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The unmanned aerial vehicle (UAV) base station plays a significant role in enhancing the terrestrial network, when the ground
base station (GBS) is destroyed in emergent cases or its load exceeds the capacity of the terrestrial network. Presently, many
papers focus on optimizing the UAV position deployment and user access, while ignoring the optimization about the spectrum
resource management. To solve this problem, we formulate a joint optimization problem of the spectrum resource
management and the position placement for UAVs with the constraint of the limited backhaul capacity. Later, the joint
optimization problem is modeled as a hierarchical game decision architecture comprised of a UAV position placement game
and a spectrum resource management game. Further, we analyze the equilibrium property of the two games and propose two
best response- (BR) based optimization algorithms to reach the Nash Equilibriums (NEs) of the two games, respectively.
Specifically, the proposed algorithm about the UAV deployment considers the variable granularity local exploration and global
random exploration. Simulation results show that the proposed UAV deployment algorithm can improve the total throughput
by 7% and 20% at least in comparison with the K-means deployment algorithm and the fixed granularity exploration
algorithm, respectively.

1. Introduction

When the ground base station (GBS) is destroyed in emer-
gent cases or when the data demand of users increases
sharply, the excessive load will cause network congestion
and reduce the quality of service for users. Due to the advan-
tages such as high flexibility, reliable communication, and
low cost, unmanned aerial vehicles (UAVs) are popularly
used to help the terrestrial base station and are expected to
be deployed in the next generation Wireless Communica-
tions Networks (WCNs) to enhance the communication
and expand the coverage [1].

Presently, many papers investigate the UAV-assisted
network, and the problem of UAV deployment and user
access receives much attention [2–6]. The farther the UAV
is from the base station, the lower the backhaul link capacity
is, and the farther the UAV is from the user, the lower the
UAV-user link capacity. The network throughput is the
minimum value of the backhaul link capacity and the

UAV-user link capacity, so the reasonable position place-
ment helps the network achieve higher throughput. Because
UAVs have different backhaul link capacities, reasonable
user association can make the UAV with higher backhaul
link capacity serve more users so as to make full use of
UAV resources.

However, the management of spectrum resources is
equally important [7] but has been neglected in related
researches. Due to the limited spectrum resources and the
increasing communication users, spectrum resources
become scarce, and it becomes unavoidable for different
communication users to use the same segment of spectrum
resources at the same time. Although different communica-
tion users will interfere with each other when using the same
spectrum resources, the intensity of interference depends on
the transmission power and the distance between communi-
cation users. Therefore, the reasonable management of spec-
trum resources, that is to say allow users far from each other
to use the same spectrum resource, can reduce the
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interference among users in the network and improve the
total throughput of the network. If the communication is
maliciously interfered, the identification technology about
interference signal is also essential [8, 9].

We investigate the joint optimization problem of the
spectrum resource management and the position placement
for UAV base stations. To simplify the optimization prob-
lem, the part about the UAV-user association is solved by
a matching-based mechanism. While there are some chal-
lenges needing to overcome. Firstly, considering the decision
optimization of multiple UAVs and multiple users, it is dif-
ficult to describe and analyze the influence between UAVs
and users. Then, there is a coupling relationship between
the optimization variable of the spectrum resource allocation
and the UAV position. UAVs that use the same spectrum
tend to be spaced far from each other, and UAVs that spaced
far from each other tend to use the same spectrum. At last,
the strategy space of the optimization problem is huge. If
M UAVs and N users exist in the network, K channels can
be used and the space size of discrete location of UAVs is I
, then the space size of the joint strategy is IMKN . So the
optimal solution is hardly to obtain by a search method.

To solve the challenge of multiuser optimization, we
model the joint optimization problem as a game model.
Because the game theory is a theoretical tool often used in
the multiagent decision making, and through a clever design,
all agents can reach a Nash Equilibrium through the distrib-
uted optimization of agents, and the best solution to the opti-
mization problem is often a Nash Equilibrium (NE) [10–17].
To solve the challenge of the coupling relationship between
optimization variables, we adopt a hierarchical optimization
framework. We use the inner and outer layer structure instead
of the upper and lower layer structure to improve the network
performance. To solve the challenge of huge strategy space, we
propose two best response- (BR- [18]) based optimization
algorithms to optimize the spectrum resource management
and the UAV position, respectively.

Our paper’s main contributions are the following:

(i) In the network assisted by the UAV base station, the
problem of spectrum resource management in non-
orthogonal channel is considered, and the spectrum
resource management and UAV position placement
are jointly optimized

(ii) The above joint optimization problem ismodeled as a
hierarchical game decision architecture comprised of
a UAV position placement game and a spectrum
resource management game, and both the two games
are proved to be exact potential games (EPGs) [19]

(iii) Two BR-based optimization algorithms are proposed
to optimize the spectrum resource management and
the UAV position, respectively. Simulation are con-
ducted to show that the proposed UAV deployment
algorithm can improve the total throughput by 7%
and 20% at least in comparison with the K-means
[20] deployment algorithm and the fixed granularity
exploration algorithm, respectively

2. Related Work

The UAV deployment has been extensively investigated
because UAVs have faster deployment speed, lower cost,
and larger coverage in comparison with terrestrial base sta-
tion UAVs [21–23]. In [21], the authors proposed a multi-
UAV coverage model and investigated the multi-UAV
deployment considering energy efficiency. The authors in
[22] considered the minimum average UAV-user distance
as the quality of coverage, and the UAVs were deployed in
a distributed way without global information. A new frame-
work to predict the traffic in hot spots for the UAV deploy-
ment in wireless networks was proposed in [23]. The
problem of UAV-user association in UAV-assisted networks
is addressed in [24–26]. In [24], the authors maximized
users’ QoE jointly optimizing the UAV position placement,
caching deployment, and user access. In [25], the authors
considered a UAV communicating with the sensors along
the way in wireless sensor networks (WSNs) and considered
that ground sensors converged data on several head nodes
and got the head nodes to communicate with the UAV to
improve the data transmission efficiency. The authors in
[26] jointly optimized the UAV 3D deployment and user
access to improve users’ satisfaction.

However, the papers mentioned did not consider the
impact of UAV backhaul links in the study of UAV deploy-
ment. Therefore, some authors made a further study consid-
ering the constraint of backhaul links [27–33]. [27]
investigated the 3D deployment of a single UAV in two dif-
ferent networks to serve as many users as possible and max-
imize the sum-rates of the network. [28] investigated the
UAV deployment in a post-disaster scenario and proposed
an algorithm based on artificial bee colony to deploy the
UAV. The authors in [29] proposed an efficient heuristic
algorithm with lower computational complexity to address
the resource management problem and used a search algo-
rithm to determine the UAV location. The authors in [30]
investigated a scenario using a UAV-network to replace
the terrestrial backhaul network and proposed a heuristic
approach to address the access problem and a genetic algo-
rithm to deploy the UAVs. The authors in [31] considered
the in-band wireless backhaul and proposed an novel
method to optimize the user access and UAV deployment.
Then the authors made a further study proposing a novel
framework to optimize the network throughput with consid-
eration of fairness among the users in [32]. In [33], the
authors proposed a decentralized deployment algorithm to
decrease the average distance between the UAVs and users,
and this algorithm could be applicable to large-scale. While
none of the above papers [27–33] investigated the spectrum
resource management about users’ channel selection and
almost all papers fail to consider users sharing the same
channel. Thus, the above researches cannot meet the
increasingly access requirement of users.

3. System Model and Problem Formulation

3.1. Network Model. As shown in Figure 1, there is a GBS,
multiple UAVs, and multiple ground users (GUs) in the
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network. It is assumed that GUs cannot be served by the
GBS directly due to a large path loss caused by the blockage.
The UAVs are deployed to provide wireless communication
service for GUs and have a backhaul link with the GBS. The
sets of the UAVs and GUs are denoted as M = f1, 2, 3,⋯,
Mg and N = f1, 2, 3,⋯,Ng, respectively. The ground loca-
tions of the GBS, UAVs, and GUs are denoted by w0 =
ðx0, y0ÞT , si = ðxi, yiÞT , ∀i ∈M, and w j = ðxj, yjÞT , ∀j ∈N ,
respectively. The UAVs are assumed to be deployed at a
fixed altitude h. The altitude of the GBS and GUs is negligi-
ble. The mobility of the GUs is assumed to be low and the
GUs’ locations are seemed as unchanged during the place-
ment update process of the UAVs.

3.2. Channel Model. According to [34], UAVs communicate
with ground users in a line-of-sight (LoS) transmission link
and a non-line-of-sight (NLoS) transmission link. For con-
venience, we denote the GBS and UAVs set as N 0 =N ∪ f
0g, and 0 is used to denote the GBS. Then, the probability
of LoS between the UAVs and the GBS or between the
UAVs and the GUs is denoted by

PLOS
ij = 1

1 + a exp −b θij − a
Â ÃÀ Á , i ∈M, j ∈N 0, ð1Þ

where a and b are environment impact factors which are
related to the density, height of buildings, and street width,
etc., θij = tan−1ðksi −w jk2/hÞ and k·k2 denotes the 2-norm.

Furthermore, the probability of NLoS is denoted by PNLOS
ij =

1 − PLOS
ij .

Hence, the average pathloss [32] is expressed as

PLij =
4πf cdij

c0

� �2
PLOS
ij ηLOS + PNLOS

ij ηNLOS

� �
, ð2Þ

where dij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksi − w jk22 + h2

q
, f c, c0, ηLOS, and ηNLOS are the

carrier frequency, speed of light, and average additional
losses for LoS and NLoS links, respectively.

The UAVs use different channels to communicate with
the GBS, and the channel bandwidth is B0. Therefore, the
backhaul rate of UAV i is expressed as

Ri0 = B0 log2 1 + PBS/PLi0
σ2

� �
, i ∈M, ð3Þ

where PBS is the transmission power of the GBS and σ2 is the
variance of the additive white Gaussian noise.

The channel set used by the UAVs to communicate with
the GUs is denoted as K = f1, 2, 3,⋯, Kg. The channel
bandwidth is B1. Every GU can access a UAV at most, and
should be assigned only one channel after access. Each chan-
nel should only be assigned once at most by every UAV.
Limited by hardware conditions, each UAV can serve up
to L GUs at the same time. The GUs served by different
UAVs can use the same channel, but there will be interfer-
ence. Hence, the rate of GU j received from UAV i on chan-
nel k is written as

Rijk = zijkB1 log2 1 +
PUAV /PLij

∑i′∈M\ if g∑j′∈N PUAV /PLi′j′zi′j′k + σ2

 !
,

ð4Þ

GBS

UBS 1

UBS 2

UBS 3

GU

Backhaul link

UBS-GU link

Figure 1: System model.
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where PUAV is the transmission power of the UAV, and
zijk ∈ f0, 1g is a binary association indicator variable for
UAV i, GU j, and channel k and 1 indicates that UAV i com-
municates with GU j in channel k.

3.3. Problem Formulation. The backhaul rate of the UAVs is
closely related to the UAVs’ locations, and choosing which
UAV and channel to access also affects the GUs’ communi-
cation rate. Hence, to improve the throughput of the entire
network, we optimize the locations of the UAVs and the
channel selections of the GUs. The problem is modeled in
the following:

P : max
si ,Zijk

〠
i∈M

〠
j∈N

〠
k∈K

Rijk, ð5aÞ

subject to〠
i∈M

〠
k∈K

zijk ≤ 1,∀j ∈N , ð5bÞ

〠
j∈N

zijk ≤ 1,∀i ∈M,∀k ∈K , ð5cÞ

〠
j∈N

〠
k∈K

zijk ≤ L,∀i ∈M, ð5dÞ

〠
j∈N

〠
k∈K

Rijk ≤ Ri0,∀i ∈M, ð5eÞ

zijk ∈ 0, 1f g,∀i ∈M,∀j ∈N ,∀k ∈K : ð5fÞ

In this optimization problem, constraint (5b) indicates
that each GU should access one UAV and one channel at
most. Constraint (5c) represents that each channel should
only be assigned once at most by every UAV. Constraint
(5d) indicates that each UAV can serve up to L GUs at the
same time. At last, constraint (5e) requires that each UAV’s
backhaul rate is greater than the total communication rate of
the users they served, respectively.

4. Hierarchical Game Decision Architecture

Game theory has been widely used in multiagent decision
making, and when there are multiple optimization variables,
the problem is usually modeled as a hierarchical game deci-
sion architecture [10, 12, 26]. Similarly, a hierarchical game
decision architecture is proposed to optimize the spectrum
resource management and UAV position placement jointly.
The schematic diagram of the hierarchical game decision
architecture is shown in Figure 2. The UAV position place-
ment game is in the outer layer, while the spectrum manage-
ment game is in the inner layer.

When the UAVs choose a new position strategy in the
outer game, the UAV-user association strategy corresponding
to the new position strategy will be obtained through a mech-
anism based on matching theory. Then according to the posi-
tion strategy and the UAV-user association strategy, UAVs
constantly update their channel selection strategy for users
they serve until they reach an NE of the inner game. Further,
the channel selection strategy is outputted to the outer game,
and the UAVs calculate their payoffs in the outer game. At last,
the UAVs decide whether to update the position strategy
based on the payoffs and start the next new position update
process until they reach an NE of the outer game.

The mechanism used to decide the UAV-user associa-
tion is described as follows:

(1) Users prefer to be served by the nearest UAV. So
each user applies to access to its nearest UAV

(2) Adhering to the principle of first application, first
service, UAVs also tend to serve the closer user. Each
UAV agrees to the user’s application under the limit
of the number of access and rejects unwanted
applications

(3) The remaining rejected users continue to apply to
access to the nearest UAVs that have not rejected
them until all the users have accessed UAVs, or all
UAVs have accessed the maximum number of
UAVs

Position strategy of UAVs 

. . . . . .

Iterations

Joint position strategy and channel selection strategy 

Outer layer

Channel selection strategy of GU

Inner layer

Channel 3Channel 2Channel 1 Channel 3Channel 2Channel 1

. . . . . .

Position placement 
game

Channel selection 
game

Channel selection GU
The set of GUs served

by the same UAV

Figure 2: Hierarchical game decision architecture.
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4.1. Inner Game: Spectrum Resource Management Game.
The inner game is expressed as G1 = fN 1,K , fcjgj∈N 1

,
fvjgj∈N 1

g. N 1 is the set of GUs served by the UAVs. K =
f1, 2, 3,⋯, Kg is the channel set. fcjgj∈N 1

and fvjgj∈N 1
are

the channel selection strategy and payoff of GU j, respec-
tively. Because users who use the same channel will interfere
with each other, and if the interference decreases, the
throughput of the network will increase. The inner game is
modeled as a bilateral symmetric interaction game [35],
and the payoff of GU j is defined as the negative sum of
the interference it received from other UAVs and the inter-
ference it caused to other users [36].

Therefore, the payoff of GU j is expressed as

vj cj, c−j
À Á

= − 〠
j′∈N 1\ jf g

I j,j′ cj, cj′
À Á

+ I j′,j cj′, cj
À ÁÀ Á

, ð6Þ

where c−j is the channel access selection of the GUs in setN 1
except GU j, and I j,j′ðcj, cj′Þ denotes the interference received
by GU j from GU j′. I j,j′ðcj, cj′Þ is defined as

I j,j′ cj, cj′
À Á

= δj,j′ cj, cj′
À Á PUAV

PLμ j′ð Þj
, ð7Þ

where μðj′Þ is the UAV access selection of GU j′, and δj,j′ð
cj, cj′Þ is boolean variable which denotes the interference sit-

uation between GU j and j′. δj,j′ðcj, cj′Þ is defined as

δj,j′ cj, cj′
À Á

=
1, cj = cj′,
0, cj ≠ cj′:

(
ð8Þ

Then, the game G1 is expressed as

G1ð Þ: maximize vj cj, c−j
À Á

,∀j ∈N 1: ð9Þ

The important concept about Nash equilibrium is
defined as follows:

Definition 1 (Nash Equilibrium [37]). A strategy profile c∗

= ðc∗1 ,⋯, c∗N2
Þ is a pure strategy NE if and only if no player

can improve its payoff by changing its strategy unilaterally:

vj c∗j , c∗−j
� �

≥ vj cj, c∗−j
� �

,

∀j ∈N 1,∀cj ∈K , cj ≠ c∗j ,
ð10Þ

where fcjg j∈N 1
and fvjg j∈N 1

are the strategy and payoff of

player j, respectively, and N2 is the number of players in
set N 1.

Further, we define Exact Potential Game (EPG) in the
following, which has several nice properties.

Definition 2 (Exact Potential Game [19]). A game is EPG if
there is a potential function satisfying

Φ c∗j , c−j
� �

−Φ cj, c−j
À Á

= vj c∗j , c−j
� �

− vj cj, c−j
À Á

,∀j ∈N : ð11Þ

For an EPG, the most important properties are as follows:

(i) Every potential game has at least one pure strategy
NE

(ii) Any global or local maxima of the potential function
constitutes a pure strategy NE

Theorem 3. The game G1 is an EPG and has at least one NE.

Proof. The potential function of the outer game is con-
structed as

Φ1 cj, c−j
À Á

= −
1
2 〠
j1∈N 1

〠
j2∈N 1\ j1f g

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� �

:

ð12Þ

Firstly, we define a set as follows:

Ak,j = j′
��zij′k = 1, i ∈M, j′ ∈N 1 \ jf g, k ∈K

n o
, ð13Þ

which means the set of the GUs who use channel k except
GU j. If an arbitrary GU j, ∀j ∈N , changes its channel from
cj to �cj, only the interference between GU j and the GU in set
B will change, where B =A cj ,j ∪A�cj ,j.

Then, if GU j changes its channel selection from cj to �cj,
the change of its payoff function is expressed as

vj �cj, c−j
À Á

− vj cj, c−j
À Á

= −〠
j′∈B

I j,j′ �cj, cj′
À Á

+ I j′,j cj′,�cj
À ÁÀ Á

+ 〠
j′∈B

I j,j′ cj, cj′
À Á

+ I j′,j cj′, cj
À ÁÀ Á

:
ð14Þ

The change of potential function is expressed as

Φ1 �cj, c−j
À Á

−Φ1 cj, c−j
À Á

= −
1
2〠j1=j

〠
j2∈B

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ����

zμ jð Þ j�c j=1

−
1
2 〠
j1∈B

〠
j2=j

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ j�c j=1

+ 1
2〠j1=j

〠
j2∈B

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ jc j=1

+ 1
2 〠
j1∈B

〠
j2=j

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ jc j=1

:

ð15Þ
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Because

〠
j′∈B

I j,j′ �cj, cj′
À Á

+ I j,j′ �cj, cj′
À ÁÀ Á

= 1
2 〠j1=j

〠
j2∈B

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ j�c j=1

+ 1
2 〠
j1∈B

〠
j2=j

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ j�cj=1

,

〠
j′∈B

I j,j′ cj, cj′
À Á

+ I j,j′ cj, cj′
À ÁÀ Á

= 1
2 〠j1=j

〠
j2∈B

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ jc j=1

+ 1
2 〠
j1∈B

〠
j2=j

I j1,j2 cj1 , cj2
� �

+ I j2,j1 cj2 , cj1
� �� ������

zμ jð Þ jc j=1

,

ð16Þ

then the formula (15) is transformed as

Φ1 �cj, c−j
À Á

−Φ1 cj, c−j
À Á

= −〠
j′∈B

I j,j′ �cj, cj′
À Á

+ I j′,j cj′,�cj
À ÁÀ Á

+ 〠
j′∈B

I j,j′ cj, cj′
À Á

+ I j′,j cj′, cj
À ÁÀ Á

:
ð17Þ

Therefore,

Φ1 �cj, c−j
À Á

−Φ1 cj, c−j
À Á

= vj �cj, c−j
À Á

− vj cj, c−j
À Á

: ð18Þ

Then, according to the definition 2, the inner game G1 is
an EPG and has at least one NE [38]. This completes the
proof.

4.2. Outer Game: Position Deploy Game. The outer game is
expressed as G2 = fM, fsigi∈M, fuigi∈Mg. M = f1, 2, 3,⋯,
Mg is the UAV set. si is the position of the UAV i. ui is
the payoff of the UAV i.

Because the marginal contribution [21] can well reflect the
influence of the UAV’s position strategy on the global optimi-
zation objective, ui is defined as UAV i’s marginal contribu-
tion to the overall network throughput and is given as

ui si, s−ið Þ = 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ − 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ��si=∅, ð19Þ

where Rijkðsi, s−iÞjsi=∅ is the communication rate without

deploying the UAV i and s−i = ðs1,⋯, si−1, si+1,⋯, sMÞ.
Then, game G2 is expressed as follows:

G1ð Þ: maximize ui si, s−ið Þ,∀i ∈M: ð20Þ

Theorem 4. The game G2 is an EPG and has at least one NE.

Proof. The potential function of the outer game is con-
structed as

Φ2 si, s−ið Þ = 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ: ð21Þ

If UAV i, ∀i ∈M, changes its position from si to �si, then
the change of its payoff function is expressed as

ui �si, s−ið Þ − ui si, s−ið Þ
= 〠

i∈M
〠
j∈N

〠
k∈K

Rijk �si, s−ið Þ − 〠
i∈M

〠
j∈N

〠
k∈K

Rijk �si, s−ið Þ��
si=∅

− 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ + 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ��
si=∅

= 〠
i∈M

〠
j∈N

〠
k∈K

Rijk �si, s−ið Þ − 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ,

ð22Þ

where Rijkð�si, s−iÞjsi=∅ is equal to Rijkðsi, s−iÞjsi=∅.
The change of potential function is expressed as

Φ2 �si, s−ið Þ −Φ2 si, s−ið Þ = 〠
i∈M

〠
j∈N

〠
k∈K

Rijk �si, s−ið Þ − 〠
i∈M

〠
j∈N

〠
k∈K

Rijk si, s−ið Þ:

ð23Þ

Therefore,

Φ2 �si, s−ið Þ −Φ2 si, s−ið Þ = ui �si, s−ið Þ − ui si, s−ið Þ: ð24Þ

Then, according to the definition 2, the inner game G2 is
an EPG and has at least one NE [38]. This completes the
proof.

Remark 5. Both game G1 and game G2 are potential games
with at least one NE. The physics significance of potential
function Φ1 is the negative sum of the total interference in
network and the physics significance of potential function
Φ2 is the throughput of the entire network. Due to the
important properties of an EPG, the best NE of G1 is the
channel strategy with the minimum interference of the
entire network and the best NE of G2 is the position strategy
of the UAVs with maximum throughput of the entire net-
work based on the game theory.

Remark 6. When the UAV position strategy is inputted to
game G1 from game G2, UAVs start to update their channel
selection strategies until they reach the corresponding NE of
game G1. Then, the channel selection strategy is outputted to
game G2 and UAVs update their positions. After multiple
iterations, UAVs reach an NE of game G2.

4.3. Solution Approach. We propose two BR-based algo-
rithms to optimize the spectrum resource management and
the UAV position placement, respectively. If the finial chan-
nel selection strategy and the finial UAV position strategy do
not satisfy constraint (5e), there are many heuristic methods
to reduce the UAV transmission power to solve the problem,
such as dichotomy.

4.3.1. BR-Based Channel Selection Algorithm. The details of
channel selection algorithm are shown in Algorithm 1. Every
time the UAVs choose a new position strategy in game G2,
Algorithm 1 will be executed to produce the corresponding
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UAV-user association and channel selection strategy.
Assume that there are M UAVs, K channels and every
UAV serves up to L GUs. Because Algorithm 1 randomly
picks between 1 and K − L users to update their channel
selections in each iteration, then the computational com-
plexity of Algorithm 1 is expressed as N1ðK − L/2ÞOðC1Þ,
where OðC1Þ is the computational complexity required for
a user to update its channel selection in each iteration and
C1 is a constant.

4.3.2. BR-Based Position Placement Algorithm. The details of
position placement algorithm are shown in Algorithm 2. In

each iteration of Algorithm 2, the UAV firstly explores the
surrounding position of the current position. If there is no
better position around, the UAV explores a random position
in the whole space. Assume that the max iteration times of
Algorithm 2 is N2, then the computational complexity of
Algorithm 2 is at least N2.

½OðC2Þ +N1ðK − L/2ÞOðC1Þ� where OðC2Þ is the compu-
tational complexity required for a UAV to update its posi-
tion and C2 is a constant.

Remark 7. In each iteration of the proposed algorithm, the
optimization of the strategy will improve the potential

Initialization:
(1) Input the UAV position strategy from Algorithm 2 and decide the UAV-user association by the mechanism based on matching

theory
(2) All UAVs randomly assign channels to the GUs. The initial channel allocated to GU j is denoted as cjð0Þ, ∀j ∈N 1
(3) Set the iteration time n1 = 1 and the max iteration time N1

Whilen1 ≤N1:
(4) Update cjðn1Þ = cjðn1 − 1Þ, ∀j ∈N 1
(5) Randomly select a UAV i. The set of channels used by UAV i is denoted as C i. The maximum number of GUs which UAV i

allows to update the channel selection during the same time is denoted as m≔CardðKÞ − CardðC iÞ, where CardðKÞ means the
number of elements in the setK . Randomly select no more thanm GUs from the GUs served by GU i to update the channel selection

(6) UAV i randomly assigns different channels from set K \C i to the above selected GUs
(a) Assume that GU j updates its channel selection and its probable new channel selection is �cj
(b) Calculate payoff vjðcjðn1Þ, c−jÞ and vjð�cj, c−jðn1ÞÞ according to formula (6)
(c) If vjð�cj, c−jÞ > vjðcjðn1 − 1Þ, c−jÞ, update cjðn1Þ =�cj.

(7) Update n1 = n1 + 1
End loop.
Output: The UAV-user association and channel selection strategy Z.

Algorithm 1: BR-based channel selection algorithm.

Initialization:
(1) Initialize the UAV position as sið0Þ, ∀i ∈M
(2) Set iteration times n2 = 1 and max iteration times N2

Whilen2 ≤N2:
(3) Update siðn2Þ = siðn2 − 1Þ, ∀i ∈M
(4) Execute Algorithm 1 within position strategy sðn2Þ = ðs1ðn2Þ,⋯, sMðn2ÞÞ, then receive the corresponding the UAV-user asso-

ciation and channel selection strategy Z, where Z ∈ f0, 1gM×N×K , zijk = ½Z�i,j,k
(5) Randomly select a UAV i. Calculate UAV i’s payoff uiðsiðn2Þ, s−iðn2ÞÞ according to formula (19)
(6) UAV i explores 8 positions near the position siðn2Þ

(a) The current position explored is denoted as �si ≔ ð�xi, �yiÞ where �xi ∈ fxi + Δ, xi, xi − Δg, �yi ∈ fyi + Δ, yi, yi − Δg, and �si ≠ si
(b) Execute Algorithm 1 within position strategy �s = ð�si, s−iðn2ÞÞ, then receive the corresponding the UAV-user association and

channel selection strategy Z
(c) Calculate UAV i’s payoff �uið�si, s−iðn2ÞÞ according to formula (19)
(d) If �uið�si, s−iðn2ÞÞ > uiðsiðn2Þ, s−iðn2ÞÞ, update siðn2Þ =�si and jump to step (9), else keep exploring other locations

(7) Randomly select a position �si throughout the mission area, do the same process as step (4) and (5), then calculate the payoff
�uið�si, s−iðn2ÞÞ
(8) If �uið�si, s−iðn2ÞÞ > uiðsiðn2Þ, s−iðn2ÞÞ, update siðn2Þ =�si
(9) Update n2 = n2 + 1

End loop.
Δ is the exploration step size of the UAV and becomes shorter as the iteration increases.

Algorithm 2: BR-based position placement algorithm.
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function. Because the strategy space of the problem is lim-
ited, the potential function has a maximum value, and the
potential function will not increase all the time in the pro-
posed algorithm, and the strategy will converge to the Nash
Equilibrium at last. In the proposed algorithm, the strategy
selected by the player always moves towards a Nash Equilib-
rium in the strategy space and players do not search the
whole strategy space. Therefore, the proposed algorithm
greatly saves the computation and solves the challenge of
the huge strategy space to a certain extent.

5. Simulation Results and Analysis

In this section, simulations are made to verify the conver-
gence performance and effectiveness of the proposed algo-
rithm. The corresponding simulation parameters and
analysis of results are also presented.

5.1. Simulation Parameter Setting. The mission area of the
UAVs deployment is a square area of 2 km. The GBS is
deployed in the lower left corner of the mission area and
its coordinate is denoted as ð0, 0Þ. The GUs are evenly dis-
tributed within a circle whose center is ð1000, 1000Þ and
radius is 750m. The specific simulation parameters are
shown in Table 1, where the UAV height h = 200m, GBS
transmission power PGBS = 24 dBW, UAV transmission
power PUAV = 14dBW, number of UAVs M = 4, number
of GUs N = 20, maximum number of GUs which the UAV
can serve L = 5, number of channels K = 10, maximum car-
rier frequency f c = 2GHz, channel bandwidth between the
UAV and the GBS B0 =20MHz, channel bandwidth between
the UAV and the GU B1 = 1MHz, propagation environment
parameters ða, bÞ = ð12:081,0:11395Þ and attenuation factors
ðηLOS, ηNLOSÞ = ð1:44544,199:526Þ. Specifically, we referred
to a, b, ηLOS, ηNLOS, and σ2 in reference [32].

5.2. Deployment Effect Description. The deployment effect is
shown in Figures 3 and 4. The GBS is indicated by the pink
pentacle, the UAV is indicated by the black triangles, and the
GU is indicated by the dot. The red dots represent the
unserved GUs and the green dots represent the GUs served
by the UAVs. As shown in Figure 3, in the initial state, the
UAVs are evenly deployed along the boundary of the GU’s
distribution. Figure 4 shows the result of deployment solu-
tion. According to the matching theory, the UAV tends to
serve GUs who are closer to it. Affected by the constraint
(5e), the UAV tends to be closer to the GBS.

5.3. Result of Convergence Performance Simulation. To avoid
the contingency, the convergence performances of

Table 1: Parameter settings in simulations.

Parameter Value

Area 2 km × 2 km
w0

T 0, 0ð Þ
h 200m

PGBS 24 dBW

PUAV 14 dBW

M 4

N 20

L 5

K 10

f c 2GHz

B0 20MHz

B1 1MHz

a, b 12.081, 0.11395

n0 -174 dBm/Hz

ηLOS, ηNLOS 1.44544, 199.526
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Figure 3: Initial deployment of the UAVs (M = 4, N = 20, L = 5,
K = 10, and B0 = 20MHz).
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Algorithm 1 and Algorithm 2 are obtained by running each
algorithm 1500 times and 100 times, respectively.

Figure 5 shows the convergence time of Algorithm 2 in
networks with different numbers of UAVs. The network
which has more UAVs needs more time to converge. It is
seen that 1500 iterations are enough for the network who
has no more than 5 UAVs and 20 GUs. Figure 6 shows the
cumulative distribution function (CDF) of the convergence
time of Algorithm 1. It is seen that no more than 300 itera-
tions are needed by the network with 4 UAVs, 20 GUs, and
10 channels to converge, and there is an 80% chance that
Algorithm 1 will converge within 150 times.

5.4. Results of Different Deployment Methods’ Performance.
In this subsection, we analyze the impact of different factors
on the throughput of the network: B0 (the bandwidth of the
backhaul link), K (the number of channels), L (the maxi-
mum number of GUs which the UAV can serve), M (the
number of UAVs), and N (the number of GUs). In addition,
the proposed UAV deployment algorithm is compared with
three other deployment methods, which are listed as follows:

(i) K-Means Deployment. Use K-means algorithm [20]
to deploy the UAVs, and then use Algorithm 1 to
decide the channel selection of the GUs
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Figure 5: The convergence performance of Algorithm 2 (N = 20, L = 5, K = 10, and B0 = 20MHz).
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(ii) Fixed Granularity Exploration. Different from Algo-
rithm 2, the exploration step size Δ of the UAV is
fixed and the UAV only explores positions near
the current position

(iii) K-Means with Fixed Granularity Exploration. Use
K-means algorithm [20] to decide the UAVs’ initial

positions, then use fixed granularity exploration
approach to further optimize the UAVs’ positions

5.4.1. Impact of the Backhaul Bandwidth. Figure 7 compares
the network throughput of different deployment methods
when varying the backhaul bandwidth. As shown in
Figure 7, the higher backhaul bandwidth improves the
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Figure 7: Network throughput versus the bandwidth of backhaul by different methods (M = 4, N = 20, L = 5, and K = 10).
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network throughput, while the improvement is limited. The
performance of the proposed algorithm outperforms the
other methods, the main reason is that the proposed algo-
rithm considers the global random exploration, it makes
the result less trapped in local optimality. Compared the per-
formance of K-means and K-means with fixed granularity
exploration, the fixed granularity exploration method can
further improve the performance of K-means method. Com-
pared the performance of fixed granularity exploration and

K-means with fixed granularity exploration, the initial posi-
tion of UAVs is closely related to the performance of fixed
granularity exploration method.

5.4.2. Impact of the Number of Channels. The network
throughputs of different deployment methods with different
numbers of channels are shown in Figure 8. The perfor-
mance of the proposed deployment solution outperforms
the other methods in networks with different numbers of
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Figure 9: Network throughput versus the number of UAVs by different methods (N = 20, L = 5, K = 10, B0 = 20MHz).
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channels. When the number of channels exceeds 13, the per-
formance of the proposed algorithm keeps increasing, while
the performance of K-means deployment algorithm no lon-
ger increases because the deployment result is independent
of the number of channels, and 13 channels are enough for
the GUs to communicate without interference.

5.4.3. Impact of the Number of UAVs. Figure 9 compares the
network throughput of different deployment methods when
varying the number of UAVs. Similarly, the performance of
the proposed algorithm is the best and the network through-
put increases with the increase of the number of the UAVs.
With the increase of the number of the UAVs, the perfor-
mance difference between the proposed algorithm and other
deployment methods decreases.

5.4.4. Impact of the Number of GUs. Figure 10 compares the
network throughput of different deployment methods when
varying the number of GUs. With the increase of the num-
ber of the GUs, the performance of the proposed algorithm
increases and is always better than the other deployment
methods. The reason is that the GUs are evenly distributed,
the greater the number of GUs, the more GUs are close to
the GBS, then the UAVs are deployed closer to the GBS,
and the throughput of the network is improved at last.

5.4.5. Impact of the Radius of GU Distribution. The influence
of the radius of GU distribution on the network throughput
in different deployment algorithms is shown in Figure 11.
The distribution radius varies from 500 to 1000 meters and
the performance of the proposed algorithm always outper-
forms other algorithms. Furthermore, with the increase of
the distribution radius, the performance of the proposed
algorithm decreases. The reason may be that the GUs are

assumed to obey uniform distribution, and when the dis-
tance between GUs is farther, the average distance between
UAV and served GUs is farther, causing the throughput of
GUs decreased. In addition, the network throughput trend
of the purple line is different from the other three. The dif-
ference between the algorithm of the purple line and the
algorithm of the orange line is that the initial position of
UAVs is different. We can see that the network throughput
trend of the orange line is the same as the proposed algo-
rithm and the deployment method based on K-means algo-
rithm. So the initial position of UAVs is the key factor that
needs to be considered.

6. Conclusion

Different from the previous researches that ignored spec-
trum resource management, we investigated the joint opti-
mization of the position placement and the spectrum
resource management for UAV base station networks with
the constraint of the limited backhaul capacity in this study.
To resolve the challenge of multiuser optimization and the
challenge of the coupling relationship between optimization
variables, we modeled the joint optimization problem as a
hierarchical game decision architecture. The UAV place-
ment was modeled as an outer game while the spectrum
resource management was modeled as an inner game, and
both of the two games were proved to be EPGs. Further-
more, we proposed two BR-based algorithms to optimize
the spectrum resource management and the UAV position,
respectively. Compared with the K-means deployment algo-
rithm and the fixed granularity exploration algorithm, the
proposed UAV deployment algorithm can improve the total
throughput by 7% and 20% at least, respectively.
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