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Automatic modulation recognition plays an important role in many military and civilian applications, including cognitive radio,
spectrum sensing, signal surveillance, and interference identification. Due to the powerful ability of deep learning to extract hidden
features and perform classification, it can extract highly separative features from massive signal samples. Considering the condition of
limited training samples, we propose a semi-supervised learning framework based on Haar time–frequency (HTF) mask data augmen-
tation and the positional–spatial attention (PSA) mechanism. Specifically, the HTF mask is designed to increase data diversity, and the
PSA is designed to address the limited receptive field of the convolutional layer and enhance the feature extraction capability of the
constructed network. Extensive experimental results obtained on the public RML2016.10a dataset show that the proposed semi-
supervised framework utilizes 1% of the given labeled data and reaches a recognition accuracy of 92.09% under 6 dB signals.

1. Introduction

Automatic modulation recognition (AMR) can detect the
modulation type of received signal automatically without
prior knowledge. It plays a pivotal role in civilian and mili-
tary applications, such as cognitive radio, signal recognition,
spectrum awareness, and electronic warfare.With the increas-
ing number of users, the limited spectrum resources make it
difficult to meet the dynamic needs such as 5G [1], etc. This
makes AMR a highly challenging task [2].

Typically, traditional AMR methods can be divided into
two categories: likelihood-based (LB) methods and feature-
based (FB) methods [3]. LB methods [4–6] need prior knowl-
edge and suffer from high-computational complexity. FB
methods [7–9] rely heavily on the manual analysis when per-
form feature selection. Finding distinguishing features among
multiple modulation types can be challenging [10].

Recently, inspired by the excellent approaches of deep
learning (DL) [11–13], many researchers [14–17] have explored
utilizing DL to achieve improved AMR performance. Hong
et al. [16] utilized an recurrent neural network (RNN) to
extract temporal features automatically, thus reducing the

dependency onmanual analysis. Yashashwi et al. [17] designed
a learnable module that improves signal classification accuracy
by correcting frequency offset and phase noise. These super-
vised learning (SL) methods require extensive labeled data
and are prone to overfitting. However, the availability of
high-quality labeled data is limited in practical AMR tasks
due to the challenges and costs associated with its collection.
Furthermore, the performance of AMR on SL methods may
be heavily affected by inaccurate or incomplete label.

Therefore, some researchers [18, 19] have applied semi-
supervised learning (SSL) to address AMR tasks. However,
these SSL methods may suffer from low signal-to-noise ratio
(SNR) and encounter difficulties in handling challenging
environments such as congnitive radio. To tackle the chal-
lenge of low SNR, this paper introduces a novel SSL frame-
work for AMR called HTF-PSA-SSL. The framework leverages
a Haar time–frequency (HTF) mask and a positional–spatial
attention (PSA) mechanism to enhance modulation recogni-
tion accuracy while minimizing the reliance on labeled data.
In the first step, the 1D raw IQ signals undergo preprocessing
by applying the discrete short-time Fourier transform (STFT).
This transformation converts the signals into a 2D STFT
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spectrogram, enabling a more comprehensive understanding
of the signal’s characteristics. Subsequently, we adopt the
well-known SSL mean teacher (MT) [20] as the main frame-
work in our approach, enabling us to effectively utilize a larger
quantity of unlabeled data alongside the labeled data. Further-
more, we propose a HTFmask that enhances the utilization of
unlabeled data by generating augmented samples and miti-
gating the risk of overfitting. Moreover, to enhance the strip-
shaped features of signal, a PSA is added after each convolu-
tional layer to help the network focus on crucial signal regions
from time and frequency domain. Finally, to further verify the
superiority of the proposed framework, we evaluate the per-
formance of HTF-PSA-SSL on three public datasets, namely,
RML2016.10a, RML2016.10b, and RML2016.04c [20]. The
evaluation results show that HTF-PSA-SSL not only effi-
ciently utilizes unlabeled data to improve its recognition per-
formance but also achieves beneficial robustness.

The principal contributions of this paper can be summa-
rized as follows:

(1) To address the problem of insufficient labeled sig-
nals, we propose a SSL framework, HTF-PSA-SSL,
which can effectively improve the modulation recog-
nition accuracy using only a small amount of labeled
data. Under 6 dB, HTF-PSA-SSL utilizes 1% of the
labeled data and reaches an accuracy of 92.09%.
Extensive experimental results obtained on the pub-
lic dataset RML2016.10a, RML2016.10b, and
RML2016.04c show that HTF-PSA-SSL also exhibits
strong stability and robustness.

(2) We propose the HTF mask data augmentation
method and the PSA mechanism to jointly enhance
the performance of HTF-PSA-SSL from data and
network. The HTF mask works on unlabeled data,
introducing the data perturbations and helping HTF-
PSA-SSL to better adapt the different input. The PSA
filters strip-shaped features from the time domain
and frequency domain, respectively, which helps
the network to extract key information from the
STFT spectrogram, remove redundant information.
Experimental results show that HTF and PSA
achieves a highest acuuracy of 93.18% under 16 dB.
The ablation experiments further prove the superior-
ity of HTF and PSA in enhancing the performance of
HTF-PSA-SSL.

The structure of this paper is organized as follows. In
Section 2, the related works are described. Section 3 intro-
duces the signal model. The detailed design and implemen-
tation of HTF-PSA-SSL are described in Section 4, and the
evaluation results are presented in Section 5. Finally, this
paper is concluded by summarizing the proposed work in
Section 6.

2. Related Work

2.1. SSL-Based AMR Methods. DL has been widely applied
across multiple fields. Li et al. [21] proposed a DL-based
remaining useful life (RUL) prediction method to address

the sensor malfunction problem by exploring global and
shared features. Zhang et al. [22] designed a blockchain-based
decentralized federated transfer learning method to further
address the data security and privacy problem. In AMR tasks,
many SL-based methods [23–30] have achieved significant
success. However, the classification performance of these
models relies on copious amounts of labeled data, while the
amount of labeled data is limited.

To handle this problem, O’Shea et al. [18] trained an
encoder to reconstruct signals which first demonstrated
that SSL methods could be applied to AMR tasks. Dong
et al. [19] proposed an semi-supervised signal recognition
convolutional neural network (SSRCNN) to make network
more robust by using Kullback–Leibler (KL) divergence loss.
Furthermore, Luo et al. [31] introduced the deep cotraining
method to construct different sample views by using two
CLDNNs [32] with different long short-term memory
(LSTM) units which achieves better classification accuracy.
Liu et al. [33] build a semi-supervised automatic modulation
classification framework (SemiAMC) to efficiently extract fea-
tures from unlabeled signals. Li et al. [34] introduced genera-
tive adversarial networks (GANs) to achieve high-recognition
accuracy in AMR tasks. Moreover, Li et al. [35] designed a
spatial signal transform module which improves the training
stability of the whole SSL framework. And Kim et al. [36]
proposed a denoising autoencoder-based relation network
which can effectively extract information from the limited
labeled signals. However, these SSL methods suffer from
low SNR, model instability, or high complexity.

Motivated by this, we introduce the famous MT SSL
model as our main framework. And we propose a HTF-
mask augmentation method to enhance the model stability.
Furthermore, an attention module named PSA is designed to
improve the performance of model even under low SNR.

2.2. Data Augmentation Methods. There are serveral tradi-
tional augmentation methods applied in AMR tasks. O’Shea
et al. [18] generate signals by adding different Gaussian noise
to I/Q channel. Liu et al. [33] augmented unlabeled signal by
rotating the given IQ signals with an angle randomly selected
from f0; π=2; π; 3π=2g. Furthermore, Luo et al. [31] designed
a augmentationmethod by exchanging the two channels of IQ
signals. These methods act on signal directly. However, in
scenarios with low SNR, these methods may resulting in the
instability of model.

To further enhance the quality of augmented signals, a
couple of augmentation methods in computer vision are
being searched. Zhang et al. [37] proposed augmentation
methods Mixup to extend the training distribution via linear
feature interpolation which address the low performance
achieved when evaluating adversarial examples. However,
it has the problem of unnaturally mixing samples. Yun
et al. [38] presented another method named Cutmix by
randomly cutting a sample patch and pasting it in the corre-
sponding position of another sample. It enhances the gener-
alization ability of the constructed model but suffers from a
fixed square mask shape. Harris et al. [39] designed Fmix
which mixes two different samples with a random binary
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mask obtained by applying a threshold to low-frequency
images sampled from the Fourier space. However, the irregu-
lar shape of mask may generate negative samples and affect
the network performance when applying to the STFT
spectrograms.

Motivated by this, we propose a data augmentation method
named the HTF mask. It augment the STFT spectrogram in
both temporal and frequency domain to enlarge the amount
of unlabel data thus enhance the stability of network.

2.3. Attention Mechanism Methods. Attention mechanism
can tell a model where to focus, it also enhances the repre-
sentation of features. Hu et al. [40] proposed a squeeze-and-
excitation (SE) module to efficiently build interdependencies
between channels. Qin et al. [41] presented a multispectral
channel attention framework (Fca) to assigns varying weights
to different channels by producing different frequency com-
ponents of the discrete cosine transform for each channel.
However, these methods only focus on channel attention
and lack spatial attention. Woo et al. [42] designed a convolu-
tional block attention mechanism (CBAM), which takes into
account both channel and spatial attention. Linsley et al. [43]
proposed the global-and-local attention (GALA) module that
integrates local saliency and global contextual signals to guide
attention toward image regions. However, thesemethods can-
not efficiently capture the strip-shaped features of STFT
spectrogram.

Motivated by this, we designed an attention mechanism
named PSA. It performs two 1D pooling operations along
the horizontal and vertical axes of the feature map to
enhance the strip-shaped features of signal.

3. Signal Model

We consider a single-input single-output communication
system, and the received signal rðtÞ can be represented by

r tð Þ ¼ c × s tð Þ þ n tð Þ; ð1Þ

where sðtÞ denotes the modulated signal from the transmit-
ter, c denotes the path loss or gain term on the signal, and
nðtÞ refers to additive white Gaussian noise (AWGN). Then,
the received signal rðtÞ is sampled N times to obtain a
complex-valued discrete-time signal rðnÞ with a length of N .

The discrete Fourier transform (DFT) can only reflect the
properties of the signal in the frequency domain and cannot
analyze the signal in the time domain. Therefore, we trans-
form the 1D signal into 2D time–frequency spectrograms
using the STFT to associate it with the time domain. The
calculation formula for a given discrete signal rðnÞ can be
denoted as follows:

STFT r n½ �f g ¼ R m;ωð Þ ¼ ∑
N

n¼0
r n½ �w n −m½ �e−jωn; ð2Þ

where wðnÞ is the window function, and the size of the
Hanning window is set to N/8.

4. Proposed Approach

4.1. Overview of HTF-PSA-SSL. HTF-PSA-SSL aims at con-
structing an SSL framework to effectively classify the radio
signal modulation types. Figure 1 provides an overview of
our proposed HTF-PSA-SSL. The training set can be divided
into two parts: a small set of labeled data ðxi; yiÞ, a large set of
unlabeled data ui, and consisting of STFT domain data. To
introduce model perturbations, MT models are built in our
framework, where the student model fθ is trained by the loss
function and the teacher model fθ0 is an exponential moving
average (EMA) of fθ. For the small amount of labeled STFT
spectrogram, we use the supervised cross-entropy loss Lce
over labeled samples ðxi; yiÞ to constrain the learning
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FIGURE 1: Overview of HTF-PSA-SSL.
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direction of the network gradient descent. For the large amount
of unlabeled STFT spectrogram, we apply the data augmenta-
tion of HTF Mask on ui, especially we use sample pair ðua; ubÞ
to obtain augmented data pair ðuk; umÞ (described in 4.2). Con-
sequently, for the sample pair ðua; ubÞ and its augmented data
uk, we introduce a pseudo label [44] to label the sample pair
ðua; ubÞ (described in 4.4.2) and design the unsupervised
cross-entropy loss Luce base on entropy regularization to cor-
rect the learning direction of fθ with the confidence. For aug-
mented data pair ðuk; umÞ, we design the unsupervised
normalized temperature-scaled cross entropy (NT-Xent)
[45] loss Lntx for consistent regularization. The whole training
process of HTF-PSA-SSL can be summarized in Algorithm 1.

4.2. Augmentation Policy. Considering that insufficient train-
ing data potentially leading to inadequate network training,
selecting an effective data augmentation policy is of utmost
importance. As shown in Figure 2, Fmix [39] augments data
with irregular masks, but these irregular masks are not suit-
able for physically meaningful STFT spectrogram. Inspired
by this, we propose a novel radio data augmentation approach
based on HTF mask. It is not only specifically designed for
dealing with STFT spectrogram, but also for the unlabeled
data. Simultaneously, we incorporate a pseudo label [44] into
the augmented unlabeled data. More details of pseudo label is
discussed in 4.4.2.

We aim to construct an augmentation policy that acts on
the STFT spectrogram directly, which helps the network
learn useful features. Motivated by the goal that these fea-
tures should be robust to deformations in the time direction,
deformations in the frequency information, and partial
replacement of small segments of the radio signal, we have
chosen the following deformations to make up a policy:

(1) Time masking is applied so that t consecutive time
frames ½t0; t0 þ tÞ are masked, where t is first chosen
from a uniform distribution from 0 to the time bin T ,
and t0 is chosen from ½0; τ− tÞ.

(2) Frequency masking is applied so that f consecutive
STFT frequency channels ½f0; f0 þ f Þ are masked,

where f is first chosen from a uniform distribution
from 0 to the frequency mask parameter F, and f0 is
chosen from ½0; ν− f Þ.

According to the above policy, we designed three time
masks and three frequency masks based on Haar feature
template, seen in Figure 3. For each mixing operation, we
randomly select two integer values from a uniform distribu-
tion ranging from 1 to 6 and generate a pair of masks based
on the selected indices. An example of two augmentations
applied to a pair of inputs describes the augmentation pro-
cess in details. Given a pair of mask h1 and h2, we can
generate the augmented data pair ðuk; umÞ by the below
strategy

uk ¼ h1 ⊙ ua þ 1 − h1ð Þ ⊙ ub

um ¼ h2 ⊙ ua þ 1 − h2ð Þ ⊙ ub

(
; ð3Þ

where h1; h2 2f0; 1gT×F denotes a binary mask indicating
regions for dropout and replacement within two STFT spec-
trogram, 1 is a binary mask filled with ones, and ⊙ is
element-wise multiplication. Each HTF mask has a mean
value of 0 and different shapes work with the different
extraction functions.

4.3. Attention Mechanism. Different from the classic atten-
tion mechanism in the CV field, PSA adapts itself to the
signal strip shape of the STFT spectrogram and helps the
network focus more on the important signal features.

Since a convolutional layer has difficulty capturing this
strip-shaped relationship due to its limited receptive field,
PSA performs two 1D pooling operations along the horizon-
tal and vertical axes of the feature map. Furthermore, the
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FIGURE 2: Augmented examples generated by Fmix and HTF mask.
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examples generated by Fmix and HTF mask, respectively. For each
group, the first row is the original two samples. The second row is
the binary mask. From left to right is the Fmix mask and HTF mask,
respectively. And the third row is the augmented sample generated
by Fmix and HTF mask from left to right.
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network should be sensitive to the local position of this strip
shape. Then, PSA performs a pooling operation along the
channel axis of the feature map.

PSA is added after each max pooling layer. As illustrated
in Figure 4, given the upper feature map F 2RC×H×W as
input, PSA sequentially generates attention maps Ap 2
RC×H×W and As 2R1×H×W. The overall process can be sum-
marized as follows:

Fp¼Ap Fð Þ ⊙ F

Fs ¼As Fp
À Á

⊙ Fp;
ð4Þ

where ⊙ refers to the element-wise multiplication operation.
During multiplication, the values generated in the spatial
step are broadcasted along the channel dimension.

4.3.1. Positional Step. Two 1D average pooling layers are
applied to aggregate the feature relationships along the hori-
zontal and vertical axes. Then, we utilize a 2D convolution
layer with a kernel size of 1× 1 to reduce the feature channel;
thus, the computational resource required is appropriately
lowered. After that, we calculate the correlation matrix
between these axes. Finally, another 2D convolution with a
kernel size of 1× 1 is employed to reconstruct the attention
map and multiply it with the input feature, eventually
obtaining the final attention map. The above operations can
be summarized as follows:

Ap Fð Þ¼σ Conv OH Fð Þ⊗ OW Fð Þð Þð Þ; ð5Þ

with

OH Fð Þ ¼σ Conv Fw
avg

À ÁÀ Á
OW Fð Þ¼σ Conv Fh

avg

À ÁÀ Á
;

ð6Þ

where ⊗ denotes matrix multiplication, σ denotes the sig-
moid function, and Conv refers to the 2D convolutional
layer.

4.3.2. Spatial Step.We first perform average pooling and max
pooling operations along the channel axis and then concate-
nate the results to generate an efficient feature descriptor.
Subsequently, we utilize the convolution layer with a kernel
size of 1× 1 to generate the final spatial attention map.
Finally, we multiply this map with the input feature. The
specific calculation process can be defined as follows:

As Fð Þ¼σ Conv OA Fð Þ; OM Fð Þ½ �ð Þð Þ
¼σ Conv Fs

avg; Fmaxs
Â ÃÀ ÁÀ Á

;
ð7Þ

where ½⋅; ⋅� denotes the concatenation operation.

4.4. Training Loss. To specifically illustrate the training pro-
cedure of HTF-PSA-SSL, we first clarify some notations. Let
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DL and DU represent the labeled sample set and unlabeled
sample set, respectively, and BL and Bu are the batch sizes of
the labeled sample and unlabeled sample during the training
process. Moreover, the total number of signal classes to be
classified is referred to as Nc.

4.4.1. Supervised Cross-Entropy Loss. To efficiently guide the
learning direction of the whole network, the cross-entropy
loss Lce is introduced to calculate the total loss of the labeled
data. We feed a labeled sample ðxi; yiÞ∼DL into the student
network fθ . Specifically, ðxi; yiÞ is first fed into the extractor to
collect abundant useful features, and then these useful fea-
tures are fed into the classifier to generate an output predic-
tion, which is denoted as pθðyjxiÞ. After that, we use yi and
pθðyjxiÞ to calculate the supervised loss Lce as follows:

Lce ¼
1
BL

∑
BL

i¼1
ℓce yi; pθ yj xið Þð Þ

¼ −
1
BL

∑
BL

i¼1
∑
Nc

j¼1
y ji log pθ yj xið Þjð Þ:

ð8Þ

4.4.2. Unsupervised Cross-Entropy Loss. Although the unla-
beled sample set is much larger than the labeled sample set in
terms of quantity, we also attempt to apply the cross-entropy
loss to the unlabeled sample set. Therefore, for an unlabeled
sample ua ∼DU , we need to construct a fake label, namely, a
pseudo label, and suppose that it is the true label of ua. More
specifically, we feed ua into the extractor and classifier in
sequence and obtain its corresponding predicted output vec-
tor pθðyjuaÞ. To construct a pseudo label, we assume that the
predicted vector pθðyjuaÞ is credible.

After constructing pseudo labels for all unlabeled data,
we sample ðua; ubÞ∼DU and apply the HTF mask to mix ðua;
ubÞ into a pair of new samples ðuk; umÞ according to
Equation (3). Then, we fetch the pre-preserved pseudo label
ðpθðyjuaÞ; pθðyjubÞÞ according to the sample index ða; bÞ and
generate the mixed pseudo label bymix as follows:

bymix ¼
1
2
pθ yj uað Þ þ 1

2
pθ yj ubð Þ: ð9Þ

The mixed sample uk is then fed into the student network
to generate the predicted vector pθðyjukÞ. The prediction
pθðyjukÞ is utilized to calculate the total loss of the unlabeled
data. Since uk is an augmented data sample from ðua; ubÞ,
when calculating the final loss, we introduce the mixed cross-
entropy loss function. The mixed cross-entropy loss function
can be denoted as follows:

Luce¼Lce bymix; pθ yj ukð Þð Þ

¼ 1
BU

∑
BU

i¼1;k¼1
ℓce bymixð Þi; pθ yj ukð Þð Þ

¼ −
1
BU

∑
BU

i¼1;k¼1
∑
Nc

j¼1
bymixð Þ ji log pθ yj ukð Þjð Þ:

ð10Þ

4.4.3. Unsupervised NT-Xent Loss.When a percept is slightly
changed, the smaller the angles between these high-dimensional
features, the closer these classes are. Motivated by this, we apply
the contrastive loss to maximize the agreement between
different examples augmented from the same signal sample.
Specifically, we obtain the latent high-dimensional feature
representation ðvθðyjukÞ; vθ0 ðyjumÞÞ generated from the extrac-
tor and calculate the NT-Xent loss between them. To minimize
NT-Xent, we use cosine similarity to measure the similarity
between two augmented samples uk and um. The cosine simi-
larity measure is defined as follows:

sim vθ yj ukð Þ; vθ0 yj umð Þð Þ ¼ vθ yj ukð ÞTvθ0 yj umð Þ
vθ yj ukð Þk k vθ0 yj umð Þk k ;

ð11Þ

where kvθðyjukÞjj denotes the ℓ2 norm of vθðyjukÞ. Then, the
loss for a positive pair of samples ðk;mÞ is defined as follows:

ℓ k;mð Þ ¼ −log
exp sim vθ yj ukð Þ; vθ0 yj umð Þð Þ=τð Þ

Neg
;

ð12Þ

Require: fθ : student model with trainable parameters θ

Require: fθ0 : teacher model with parameters θ0 equal to mov-
ing average of θ

Require: DLðx; yÞ: labeled samples set

Require: DUðuÞ: unlabeled samples set

Require: η: learning rate of student model

Require: α: rate of moving average

Require: λu: weight of unlabeled loss

Require: ωðtÞ: Gaussian ramp–up curve function

Require: BL: batch size of labeled data

Require: BU : batch size of unlabeled data

Require: mixðua; ub; hÞ¼ h ⊙ ua þð1− hÞ⊙ub.

1: for t= 1; 2; 3;… do

2: Sample fðxi; yiÞgBLi¼1 ∼DLðx; yÞ
3: Calculate Lce via Equation (8).

4: Sample fuagBUa¼1 ∼DU ðuÞ, fubgBU
b¼1 ∼DUðuÞ

5: Generate pseudo label fpθðyjuaÞgBUa¼1, fpθðyjubÞgBU
b¼1

6: uk ¼mixðua; ub; h1Þ
7: Calculate Luce via Equation (10).

8: um ¼mixðua; ub; h2Þ
9: Calculate Lntx via Equation (14).

10: L¼ Lce þωðtÞ× λu × ðLuce þ LntxÞ
11: gθ ←rθL
12: θ0t ¼αθ0t−1 þð1− αÞθt
13: θ← θ− ηgθ

14: end for

15: return θ, θ0

ALGORITHM 1: The Training Procedure of HTF-PSA-SSL.
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with

Neg¼ ∑
2BU

j¼1
1 j≠k½ �exp sim vθ yj ukð Þ; vθ0 yj uj

À ÁÀ Á
=τ

À Á
; ð13Þ

where τ represents the temperature when calculating the
cosine similarity value and 1½j≠k� 2 f0; 1g is an indicator
function that is equal to 1 iff j ≠ k. To obtain the final
loss, the average loss values of all positive sample pairs,
including ðm; kÞ, are calculated, which can be denoted as
follows:

Lntx ¼
1

2BU
∑
BU

i¼1
ℓ 2i − 1; 2ið Þ þ ℓ 2i; 2i − 1ð Þ½ �: ð14Þ

4.4.4. Final Loss. The final total loss function of HTF-PSA-
SSL can be defined as follows:

L¼ Lce þ ω tð Þ × λu × Luce þ Lntxð Þ: ð15Þ

where the weight λu is a hyperparameter that balances the
labeled loss and unlabeled loss. The ωðtÞ function is the
Gaussian ramp-up curve function [46], which can be defined
as follows:

ω tð Þ ¼ exp
−5 1−

t
T

� �
; 0 ≤ t<T

1; T ≤ t

8<: : ð16Þ

where t is the number of current epochs and T refers to the
starting epoch when the unlabeled weight is equal to λu. The
application of ωðtÞ ensures that the training process with the
labeled data is not disturbed even with the existence of an
unlabeled loss. Moreover, its slow increase helps the pseudo
labels of unlabeled data become closer to the true labels.

The whole training process of HTF-PSA-SSL can be
summarized in Algorithm 1.

5. Experiments

We evaluate the effectiveness of the proposed HTF-PSA-SSL
approach and compare it with the other existing SSL-based
methods on the public RML2016.10a dataset. To further
demonstrate the robustness of the proposed HTF-PSA-SSL
method, we also examine its performance on the other public
datasets, RML2016.10b and RML2016.04c.

5.1. Datasets and Training Environment

5.1.1. Dataset Descriptions. RML2016.10a is a synthetic data-
set consisting of 11 modulation types (8 digital and 3 analog),
which are 8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK,
PAM4, QAM16, QAM64, QPSK, and WBFM. For each
modulation type, there are 20 different SNRs varying from

−20 to +18 dB with an interval of 2 dB. For each SNR, there
are 1,000 signals. Each signal is composed of I and Q parts,
and the size is 2× 128. In this paper, for each raw IQ signal,
we apply the STFT function to generate a spectrogram with a
size of 128× 128 and feed it into the network as our input.

5.1.2. Implementation Details. We split the dataset into three
parts, training, validation, and testing sets, according to the
ratio of 8 : 1 : 1. Then, we select a certain percentage of sam-
ples from the training set as the labeled dataset, while we
select the remaining samples of the training set as the unla-
beled dataset. Specifically, we randomly divide 1,000 signals
into three groups: 800 signals for training, 100 signals for
validation, and 100 signals for testing. Then, the training set
is divided into two parts: 88 signals for the labeled dataset
and 712 signals for the unlabeled dataset. The other dataset is
divided in the same way.

The adaptive moment estimation (Adam) optimizer is
applied for all of our experiments, and each experiment
runs for 150 epochs. The initial learning rate is set to
0.001, which is then adjusted with cosine decay. The moving
average rate α of the EMA is set to 0.99. The batch size is set
to 64 for both the labeled dataset and unlabeled dataset. The
weight of the unlabeled loss is set to 20, and the number of
epochs for the ramp-up function is set to 30. Our experi-
ments are implemented in PyTorch with Python 3.7 using
two Nvidia 3090 graphics processors.

5.2. Comparison with Supervised Methods. We consider two
supervised scenarios: supervised (100%) and supervised
(1%). Supervised (100%) means that we train a network
using the full training set with labels. Supervised (1%) refers
to training the network using only 1% of the whole training
set. The comparison results obtained under 6 dB signals are
shown in Table 1. We can determine that the performance of
HTF-PSA-SSL is basically between those of the two

TABLE 1: Comparisons between supervised (100%), HTF-PSA-SSL
and supervised (1%).

Type
Supervised
(100%)

HTF-PSA-SSL
(%)

Supervised (1%)

8PSK 98.00 97.00 86.00
AM-
DSB

80.00 78.00 66.00

AM-SSB 99.00 100.00 34.00
BPSK 99.00 99.00 97.00
CPFSK 100.00 100.00 100.00
GFSK 100.00 100.00 100.00
PAM4 100.00 100.00 100.00
QAM16 100.00 100.00 45.00
QAM64 99.00 99.00 65.00
QPSK 98.00 98.00 97.00
WBFM 50.00 42.00 47.00
Average 93.00 92.09 76.09

Note. Bold value indicates the total average result of HTF-PSA-SSL.
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supervised methods, which is 0.91% lower than supervised
(100%) but 16% higher than supervised (1%). This shows
that HTF-PSA-SSL can effectively make use of unlabeled
data to improve its recognition performance.

Then, we evaluate the performance of the three methods
from −20 to +18dB, and the comparison results are shown in
Figure 5. It is obvious that HTF-PSA-SSL keeps approaching the
supervised (100%)method and outperforms the supervised (1%)
method by 13.88% on average. This further verifies the powerful
feature extraction ability of HTF-PSA-SSL, which can extract
sufficient reliable features from an unlabeled dataset and contin-
uously improve its model performance. We also compare the
performance of HTF-PSA-SSL with some Machine Learning
(ML) methods. These ML methods are trained using the full
training set with labels. As shown in Figure 5, at a SNR of
16dB, HTF-PSA-SSL outperforms support vector machine
(SVM) [47] by 52% and random forest (RF) [48] by 50% in
terms of recognition accuracy. Moreover, we show the feature
visualization of instantaneous statistical features [47], entropy
features [48], and high-dimensional features (HTF-PSA-SSL)
using t-distributed stochastic neighbor embedding (t-SNE)
[49]. The feature distribution under 12 dB signals is shown
in Figure 6. It is obvious that the features of HTF-PSA-SSL are
well-aggregated, while the instantaneous statistical features
and entropy features are scattered. Since these manual fea-
tures are more severely confused than the high-dimensional
features, the performance obtained by SVM and RF is also
lower than that of HTF-PSA-SSL. However, HTF-PSA-SSL
has a higher computation complexity. The comparison of
computational complexity is presented in Table 2.

From the confusion matrix obtained under −6, 0, and
12 dB signals, drawn in Figure 7, we observe that with
increasing SNR, the recognition accuracies achieved for

most modulation types are improved. However, AM-DSB
and WBFM are heavily confused even at 12 dB, which indi-
cates that this pair of modulation classes is difficult to cor-
rectly recognize.

5.3. Efficiency of the HTF Mask and PSA. As shown in
Figure 8, the HTF mask augmentation method achieves the
best classification accuracy compared with theMixup method
[37] and the Fmix method [39] from −20 to +18 dB. More
specifically, the HTFmask augmentationmethod has a higher
accuracy than Mixup method due to the application of mask
augmentation form and it has a better performance than Fmix
method because HTF mask method has taken the temporal
and frequency correspondence of STFT spectrogram into
account. For instance, the HTF mask method outperforms
Mixup by nearly 12% and surpasses Fmix by almost 4% on
the average of−20 to 18 dB. Under 16 dB, HTFmask achieves
a highest accuracy of 93.18%.

Then, we simply replace PSA with the other famous
attention methods, SE [40], the CBAM [42], and Fca [41],
and evaluate their performance under the same experimental
settings. The experimental results are shown in Figure 9. The
recognition accuracy of PSA is higher than that of the other
three attention mechanisms by 2.67%, 5.13%, and 7.75% on
average, especially when the SNR≥ -6 dB. This is due to the
strong detail extraction ability of PSA, which establishes the
horizontal and vertical long-term dependencies of features to
effectively capture the detailed information contained in
signals.

5.4. Ablation Study. To showcase the efficiency of the pro-
posed HTF mask and PSA method, we perform a range of
ablation experiments at 10 different SNRs. Furthermore, we
evaluate the performance of training loss, the corresponding
results are all listed in Table 3.

5.4.1. HTF Mask. As shown in Table 3, augmentation
method with only frequency mask or time mask reach higher
classification accuracy compared to no augmentation
method Eps13 [44]. Furthermore, by augmenting data in
both the temporal and frequency domains, HTF-PSA-SSL
achieves superior results, as demonstrated in Table 3. For
example, HTF-PSA-SSL outperforms Eps13 by 22.31%,
Eps13 with frequency mask by 16.18%, and Eps13 with
time mask by 10.63% under −4 dB. These results show the
effectiveness of the HTF mask in augmenting spectrogram
data, such as the STFT spectrogram.

5.4.2. PSA Method. From Table 3, we can figure out that
model with spatial attention or positional attention achieve
higher classification accuracy than no attention model
CNN5. However, when both the positional attention and
the spatial attention are performed, HTF-PSA-SSL reaches
the highest accuracy. For instance, HTF-PSA-SSL outper-
forms CNN5 by 13.68%, CNN5 with spatial attention by
6.28%, and CNN5 with positional attention by 3.73%, respec-
tively, under 0 dB. These experiments indicate that the PSA
can efficiently enhance the strip-shaped features of STFT
spectrogram.
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FIGURE 6: Sample distribution of (a) instantaneous statistical features[47], (b) entropy features [48], and (c) high-dimensional features (HTF-
PSA-SSL) after using t-SNE to visualize features under 12 dB signals. The high-dimensional features of HTF-PSA-SSL are well-aggregated,
while the instantaneous statistical features and entropy features are heavily scattered.

TABLE 2: Computation complexity.

Network FLOPs Parameters Memory

SVM [47] — 54.2 K 1.5M
RF [48] — 63.7 K 3.5M
SSRCNN [19] 390K 52.8 K 227.7 K
EDCT [31] 9M 291K 1.2M
SimAMC [33] 25M 620K 2.5M
CNN5 2.5G 1.66M 6.7M
CNN5+ spatial 2.5 G 1.66M 6.7M
SE [40] 2.5G 1.77M 7.1M
Fca [41] 2.5G 1.85M 11.2M
CBAM [42] 2.5G 1.77M 7.1M
CNN5+ positional 2.53G 1.82M 7.4M
HTF-PSA-SSL 2.53 G 1.82M 7.4M

Note. Bold values indicate the highest value of FLOPs, Paramters and Memory.
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FIGURE 7: Confusion matrix of HTF-PSA-SSL under (a) −6, (b) 0, and (c) 12 dB signal. The horizontal axis is the predicted modulation type of
network. The vertical axis is the true modulation type of signals. Each number on the leading diagonal shows the total number of modulation
correct prediction.
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5.4.3. Traing Loss. As shown in Table 3, the absence of unsu-
pervised cross-entropy loss Luce leads to the significant
decline in classification accuracy. This indicates that the
Luce plays an important role when training network. More-
over, when both the unsupervised cross-entropy loss Luce and
the unsupervised NT-Xent loss Lntx are added, HTF-PSA-SSL
achieves the best classification accuracy. For example, under
4dB, HTF-PSA-SSL outperforms supervised cross-entropy
loss Lce by 18.09%, Lce +Luce by 1.18%, respectively. This further
shows that the loss function of HTF-PSA-SSL is indeed useful.

5.5. Comparison with Other SSL-Based Methods. In this
experiment, we evaluate the performance of three SSL meth-
ods applied in the signal field: SSRCNN [19], SimAMC [33],
and EDCT [31]. As shown in Figure 10, HTF-PSA-SSL
reaches higher recognition accuracy than the other three
SSL-based methods, it outperforms SSR by 35.84%, SimAMC
by 35.28%, and EDCT by 13.01%. This fully demonstrates the
strong performance of the proposed HTF-PSA-SSL technique.
It can extract more critical information from spectrograms and
screen out the practical features from this information.
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5.6. Robustness of the Proposed HTF-PSA-SSL Method. In this
part, we study the robustness of HTF-PSA-SSL by evaluating
its recognition accuracy on three public datasets, RML2016.10a,
RML2016.10b, and RML2016.04c, and the specific recognition
accuracies are shown in Table 4. RML2016.10b contains 10
modulation classes, but the total size of the dataset is much
larger than that of RML2016.10a. For each SNR, each modula-
tion type has 6,000 signal samples. RML2016.04c has the same
modulation classes as RML2016.10a, but the number of samples
for eachmodulation type is different, ranging from 207 to 1,248.
For each SNR, there are 8,103 signal samples in total, including
all modulation classes. We can determine that HTF-PSA-SSL
achieves the best recognition accuracy on these three public
datasets, which indicates that HTF-PSA-SSL is robust and can
achieve stable recognition performance, regardless of whether
the given dataset is large or small and whether the numbers of
samples in different classes are balanced or not.

As shown in Table 5, we evaluate the recognition accu-
racy of the label rate 1% (88), 5% (440), and 10% (880) at
some SNRs. The results show that with the increase in the
amount of labeled data, the recognition accuracy of HTP-
PSA-SSL is also gradually improved, but the improvement
fluctuates at 1%. This indicates that increasing the amount of
labeled data can improve the recognition accuracy of HTP-
PSA-SSL but the improvement effect is not obvious. This is
because the HTF mask improves the robustness of the net-
work. Even with only a small amount of labeled data, the
recognition accuracy is close to that of supervised learning
using the whole training set.

TABLE 3: Ablation study on public dataset RML2016.10a.

Description −20 dB (%) −16 dB (%) −12 dB (%) −8 dB (%) −4 dB (%) 0 dB (%) 4 dB (%) 8 dB (%) 12 dB (%) 16 dB (%)

Lce 8.82 10.09 13.45 22.09 45.64 66.91 72.36 75.00 75.18 77.27

Lce + Luce 8.82 10.45 17.82 32.91 70.91 87.36 89.27 91.96 92.00 92.64

CNN5 7.91 9.55 14.09 29.00 48.64 73.96 80.37 82.87 83.27 82.96

CNN5+ spatial 8.09 10.36 15.00 29.60 60.64 81.36 83.73 84.32 85.96 85.27

CNN5+ positional 9.09 11.00 18.45 33.05 69.36 83.91 88.82 89.73 89.55 89.03

Eps13 [44] 8.73 9.18 15.27 25.73 48.96 68.18 72.46 77.68 81.55 81.36

Eps13+ frequency mask 9.00 10.64 15.91 29.77 55.09 75.00 81.82 82.33 84.82 83.45

Eps13+ time mask 8.27 10.46 17.64 32.82 60.64 76.32 84.48 84.82 85.03 83.36

HTF-PSA-SSL 9.18 11.18 20.00 34.91 71.27 87.64 90.45 92.45 92.09 93.18

Note. Bold values indicate the result of HTF-PSA-SSL.
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TABLE 4: The recognition accuracy of HTF-PSA-SSL on public data-
sets RML2016.10a, RML2016.10b and RML2016.04c with 1% (88)
labeled samples.

SNR
(dB)

RML2016.10a
(%)

RML2016.10b
(%)

RML2016.04c
(%)

−20 9.18 10.27 8.91
−18 9.09 11.05 8.68
−16 11.18 14.43 8.87
−14 14.45 18.78 9.09
−12 20.00 23.35 12.10
−10 27.09 30.23 17.41
−8 34.91 40.62 21.11
−6 53.09 51.27 36.54
−4 71.27 71.98 67.41
−2 81.18 83.28 79.14
0 87.64 87.90 86.05
2 89.45 89.58 89.88
4 90.45 91.13 91.23
6 92.09 90.02 90.74
8 92.45 90.62 89.63
10 93.18 91.87 91.23
12 92.09 91.75 91.73
14 92.45 91.72 88.27
16 93.18 92.72 89.38
18 92.36 93.25 91.48
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To visualize the features of the test signal samples, we
obtain the intermediate features of the classifier and utilize t-
SNE for dimensionality reduction. The sample point distri-
bution under 0 dB signals is shown in Figure 11. It is obvious
that the results supervised (100%) and HTF-PSA-SSL are
well-aggregated, while those of supervised (1%) are scattered
and heavily confused with QAM16 and QAM64, QPSK and
8PSK, further indicating that HTF-PSA-SSL is highly reli-
able. From these figures, we can additionally conclude that
WBFM and AM-DSB are difficult to recognize for HTF-
PSA-SSL as well as EDCT, SSRCNN, and SimAMC.

5.7. Computation Complexity. In Table 2, the FLOPs, the
parameters volume and the memory usage are compared.

5.7.1. FLOPs. Compared with other methods, HTF-SSL-PSA
has the highest FLOPs which is 2.53 G. This is because we
filter redundant information from the time domain, fre-
quency domain, and global time–frequency domain, which
requires a certain amount of calculation. We also compare
the time complexity of SVM, RF, and HTF-PSA-SSL. From
Table 6, we can figure out that HTF-PSA-SSL has the highest
time complexity. In our forthcoming research, strategies to
optimize network computational overhead are our research
directions, such as binary neural networks.

5.7.2. Parameters. In terms of parameters, Fca has the highest
value, which is 1.85 M, while HTF-PSA-SSL closely follows
as the second highest with 1.82M. This improvement can be
attributed to the PSA’s powerful filtering function of key
information in both the time and frequency domains. Com-
pared to SE and CBAM, the HTF-PSA-SSL is slightly higher.
This increase can be attributed to the fact that HTF-PSA-SSL
also filters global time–frequency information. These domains
collaboratively eliminate redundant information. While com-
pared to the rest methods, HTF-PSA-SSL is much higher. This
difference can be attributed to the model’s necessary complex-
ity, which allows HTF-SSL-PSA to extract features from large

TABLE 5: The recognition accuracy of HTF-PSA-SSL under different label rate: 1% (88), 5% (440) and 10% (880).

SNR (dB) 1% (88) 5% (440) 10% (880)

−18 9.09% 9.55% 9.73%
−12 20.00% 20.36% 20.73%
−6 53.09% 54.73% 55.36%
0 87.64% 89.82% 89.73%
6 92.09% 92.64% 93.09%
12 92.09% 93.00% 93.55%
18 92.36% 93.82% 94.09%

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8PSK
AM-DSB
AM-SSB
BPSK
CPFSK
GFSK

PAM4
QAM16
QAM64
QPSK
WBFM

ðaÞ

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8PSK
AM-DSB
AM-SSB
BPSK
CPFSK
GFSK

PAM4
QAM16
QAM64
QPSK
WBFM

ðbÞ

0.0
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

8PSK
AM-DSB
AM-SSB
BPSK
CPFSK
GFSK

PAM4
QAM16
QAM64
QPSK
WBFM

ðcÞ
FIGURE 11: Test sample points of two supervised methods and HTF-PSA-SSL after dimensionality reduction using t-SNE under 0 dB signals.
(a) Supervised (100%) and (b) HTF-PSA-SSL are well-aggregated. (c) Supervised (1%) is heavily scattered.

TABLE 6: Time complexity of machine learning methods and HTF-
PSA-SSL.

Network Time complexity

SVM [47] Oðn3Þ
RF [48] OðTðn ⋅ f ⋅ logðf ÞÞÞ
HTF-PSA-SSL Oð∑D

l¼1M
2
l ⋅ K

2
l ⋅ Cl−1 ⋅ ClÞ

n is the number of samples, f is the number of features used in each tree, T is
the number of trees in the forest. D is number of convolutional layers, M is
the side length of the feature map output by each convolution kernel, K is the
kernel size of convolutions, and C is the channels of convolutions.
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amounts of unlabeled data and contribute to correcting the
network’s learning direction. In our future work, we will con-
tinue to investigate methods for significantly reducing the
computational complexity of the network while maintaining
the higher recognition performance.

5.7.3. Memory. Similar to the model parameters, the memory
usage of HTF-PSA-SSL also ranks second at 7.4M. This is
because the number of parameters of the network itself is
large. This is also a direction for our future improvement.

6. Conclusion

In this paper, an AMR framework based on SSL is proposed
to achieve improved modulation recognition accuracy by
effectively utilizing large amounts of unlabeled data. While
using only a small amount of labeled data, the framework can
significantly improve its recognition performance. The pro-
posed HTF mask data augmentation method can effectively
mix unlabeled data and expand the total amount of unla-
beled data to improve the overall generalization performance
of the convolutional network. The designed attention mech-
anism named PSA can plug and play into any convolutional
layer to compensate for the limited receptive field of the
convolutional layer and enhance the feature extraction abil-
ity of the convolutional network. Compared with SSR,
SimAMC, and EDCT, HTF-PSA-SSL achieves 35:84%,
35:28%, and 13:01% higher accuracy on average. Compared
with supervised (1%), HTF-PSA-SSL improves the recogni-
tion accuracy by 13.88% on average. Extensive experiments
and comparisons conducted on public datasets show that the
proposed framework can effectively use a large amount of
unlabeled data and accurately predict the modulation types
of unknown signals with very little labeled data.

Data Availability

The data used to support this study are public datasets. They
can be downloaded from http://radioml.com [14].
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