets for train-
ing, for instance, 16, 32, 64, 128, 256, 512, and 1020,
respectively. The average batch size is 100MBs. We
assume that the mobile users are in a static position while
performing to offload the mobile task to edge devices, con-
sidering that the communication between edge devices and
mobile users is always consistent. Therefore, we did not
include the mobility of users in our approach. Additionally,
the network can become more critical when user mobility is
greater.

We chose three offloading strategies based on the litera-
ture and attempted to assess their efficiency; the three
schemes are described below:

(i) Random offloading scheme (ROS) [33] randomly
chooses robust components irrespective of the vol-
ume of data transfer needed, remote and local
resources, and network conditions

(ii) Total offloading scheme (TOS) [33] is the coarse-
grained method, which transfers the entire compu-
tation complexity to MES. This policy does not
require a decision on offloading strategies because
the entire computations are offloaded

(iii) Offloading policy based on deep learning considers
the amount of data transfer needed and network
conditions. It applies a deep neural network with 2
middle layers (hidden layers) and 128 units in each
layer

Table 1 gives several network parameters applied in this
article. Most numbers of parameters applied were similar as
in [34], but the rates of CPU (f n and f m) were specified
according to the theory that MES has a greater CPU rate

against the UE. We proposed the predictive performance
as follows for comparison purposes:

MAE = ∑ dk,m − d∗k,m
�� ��

N
, ð17Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ dk,m − d∗k,m
À Á2

N

s
, ð18Þ

where d∗k,m is a component’s predicted offloading policy, dk
is their actual optimal offloading policy, and the total num-
ber of components is denoted by the letter N . Point 3 of
the above section demonstrated how to obtain the true opti-
mal offloading policy.

Figure 2 depicts our deep model prediction accuracies
for various sample values. Figure 2 shows that the model’s
prediction accuracy improves as the number of samples
increases. When the number of samples reaches 50, the root
mean square error (RMSE) and mean absolute error (MAE)
become less than half, which shows that model can make
predictions accurately asm ≤ 1, 0 ≤ dk: However, when the
sample size approaches a thousand, the prediction accuracy
soon deteriorates. It indicates that the model’s performance
is not proportional to the sparsity. We examined our algo-
rithm’s cost consumption and accuracy rate with ROS and
TOS. The accuracy rate is formulated as follows:

U =
Np

M
, ð19Þ

where Np denotes the number of components that have been
correctly offloaded. The accuracy rate of our algorithm is
examined in Figure 3 between ROS and TOS. The accuracy

Table 1: Model parameters.

Symbols Value

B 3 [34]

β -2

d 10 [34]

f m 1010

f n 105

λ1 0.5

λ2 0.5

λ3 0.5

λ4 0.3

λ5 0.1

No 0:15 × 105

N 256

ps 0.1

pu 0.1

gdl 0.01

gul 10-3
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rate is calculated using a training dataset with 500, 1000,
1500 samples, respectively. We found that when the sample
size grows larger, our algorithm’s prediction accuracy
improves. As a result, given a big sample size, the ANN
can create a more accurate offloading scheme.

Figure 3 also shows that our proposed algorithm per-
forms better as compared to other schemes. ROS and TOS
are offloading either randomly or totally, which lowers the
accuracy rates. On the other hand, our proposed scheme
improves the accuracy with the help of a deep neural net-

work with various conditions such as energy, data volume,
and network condition. This multitude of consideration
has significantly improved the overall accuracy under vari-
ous conditions, as shown in Figure 3.

The performance of the proposed scheme concerning
energy and time delay is shown in Figure 4. Figure 4(a)
shows that our proposed scheme outperforms TOS and
ROS for all number of samples. For the number of samples
= 8000, our proposed scheme improves the energy con-
sumption by 57% and 87% compared to TOS and ROS,
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Figure 2: Prediction accuracy of the proposed algorithm.
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Figure 3: Offloading accuracy rates comparison of the proposed algorithm.
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respectively. Similarly, Figure 4(b) shows the comparison of
time consumption of our proposed model with other
schemes. The higher accuracy rate of our proposed scheme
has also contributed to the lower time delay. It can be
observed that our proposed schemes suffers from lower time

delay as compared to TOS and ROS and has improved the
performance by 26% and 43%, respectively.

Figure 5 depicts the time complexity of our algorithm
versus TOS and ROS for different sample sizes. It can be
observed from Figure 5 that the time complexity of random
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Figure 4: Overall energy consumption and time delay with TOS and ROS.
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offloading grows exponentially to Оð2nÞ as the number of
samples grows. In contrast, the complexity of the proposed
method is typically on the order of ОðmnÞ2, with a slow
increase in the graph trend. Therefore, our proposed scheme
outperforms the others in terms of learning capacity.

Figure 6 shows the accuracy cost consumption of our
algorithm w.r.t. TOS and ROS for various sample sizes.
The application will run using our technique at the lowest
possible cost when compared to alternative techniques.
Another noteworthy point is that our method observed the
lowest slope curve, indicating that when the prediction sce-

nario becomes more complicated, our method might signif-
icantly decline offloading performance.

The combined energy consumption and time delay effect
is depicted in Figure 7, representing λ1 and λ2, respectively.
We call it cost of consumption (E). In addition, to check the
impact of energy and time on the performance, the differ-
ence values of λ are taken. It is observed that for lower num-
ber of samples, energy (λ1) positively affects E as compared
to time (λ2), which can be seen in Figure 7 for 2000 and
4000 number of samples. We can see the lower cost of con-
sumption (E) for λ2 > λ1. However, for the remaining
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Figure 6: Overall cost comparison of the proposed algorithm with TOS and ROS.
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samples, it is observed that time (λ2) plays a significant role
in decreasing E as compared to energy (λ1). It is concluded
that both time and energy affect the overall performance
and diversely contribute towards the cost of consumption.
This unique property can fulfil the user preference related
to energy and time. In order to deal with energy constraint
applications, higher value of λ1 can be used. Similarly, for
delay intolerant applications, λ2 can be preferred over λ1.
This way, the users’ requirements’ variability can be effec-
tively satisfied.

6. Conclusion

In this article, we described a new method to smartly offload
application components to the cloud, applying extensive
mathematical modeling and deep neural networks tech-
nique. We designed a cost function for the application to
be implemented on user equipment (UE) as well as on the
cloudlet server giving network conditions, accessible compu-
tation resources, delays, and energy usage. Considering these
factors in the cost function, our introduced method is highly
extensive and produces greater accuracy for robust decision-
making for the offloading issue in MEC. Throughout a care-
ful measure of the cost function, energy usage, and accuracy,
we illustrated that our method is more accurate and uses an
advanced state-of-the-art technique. To prevent complex
computation and make the process of decision-making
quicker, we trained deep neural networks. Further, to train
the deep neural networks, the datasets are created from the
designed mathematical model in which we include all the
significant features in the cost function formula. Our model
obtained approximately a 2.3% reduction in the total cost

and approximately a 3.1% reduction in energy usage, as dis-
tinguished with other past techniques. Finally, we obtained
greater accuracy with the lower number of neurons in the
deep neural networks.
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Cl: The amount of work of component
TmðlÞ: Time required to complete the amount of work
Kl: The energy usage on amount of work
λ1, λ2: Coefficients of energy and time weights, respectively
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rd : Downlink data rate
G: The offloading procedure cost function.
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