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Coding gains for arbitrarily correlated signals in a spatial diversity system with conjoint signals are presented in this study. The
basic form of the proposed signal synthesizer evenly produces phase changes in the output signals. The mixer is an orthogonal
transformation matrix, which is energy preserving and blind to the channel correlation matrix. The idea is to synthesize additional
conjoint signal copies from the received signals that would be received if there were more antennas. However, these conjoint signals
contain a level of correlation with the received signals. With the assumption of flat Rayleigh fading channels, simulation results for
symbol error probability (SEP) are presented for different numbers of receive branches and varying correlation conditions. It is
shown that under binary phase shift keying (BPSK), the synthesizer achieves decorrelation coding gains of about 1 dB when
selection combining (SC) or equal gain combining (EGC) is used. The synthesizer’s performance across M-ary quadrature
amplitude modulation (MQAM) signals is also tested. In addition, analytical frameworks are derived for BPSK and MQAM,
which are tightly bound by the Monte Carlo simulation results obtained using Matlab. The correlation analysis is performed for
different numbers of antennas and varied antenna spacings.

1. Introduction

Receive diversity approaches are recognized to increase
numerous figures of merit in wireless communications sys-
tems by providing redundant signals that can be combined to
achieve a better quality of service (QoS) [1–8]. However,
space restrictions, e.g., in mobile handsets make it difficult
to receive uncorrelated signals, hence the need for decorrela-
tion [3, 9–11]. In fact, several instantaneous decorrelation
algorithms are known, but signal information measurements
are required.

Also, blind decorrelation schemes or virtual antennas,
e.g., discrete Fourier transform (DFT) do not measure signal
information, but they require uniform circular receive
antenna spacing configurations [12–14]. Furthermore, the
state-of-the-art decorrelation algorithms in open literature
are not unifying when different signal combining techniques
are used to combine the decorrelated output signals [15–21].

For example, Hangani and Beaulieu [21] showed how
intuitive decorrelation of signals for dual branch systems

can be achieved through eigenvalue decomposition (EVD)
of the received signals. The low-complexity dual decorrela-
tor, which was formerly presented in a study by Fang et al.
[19], does not assume the knowledge of the correlation
matrix and can, therefore, be referred to as a blind decorr-
elator [12–14]. The blind decorrelator in a study by Hangani
and Beaulieu [21] has been used in a study by Hangani and
Beaulieu [21] and Dong and Beaulieu [22] to examine dec-
orrelation benefits for various diversity combining techni-
ques. It is observed that for moderate signal-to-noise ratio
(SNR) levels, the decorrelator nonuniformly improves per-
formance only for the selection combining (SC) system by
redistributing the received signal power among the receive
branches [15, 21, 22].

Generally, the dual decorrelator is simple to implement
and is suitable for use in error analysis for correlated
branches [15, 21, 22]. However, theoretical analysis reveals
that the dual decorrelator is always energy preserving, but
may lead to signal zeroing since its transformation matrix
consists of real entries only [23]. In fact, it is observed that it
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is only optimal for maximal ratio combining (MRC)
[6, 19, 22, 24, 25], but alters the performance criteria for
SC and equal gain combining (EGC) and cannot be used as
a unifying decorrelator for dual diversity systems
[19, 20, 26–28].

Furthermore, it has been demonstrated in a study by
Akuon and Xu [28] that a similar decorrelator as proposed
in a study by Akuon and Xu [27] achieves coding gains
across SC and EGC combiners under independent flat fading
Rayleigh channels. This paper aims to theoretically and
experimentally show that coding gains are achieved using
conjoint signals even under arbitrarily correlated flat fading
Rayleigh channels. In a nonflat Rayleigh fading model, the
fading behavior of the channel exhibits variations over fre-
quency or time. This inherent inconsistency implies that the
channel’s characteristics undergo modifications across vari-
ous frequency components or the duration of time. This
variability presents challenges in communication systems,
as it results in fluctuations in signal strength and quality,
primarily attributable to signal attenuation and rapid fluc-
tuations in both amplitude and phase. To combat nonflat
fading in wireless communication systems, a combination
of strategies is essential [29]. These methods address signal
strength variations and phase deviations across different fre-
quency ranges. Within this framework, various techniques
are encompassed, such as channel equalization, orthogonal
frequency division multiplexing (OFDM), adaptive modula-
tion and coding, diversity schemes, hybrid automatic repeat
request (ARQ), and frequency hopping spread spectrum
(FHSS). Moreover, the transformation of variable channel
parameters into uniform values using interpolation or sam-
pling, coupled with the utilization of the rake receiver, con-
stitutes a pivotal aspect of this toolkit. This add extra
complexity to the system hence, the preference of flat Ray-
leigh fading.

In the proposed method, the introduction of supplemen-
tary diversity paths, often referred to as excess virtual anten-
nas, becomes accessible as a consequence of the spatial
separation among the receiving elements. The power loss
stemming from inefficiencies is estimated by postulating
that signals lost within the geometric area of an antenna
are intercepted by neighboring antennas. The quantification
of this power loss involves the generation of conjoint signals,
without the need for instantaneous signal strength measure-
ments. These conjoint signals are locally synthesized at the
receiver through a process encompassing conjugation, sum-
mation, or subtraction of two distinct amplitudes or phases
derived from the received signals without any channel state
information. This combination yields signals akin to those
obtained through real-time measurements, thereby obviating
the necessity for instantaneous measurement.

The following are summaries of the contributions in this
paper:

(1) It is shown that the proposed signal synthesizer
achieves diversity coding gain, which is unifying for
both the SC and the EGC schemes for binary phase
shift keying (BPSK) andM-ary quadrature amplitude

modulation (MQAM) under arbitrary channel
correlation.

(2) In addition, it is shown that the proposed decorrela-
tor is blind, thus simple because it does not estimate
the correlation matrix, but depends on the coding
gains inherent in the conjoint signals, which are
arithmetically synthesized from the received signals.

(3) The synthesizer is unifying for SC and EGC even
under correlation, it’s blind, and doesn’t lead to sig-
nal zeroing even under correlation.

(4) Validation framework is provided in relation to sym-
bol error probability (SEP) for both BPSK and
MQAM. To do so, the SNR at the combiner output
and the SNR at the diversity synthesizer output are
analyzed and used to evaluate the gain of the overall
system. The gain parameter is then applied to the
optimal error analysis for correlated systems.

The paper is structured as follows: Section 2 introduces
the decorrelation system model. In addition, arbitrary corre-
lations are examined. The discussion on the proposed dec-
orrelator is also provided in this section. This is followed by
the discussion on the combined output SNR after decorrela-
tion. The system performance is analyzed in Section 3. Then,
a comparison of simulation results with theoretical results is
done in Section 4. Section 5 brings the work to a close.

In this work, matrices are represented by bold uppercase
symbols, while ordinary letters imply scalar quantities. The
Gaussian Q-function is denoted by Q :ð Þ. Furthermore, the
operators E :½ �, :ð Þ∗, and :ð ÞH signify the expectation, complex
conjugate, and Hermitian operators, respectively. Finally,
J0 ⋅ð Þ represents the zero-order Bessel function of the
first kind.

2. Conjoint Diversity System

2.1. Correlated Signal Model. We consider a general Nr
branch diversity system, as shown in Figure 1. The received
branch signals are processed through a diversity decorrela-
tor, which produces an additional array of the received sig-
nals. These newly synthesized signals are then processed
through the conventional diversity combiner of choice to
acquire an approximate of the transmitted symbol. The
uncorrelated received signal at the kth branch is expressed
as follows:

Diversity
decorrelator 

Ŝ1

Ŝ2

ŜNr

Diversity
Combiner

(MRC, EGC, SC) 

S 

FIGURE 1: The conjoint diversity model.
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sk ¼ αkAmejψk ejϕm þ nk;  k¼ 1; 2;…;Nr; ð1Þ

where Am is the amplitude of the transmitted signal, ϕm
denotes the phase angle of transmitted signal, αk denotes
the Rayleigh distributed random amplitude with E α2k

Â Ã¼
2σ2k, ψk denotes a random phase process, and nk denotes
zero-mean Gaussian noise. The noise components are
assumed to be uncorrelated with each other and independent
of the signals [27]. The dependence on the index m can be
removed for symbol-by-symbol detection.

The signal received via correlated Rayleigh fading chan-
nel with a correlation coefficient ρ is expressed as follows:

bsk ¼ Xk þ Ykð Þejϕm þ nk;  k¼ 1; 2;…;Nr; ð2Þ

where Xk and Yk are Gaussian random variables with var Xkð Þ
¼ var Ykð Þ¼ σ2 and μ¼ 0. var Xkð Þ and μ are the variance
and mean, respectively.

E XiYk½ � ¼ 0  i; k¼ 1; 2;…;N; ð3Þ

CXiXk
¼ E XiXk½ � ¼ ρσ2; ð4Þ

CYiYk
¼ E YiYk½ � ¼ ρσ2: ð5Þ

Similarly, because the noise components are uncorrelated
and statistically independent, we can write as follows:

E nink½ � ¼ E niXk½ � ¼ E niYk½ � ¼ 0: ð6Þ

Taking ρkl as the coefficient of correlation between the kth
and lth branches, ρkl can be expressed as follows [5]:

ρkl ¼
E bhkbh∗lh i
ffiffiffiffiffiffiffiffiffiffiffiffi
σ2bhk

σ2bhl

q ;  l; k¼ 1; 2;…;Nr; ð7Þ

where σ2bhk

represents the variance of the random variables

(RV) bhk, and σ2bhl

is the variance of the RV bhl.
If R is a normalized correlation matrix, it can be repre-

sented as follows [5, 27]:

R¼

1 ρ12 ⋯ ρ1Nr

ρ21 1 ⋯ ρ2Nr

⋮ ⋮ ⋱ ⋮
ρNr1 ⋯ ⋯ 1

0BBBB@
1CCCCA: ð8Þ

From the definitions in Equation (7), it is evident that the
correlation coefficients ρk; l and ρl; k are complex conjugates,
that is, ρk; l ¼ ρ∗l; k. Thus, the normalized correlation matrix is

Hermitian (equal to its conjugate transpose), RH ¼R. In a
study by Akuon and Xu [28], R is expected to have positive
eigenvalues and to be positive definite.

2.2. Equivalent Eigen-Filter Signal Model. EVD may be
applied to breakdown R into orthogonal eigenvectors and
eigenvalues (EVD). This may be accomplished via an
eigen-filter operation, as described in a study by Akuon
and Xu [28], Simon and Alouini [29], Xu [30], Zhang et al.
[17], de Barros et al. [31], and Pan et al. [33], as follows:

Λ¼ QRQH ;
R¼ QHΛQ;

ð9Þ

where Q is the orthonormal eigenvector matrix and Λ is the
positive eigenvalue matrix. Decomposition through EVD
yields Q, with rows constituting orthonormal basis elements,
making Q a unitary transformation. Further, QH ¼Q−1. Q
generates a reciprocal network. Hence, Q is the designed
eigen-filter/diversity decorrelator that yields an output
attributed to unitary input modification. The operation of
the filter is well analyzed in a study by Akuon and Xu [28].

2.3. Basis Signal Synthesizer. In its simplest form, the pro-
posed diversity decorrelator is a dual transformation matrix,
which is given as follows:

QH ¼ cos θ cos θ

−j sin θ j sin θ

 !
: ð10Þ

Let the independent channels have identical amplitudes
such that θ¼ 450, and let zk be the transmitted symbol. For a
two-branch system with the inputs bs1 and bs2 , we can use
Equation (10) to express the signals at the output of the
decorrelator as bv ¼QHbs, which is expressed as follows [27]:

bv3bv4
 !

¼ 1ffiffiffi
2

p 1 1

−j j

 ! bs1bs2
 !

: ð11Þ

Subsequently, we can expand Equations (11) as (2).

2

9
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Ŝ3

FIGURE 2: Decorrelation synthesizer system with Nr ¼ 3 and θ¼ 450.
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bv3 ¼ 1ffiffiffi
2

p X1 þ jY1ð Þbs1 þ 1ffiffiffi
2

p X2 þ jY2ð Þbs2 þ 1ffiffiffi
2

p n1 þ n2ð Þ

¼ 1ffiffiffi
2

p X1 þ X2ð Þ
� �bs1 þ j

1ffiffiffi
2

p Y1 þ Y2ð Þ
� �bs2 þ 1ffiffiffi

2
p n1 þ n2ð Þ

bv4 ¼ − j
1ffiffiffi
2

p X1 þ jY1ð Þbs1 þ j
1ffiffiffi
2

p X2 þ jY2ð Þbs2 þ 1ffiffiffi
2

p −jn1 þ jn2ð Þ

¼ 1ffiffiffi
2

p Y1 − Y2ð Þ
� �bs1 þ j

1ffiffiffi
2

p X2 − X1ð Þ
� �bs2 þ 1ffiffiffi

2
p n2 − jn1ð Þ

: ð12Þ

2.4. N r Branch Synthesizer Operation. In order to effect the
blind decorrelation for Nr branches, as shown in Figure 2, the
approach entails conducting a specific operation inEquation (12)
on each pair of branch signals. This will produce Nr Nr −ð 1Þ
decorrelated outputs. Then, we combine the decorrelated signals
with the Nr received signals. In total, there will be N2

r signals at
the input of the diversity combiner, as shown in Figure 2.

2.5. Diversity Combining. Finally, we perform a diversity
combining operation on the N2

r outputs to produce the com-
bined output signal. Figure 2 shows six decorrelated outputs
together with the other three received branch signals for a
system with Nr ¼ 3 branches. It is clear that the diversity
decorrelator presents a unique diversity system. For example,
the variances of the sum signal bsið þbskÞ, the difference signal
jbsk −ð jbsiÞ, and the branch signal bsið Þ are different from the
variances of the received branch signals.

However, the sum signal and the difference signal bear
some amount of correlation, and, therefore, the conjoint
signals, which are the decorrelated outputs, are not all mutu-
ally independent and do not lead to diversity gains but cod-
ing gains.

2.6. Conventional Combiner Output SNR. The probability
density function (PDF) of the instantaneous branch SNR
for independent signals is provided by Akuon and Xu [28].

fγ k γkð Þ ¼
1
γk

exp −
γk
γk

� �
  0 ≤ γk<1ð Þ

0;      otherwise

8<: ; ð13Þ

where γk ¼Ωk
Es
N0k

.

For a correlated system, an eigen-filter is used to redis-
tribute branch signal powers. As a result, the SNR due to the
channel in Equation (12) is given as follows [28]:

γk;s ¼ ϵkE γkf g ¼ ϵkE αk
2 Es
N0k

� �
¼ ϵkγ0;c: ð14Þ

Because Equation (12) has bhk ¼ ffiffiffiffi
ϵk

p bQk
bbh ¼ ffiffiffiffi

ϵk
p

h, where
γ0; c denotes the average SNR of the combiner output. From
the above discussion, it is clear that the output SNRs bbγ 1;� bbγ 2;
⋯; bbγNr

Þ of the eigen-filter signal splitter are scaled eigenva-
lues of the cth combiner average output SNR γ0; c, i.e.,

bbγ k;c ¼ ϵkγ0;c: ð15Þ

The mean output SNR of the independent branch signals
for MRC, EGC, and SC can also be calculated as γ0; c ¼
∑Nr

k¼1
bbγ k. Furthermore, we can derive from Equation (15) that

EVD allows the PDF of the branch SNR at the filter output to
be presented as follows:

fγ 0 γkð Þ ¼
1bbγ k;c exp −

γkbbγ k;c
 !

  0 ≤ γk<1ð Þ

0;   otherwise

8><>: : ð16Þ

The PDF of the SNR results in an equivalent correlated
system. The gain of the signal mixing is studied for each
combining strategy to evaluate the effect of the signal
synthesizer.

2.7. Synthesizer Gains for MRC, EGC, and SC. In a study by
Akuon and Xu [26], the average output SNRs for MRC, EGC,
and SC are derived. In the case of MRC, the average SNR
obtained at each branch is given as, γ0; k;MRC ¼ γ ; and it is
optimal.

The synthesizer generates four outputs for a two-branch
system. The variance of the four outputs may be determined,
and the average SNR at the EGC output may be stated as
follows:

γEGC ¼
Nr 1þ ρ½ � þ 1 − ρ½ � þ 1þ 1ð Þγ

4
¼Nrγ

; ð17Þ

where ρ denotes the coefficient that assesses the similarity of
2 RV such that 0<ρ<1. As a result, the gain from decorrela-
tion for EGC is expressed as follows:

Gγ EGCð Þ ¼ Nrγ

1þ Nr − 1ð Þ π4
Â Ã

γ

¼ Nr

1þ Nr − 1ð Þ π4

� �
:

ð18Þ

In the two-branch system, Nr = 2.
From Shannon’s theory, the average SNR at the output

for conventional SC, γSC, is given as follows:
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γSC ¼ log2 Nrð Þ: ð19Þ

When conjoint signals are used, one of them could be
selected, resulting in γSC being:

γSC ¼ log2 Nr þ 1ð Þ: ð20Þ

Therefore, the decorrelation gain for SC is given as fol-
lows:

Gγ SCð Þ ¼ log2 Nr þ 1ð Þ
log2 Nrð Þ : ð21Þ

2.8. New Combiner Output SNR. Because the new system
incorporates a diversity synthesizer, as well as an eigen-filter,

we must replace each bbγ k; c with the expression containing the
received average branch SNR, γ . The average output SNR,
which is equally split per EGC output branch, can be com-
puted from Equations (15) and (18) and is provided as fol-
lows:

bbγ k;EGC ¼Gγ D;EGCð Þϵk
γ0;EGC
Nr

¼Gγ D;EGCð Þϵk
1þ Nr − 1ð Þ π4

Nr

� �
γ :

ð22Þ

Similarly, from Equations (15) and (21), the average
SNR, which is equally split per SC output branch, is given

as bbγ k; SC ¼Gγ D; SCð Þϵk
γ 0; SC
Nr

, which is written as follows:

bbγ k;SC ¼ Gγ D;SCð Þϵk ∑
Nr

i¼1

1
i

� �
γ : ð23Þ

By letting

βc ¼
1 for MRC

βEGC for EGC

βSC for SC

8<: to be the SNR coefficient, we can write

γ0;c ¼ βcγ : ð24Þ

Clearly, it can be seen that for EGC, βc ¼
Gγ D;EGCð Þ

1þ Nr−1ð Þπ4
Nr

� �
, while for SC, βc ¼Gγ D; SCð Þ ∑Nr

i¼1
1
i

� �
.

3. Performance Analysis

The performance of the proposed synthesizer under correla-
tion channels is presented in two steps: for square MQAM
and BPSK. The two modulation schemes were chosen
to demonstrate that the coding gain achieved remains con-
sistent regardless of the modulation scheme used. The
coding gain was determined by comparing the SNR of

the output signal from a conventional combiner with that
of the output signal from a diversity synthesizer. This shows
that the coding gain depends on the average SNR of the
combiner’s output signal and is not influenced by the specific
modulation scheme. Therefore, this framework can be
applied to various modulation schemes without affecting
the coding gain. However, it’s important to note that the
coding gain may vary when different combiners and diverse
fading channels with different PDFs are utilized.

Second, BPSK modulation is known for its resilience,
relying on a 180° phase difference between constellation
points. This resilience makes it suitable for challenging chan-
nel conditions and fading. In cellular communication sys-
tems, BPSK is chosen to transmit critical system information
on discrete channels [25–29].

Third, the MQAM scheme is favored for its exceptional
spectral efficiency, as it improves transmission rates without
requiring additional bandwidth. Therefore, MQAM is highly
recommended for future wireless communication systems
[25, 29, 30].

3.1. SER for MQAM under Synthesizer System with
Correlation. In a study by Stuber [33], for coherent square
MQAM modulation, the symbol error rate (SER) in the
AWGN channel is expressed as follows:

SERMQAM¼ 4 1 −
1ffiffiffiffiffi
M

p
� �

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Es

N0 M − 1ð Þ
r� �

−4 1 −
1ffiffiffiffiffi
M

p
� �

2
Q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Es

N0 M − 1ð Þ
r� �

;
ð25Þ

where Es
N0

¼ γ is symbol energy to noise power density in an
AWGN channel that is not experiencing fading.

Taking a to be equal to 1−ð 1ffiffiffiffi
M

p Þ and b to be 3
M−1

À Á
,

Equation (25) reduces to:

SERMQAM ¼ 4aQ
ffiffiffiffiffi
bγ

pÀ Á
− 4a2Q2

ffiffiffiffiffi
bγ

pÀ Á
: ð26Þ

Q ⋅ð Þ denotes the Gaussian Q-function and is given by

Craig’s formula for θ≥ 0 as Q
ffiffiffiffiffi
bγ

pÀ Á¼ 1
π

R π
2
0exp −ð bγ

2sin2θÞdθ
and Q2

ffiffiffiffiffi
bγ

pÀ Á¼ 1
π

R π
4
0exp −ð bγ

2 sin2θÞdθ [29, 34, 35].
Solving Equation (26) using the trapezoidal rule results

in:

SERMQAM ¼ a
t

e−bγ=2

2
−
ae−bγ

2
þ 1 − að Þ∑

t−1

i¼1
e−

bγ
Si þ ∑

2t−1

i¼t
e−bγ=Si

� �
;

ð27Þ

where t is the summation value used in the approximation
and Si ¼ 2 sin2θ i and θ i ¼ iπ=4tð Þ.

Furthermore, considering the MRC system over Rayleigh
fading channels with a PDF fγ γð Þ¼ 1

Nr−1ð Þ!γNr γ
Nr−1e

γ
γ of the

received SNR, the average symbol error probability of
MQAM in this distribution is given as PMRC ¼

Wireless Communications and Mobile Computing 5



E SERMQAM

À Á¼ R10 SERMQAMfγ γð Þdγ. Subsequently, we can
compute the PMRC using the gamma function properties
given as follows:

For n>0:Z 1

0
γn−1e−γλdγ ¼ Γ nð Þ

λn
;  for λ>0; ð28Þ

where Γ nð Þ¼ n−ð 1Þ!; for n¼ 1; 2; 3;…
Accordingly, for the maximum likelihood (ML) detec-

tion case, it can be proved that the average PMRC is given
as follows:

PMRC ¼ a
t

1
2
∏
Nr

k¼1

2

bbbγ k;c þ 2
−
a
2
∏
Nr

k¼1

1

bbbγ k;c þ 1
þ 1 − að Þ∑

t−1

i¼1
∏
Nr

k¼1

Si

bbbγ k;c þ Si
þ ∑

2t−1

i¼t
∏
Nr

k¼1

Si

bbbγ k;c þ Si

" #
: ð29Þ

Finally, by substituting the new values for average branch
SNR into Equation (29) using Equations (15) and (24), the
general expression for PSER is given as follows:

Pser ¼
a
t

1
2
∏
Nr

k¼1

2
bϵkβcγ þ 2

−
a
2
∏
Nr

k¼1

1
bϵkβcγ þ 1

þ 1 − að Þ∑
t−1

i¼1
∏
Nr

k¼1

Si
bϵkβcγ þ Si

þ ∑
2t−1

i¼t
∏
Nr

k¼1

Si
bϵkβcγ þ Si

� �
; ð30Þ

where γ is the average received SNR of each branch.

3.2. SER for BPSK under Synthesizer System with Correlation.
The SER of BPSK in the AWGN channel is expressed as
follows [30]:

SERBPSK ¼ Q
ffiffiffiffiffi
bγ

pÀ Á
; ð31Þ

where b¼ 2 and Q ⋅ð Þ is the Marcum Q-function and it is
given by Craig’s formula [30].

Following a similar analysis to the MQAM, the SER
under correlation and diversity synthesizer is given as fol-
lows:

PSER ¼ 1
4t

∏
Nr

k¼1

2
bβcϵkγ þ 2

� �
þ 1
2t

∑
t−1

i¼1
∏
Nr

k¼1

Si
bβcϵkγ þ Si

� �
:

ð32Þ

4. Discussions and Simulation Results

Monte Carlo simulations are utilized in this section to show
the achievable decorrelation gains using the diversity decorr-
elator. Furthermore, we test the decorrelator’s performance
for several antenna setups for both MQAM and BPSK mod-
ulation schemes. The SER was used to measure performance.
In the legend of the figures, the terms “Corr” and “Decorr”
refer to the correlated system and the proposed decorrelated
system, respectively. “Sim” refers to simulation results, “the-
ory” refers to the results obtained from the analytical frame-
work, and “VRD” is virtual receiver diversity. Further, Rx2,

Rx3, and Rx4 are the 2, 3, and 4 diversity orders of received
signals, respectively.

The path that connects the transmitter and the receiver is
considered to be arbitrarily correlated. In this paper, corre-
lated channels are modeled by the well-known Bessel model.
Correlation matrices in correlation models may yield non-
positive semidefinite results [29, 36]. Therefore, it’s crucial to
assess the validity of each model. There are three primary
models: the basic uniform correlation model, the exponential
correlation model, and the Bessel correlation model. In large
antenna array designs, the uniform correlation model may
prove impractical. Instead, exponential and Bessel correla-
tion models are often employed. Interestingly, in both cases,
as the number of antennas increases, the performance of
diversity gain improves. Additionally, akin to the exponential
correlation, the Bessel correlation matrix also exhibits posi-
tive semidefinite properties.

In contrast to exponential correlation, which is versatile
and can depict correlation in dense or sparse scattering sce-
narios by adjusting the decorrelation distance, Bessel corre-
lation is suitable only for densely scattered environments
[36]. Bessel correlation leads to a greater reduction in diver-
sity gain compared to exponential correlation. Furthermore,
exponential correlation results in a less correlated correlation
matrix, resulting in more independent antenna numbers
compared to Bessel correlation.

Despite its inherent constraints, just like any other
model, Bessel correlation can be readily derived through an
examination of spatial correlation within a two-dimensional
(2D) uniformly distributed configuration, as opposed to a
three-dimensional (3D) isotropic scattering context [36].
Furthermore, this inquiry introduces a more plausible
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correlation model, illustrated by the Bessel function of the
first kind with a zeroth order, thereby providing a rationale
for its favorability within this investigation.

A linear array of antennas with a uniform angle of arrival
(AoA) distribution is considered in the correlation model.
The correlation coefficient, ρ, is expressed as follows [26, 36]:

ρ¼ J0 2π
d
λ

� �
; ð33Þ

where J0 is the zero-order Bessel function, d is the antenna
separation distance, and λ is the carrier wavelength.

In this study, the choice of antenna spacing was made
carefully to keep it below half of the signal wavelength λ=2ð Þ.
When antennas are spaced more than λ=2 apart, it reduces
the correlation between received signals, making them sta-
tistically independent. Conversely, closely spaced antennas
have a higher correlation coefficient. To accommodate spa-
tial constraints and practical considerations, the antenna
spacing was intentionally set to 0.1, 0.2, and 0.5 times the
signal wavelength λð Þ. This specific sample size was deemed
suitable for our research objectives. The correlation coeffi-
cient values range from 0 to 1 0≤ð ρ<1Þ, and this relation-
ship can be visualized,as shown in Figure 3, using the
correlation coefficient equation ρ¼ J2o 2πnd=λð Þ and by plot-
ting ρ against the normalized spacing distance, d=λ.

Using Equation (33), the simulation parameters can be
presented, as shown in Table 1.

As a demonstration, choosing an antenna separation dis-
tance d¼ 0:5λ and a correlation coefficient ρ while taking

three equally-spaced receive antennas, R, in Equation (8)
may be written as follows:

R¼
1 −0:3042 0:2203

−0:3042 1 −0:3042

0:2203 −0:3042 1

0B@
1CA: ð34Þ

We further note that the number of iterations, t, used in
Equation (27) was set at tð ¼ 10Þ. It was observed that any
t>10ð Þ had a negligible effect on the accuracy of the results,
and this reason informed how the value of t was decided.

4.1. Discussions under BPSK. As shown in Figures 4 and 5, we
demonstrate the performance of the diversity decorrelator by
comparing it with a correlated system. We consider the sim-
ulation results for Nr ¼ 3 while varying the antenna spacing.
As is expected, the more closely spaced antennas experience
higher levels of signal correlation, resulting in a higher
SER. This is confirmed by the simulation results, which show
that the SER decreases from the configuration with d¼ 0:1λ
to that of d¼ 0:5λ. This occurs because, as the channel con-
ditions deteriorate, closely spaced antennas are more prone
to encountering similar fading or interference patterns at the
same time. Consequently, the likelihood of experiencing a
higher SER increases due to diminished diversity gain, lead-
ing to errors manifesting simultaneously across all antennas.
The same observations made for the SC system, as shown in
Figure 4, are also observed for the EGC system, as shown in
Figure 5. More importantly, we note that the proposed diver-
sity decorrelator achieves decorrelation gains of about 1 dB
for both the SC and EGC combiner systems at an SER of
10−5. This is because the sum signal and the difference signal
produced from the received signals create combined signals
that are virtual, leading to the attainment of coding gains due
to increased diversity.

TABLE 1: Simulation parameters.

ρ¼ J0 2π Nrd
λ

� �
J0 2π d

λ

À Á
J0 2π 2d

λ

À Á
J0 2π 3d

λ

À Á
J0 2π 4d

λ

À Á
d¼ 0:1λ 0.9037 0.6425 0.2906 −0.0550
d¼ 0:2λ 0.6425 −0.0550 −0.4020 −0.1689
d¼ 0:5λ −0.3042 0.2203 −0.1812 0.1575
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Figure 6 shows the simulated results with the analytical
model that uses a constant decorrelation gain for the EGC.
The proposed decorrelation gain successfully validates the
system’s response under diversity decorrelation for the
EGC combining. The results show that there are close
bounds for all tested antenna configurations of d¼ 0:1λ;
0:2λ; and 0:5λ, but the analytical approximation method
deviates slightly from the simulations due to approximation
errors.

As shown in Figure 7, simulated results are compared
with the analytical model that uses the proposed analysis for
the decorrelation gain of the SC. The proposed decorrelation

gain validates the system’s response under diversity decorr-
elation for the SC and shows close bounds for all tested
antenna configurations of d¼ 0:1λ; 0:2λ; and 0:5λ.

Furthermore, Figures 6 and 7 demonstrate that closely
spaced receive branches can lead to a higher correlation
between received symbols and potentially a higher SER. Con-
versely, well-separated branches are more likely to yield a
lower SER due to reduced correlation between received sym-
bols and a decreased likelihood of interfering with each
other.

Further, simulation tests are conducted to verify the
accuracy of the proposed analytical model for different
receive diversity branches. Specifically, as shown in Figures 8
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and 9, the diversity decorrelator systems for EGC and SC are
tested for Nr values of 2, 3, and 4. The results show that the
analytical model performs well across various diversity branches
and closely matches the simulation outcomes. Moreover, the dec-
orrelator’s performance improves as the number of receive
branches increases. This is because initially, as you add more
receiver antennas, the system’s diversity gain tends to increase.
Withmore antennas, the system can receivemultiple copies of the
same signal, each affected by different fading conditions. When
these signals are combined, they can help mitigate the effects of
fading and improve signal reliability.

Figure 10 shows a comparison between the proposed
decorrelator and the decorrelator used in a study by
Al-Juboori and Fernando [15] and Hangani and Beaulieu
[21]. A correlated system for EGC over BPSK with d¼ 0:2λ

and Nr ¼ 2 was considered, and SER was used to measure per-
formance. As documented in a study by Al-Juboori and Fer-
nando [15] and Hangani and Beaulieu [21], the application of
decorrelation to the dual EGC diversity branches did not yield
any discernible improvement in terms of SER and SNR. How-
ever, as shown in Figure 10, notable decorrelation gains of∼1dB
were attained at an SER of 10−5 through the utilization of the
proposed decorrelator. Furthermore, it is worth noting that the
proposed decorrelator does not impose any restrictions on the
number of correlated fading branches, thereby offering
enhanced adaptability. In order to evaluate the extent of dec-
orrelation gain, we conducted an analysis of the SNR, both at
the output of the combiner as specified in a study by Hangani
and Beaulieu [21] and at the output of the newly introduced
decorrelator. We integrated Equation (17) from this present
study into the SER expression. Importantly, these decorrela-
tion gains, being derived from the SNR expression, remain
invariant with respect to the modulation scheme employed,
ensuring consistency across various modulation schemes,
including MQAM.

4.1.1. Complexity Analysis. In a study by Al-Juboori and
Fernando [15] and Hangani and Beaulieu [21], a decorrela-
tor is employed with inputs represented as x1 ¼ r1sþ n1 and
x2 ¼ r2sþ n2. These inputs encompass signal samples(s),
complex channel, ri ¼∝iejΨ i , for i ϵ 1; 2, characterized by its
amplitude ∝i and phase Ψ i, while ni signifies the presence of
additive white Gaussian noise (AWGN) for i ϵ 1; 2. The out-
puts of the decorrelator are given by U1 ¼ x1þx2ffiffi

2
p ¼ r1þr2ffiffi

2
p sþ

n1þn2ffiffi
2

p and U2 ¼ x1−x2ffiffi
2

p ¼ r1−r2ffiffi
2

p sþ n1−n2ffiffi
2

p . The decorrelator’s com-

plexity analysis is given as follows:

(1) Complex multiplication for r1 and r2: For every com-
plex multiplication, four real multiplications and two
real additions are involved, amounting to six
operations.

(2) Complex addition for x1 and x2: Each needs two real
additions, resulting in four operations.

(3) Scaling by 1/
ffiffiffi
2

p
for U1 and U2: Each scaling opera-

tion requires one real multiplication, yielding two
operations.

(4) Noise complex Addition for (n1 + n2)/
ffiffiffi
2

p
and

(n1 − n2)/
ffiffiffi
2

p
for both U1 and U2: Each addition

demands two real additions, totaling four operations.

Summing up these operations, the overall complexity of
this decorrelator amounts to 16 operations.

In contrast, in the proposed decorrelator for a two-
branch receive system with inputsbs1 ¼ X1ð þ jY1Þs1 þ n1 andbs2 ¼ X2ð þ jY2Þs2 þ n2, signal samples skð Þ, complex channel
Xk þ jYk ¼∝kejθk , for k ϵ 1; 2, defined by its amplitude ∝k and
phase θk, and nk represents AWGN for k ϵ 1; 2. The conjoint
signal outputs are bv3 ¼ 1ffiffi

2
p X1ð þ jY1Þbs1 þ 1ffiffi

2
p X2ð þ jY2Þbs2 þ

1ffiffi
2

p n1ð þ n2Þ and bv4 ¼ − j 1ffiffi
2

p X1ð þ jY1Þbs1 þ j 1ffiffi
2

p X2ð þ jY2Þbs2 þ 1ffiffi
2

p −ð jn1 þ jn2Þ, and its complexity analysis is detailed

as follows.
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For each input (bs1 and bs2), there are two complex addi-
tions (X1 þ jY1 and X2 þ jY2), one complex multiplication,
and two complex addition with noise (n1 and n2), totaling
five operations.

For each output (bv3 and bv4), there are two complex addi-
tion (X1 þ jY1 and X2 þ jY2), one complex multiplication,
two scalar multiplication (1/

ffiffiffi
2

p
or -j/

ffiffiffi
2

p
), and two complex

addition with noise (n1 and n2), resulting in seven operations
per output.

Considering two inputs and two outputs, the total number
of operations for the proposed decorrelator is 24 operations.

When comparing the complexities, the decorrelator in a
study by Al-Juboori and Fernando [15] and Hangani and
Beaulieu [21] involves 16 operations, whereas the proposed
decorrelator entails 24 operations. Therefore, in terms of
computational complexity, the decorrelator in a study by
Al-Juboori and Fernando [15] and Hangani and Beaulieu
[21] is less complex than the proposed decorrelator. That’s
the trade-off for the additional gain obtained with EGC.

4.2. Discussions under MQAM. Figures 11 and 12 show the
performance of the virtual diversity decorrelator (VRD) with
a correlated system for EGC and SC, respectively, with four
receive antennas and spacing of 0.1, 0.2, and 0.5 λ. As
expected, closely spaced antennas with higher signal correla-
tion have a higher SER. The SER decreases as the antenna
spacing varies from 0.1 to 0.5 λ. Above all, the developed
decorrelator achieves a coding gain of 0.5 dB for EGC and
1 dB for SC at the SER of 10−4. This is due to the sum signal
and the difference signal generated from the received signals
resulting in conjoint signals that are virtual. These conjoint
signals result in the coding gains.

Figure 13 shows simulated results from the decorrelator
to correlated theoretical results for MRC with diversity
orders of 2, 3, and 4 while considering an antenna spacing
of 0.5 λ. The results are in agreement with a study by Dong

and Beaulieu [22], where the authors concluded that the
optimal performance of MRC can be achieved in a diversity
system without decorrelating the correlated input branches
by selecting the weights of the input branch signals as if they
were uncorrelated. More importantly, as shown by Figure 13,
the SER decreases as the diversity order increases. As the
diversity order increases, more independent copies of the
signal become available for combining at the receiver. This,
in turn, leads to a higher probability of receiving at least one
good copy of the signal, even if some of the branches experi-
ence deep fades.

Figures 14 and 15 show the simulated and theoretical
results for the decorrelator with 2, 3, and 4 receive antennas
while considering an antenna spacing of 0.1 λ. It can be seen
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that both the simulation and theoretical results match, and
the SER decreases as the diversity order increases. This is
because, as the diversity order increases, the likelihood of
all branches simultaneously experiencing severe fades
diminishes. When employing combining methods that uti-
lize multiple signal replicas, the probability of errors caused
by fading decreases. This reduction in error probability
results in a lower SER and improved overall performance.

Figure 16 shows the square M-QAMs for 4-QAM,
16-QAM, and 64-QAM modulations with a diversity order
of 3 and an antenna separation distance of 0:1λ. 4-QAM has
better performance followed by 16-QAM, while 64-QAM
has the worst performance of the three in terms of SER.
This is consistent with the well-known fact that lower-order

constellations have a lower SER compared to higher-order
constellations because for the same mean energy of the con-
stellation, the points are far apart and, hence, less susceptible
to noise.

Finally, the introduction of virtual antennas bestows a
heightened degree of flexibility upon antenna configurations,
eliminating the need for intricate hardware or signal proces-
sing mechanisms. This transformative capability leads to a
reduction in system complexity and hardware expenditures,
as it eliminates the requirement for additional antenna ele-
ments to be incorporated at the receiver. However, the appli-
cation of a virtual diversity synthesizer within the W-band,
spanning the electromagnetic spectrum from 75 to 110GHz,
faces several challenges [2, 13, 14]. First, the absence of read-
ily available wideband omnidirectional antennas tailored for
frequencies exceeding the 60-GHz threshold in commercial
offerings. Second, the assumption of channel uniformity,
characterized by identical amplitudes at a phase angle of
45°, while convenient for theoretical analysis, diverges sig-
nificantly from the realities of practical scenarios where
phase angles exhibit variability. Third, there is a need for
the deployment of sophisticated signal processing techniques
to foster effective collaboration among networked devices.
This mandate requires the formulation of innovative algo-
rithms and protocols, as well as the seamless integration of
these technological advances into wireless communication
frameworks. Finally, although the implementation of the
decorrelator serves to reduce signal correlation, it does not
achieve complete independence among signals.

5. Conclusion

A diversity decorrelator has been presented that achieves
decorrelation gains for SC and EGC without the need to
measure signal information in a correlated system. From
the decorrelated EGC expression in Equation (17), the
EGC provides equal error efficiency as the MRC. Unified
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SER expressions for MRC, EGC, and SC reception of BPSK
and MQAM correlated signals over Rayleigh fading channels
have been derived and validated through simulation results.
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