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Security enhancement in wireless sensor networks (WSNs) is significant in different applications. The advancement of routing attack
localization is a crucial security research scenario. Various routing attacks degrade the network performance by injecting malicious
nodes into wireless sensor networks. Sybil attacks are the most prominent ones generating false nodes similar to the station node.
This paper proposed detection and localization against multiple attacks using security localization based on an optimized
multilayer perceptron artificial neural network (MLPANN). The proposed scheme has two major part localization techniques and
machine learning techniques for detection and localization WSN DoS attacks. The proposed system is implemented using
MATLAB simulation and processed with the IBM SPSS toolbox and Python. The dataset is classified into training and testing
using the multilayer perceptron artificial neural network to detect ten classes of attacks, including denial-of-service (DoS) attacks.
Using the UNSW-NB, WSN-DS, NSL-KDD, and CICIDS2018 benchmark datasets, the results reveal that the suggested system
improved with an average detection accuracy of 100%, 99.65%, 98.95%, and 99.83% for various DoS attacks. In terms of
localization precision, recall, accuracy, and f-score, the suggested system outperforms state-of-the-art alternatives. Finally,
simulations are done to assess how well the suggested method for detecting and localizing harmful nodes performs in terms of
security. This method provides a close approximation of the unknown node position with low localization error. The simulation
findings show that the proposed system is effective for the detection and secure localization of malicious attacks for scalable and
hierarchically distributed wireless sensor networks. This achieved a maximum localization error of 0.49% and average localization
accuracy of 99.51% using a secure and scalable design and planning approach.

1. Introduction

Hierarchically distributed microsensor nodes in the field are
linked together with multihop wireless communication tech-
nologies to form a wireless sensor networks (WSNs) [1]. The
sensor nodes have sensing and wireless communication
modules, storage, and processing units. Wireless sensor net-
works (WSNs) monitor and collect network information,
including network state and data transmission. They also
monitor object positioning and tracking [2]. WSNs are vul-
nerable to multiple, including Sybil attacks, wormhole
attacks and eavesdropping [3]. The Sybil attack is the most
harmful routing attack that fabricates and depreciates multi-

ple fake identities launching a malicious attack on the legit-
imate node to lower service quality [4, 5]. It is the key
research challenge in wireless sensor networks like the other
applications, including architecture, healthcare, disaster
management, deployment quality of service, calibration [6],
and synchronization. Wireless sensor nodes sense and
record data from the environment and send the data to the
cluster head for the aggregation process. An intelligent sens-
ing and computing framework is essential for the security
localization and detection of attacks using an artificial neural
network (ANN). This scheme is gaining attention due to its
low computational cost and faster convergence. In this paper
we proposed an optimized multilayer perceptron artificial
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neural network for detection and localization of routing
attacks in WSNs.

Emerging applications of wireless sensor networks
(WSNs) include traffic management and object tracking,
both of which require localization of sensor nodes [7]. For
efficient routing and location-aware services, it is crucial to
have an accurate estimation of the sensor node location.
Without knowing where the sensor is located, the data col-
lected by WSN is often useless. As a result of their potential
utility in a wide range of WSN applications, the localization
techniques are garnering a rising amount of attention from
researchers. Based on the information required, localization
techniques can be divided into two broad categories:
range-based techniques, which rely on the known distances
or angles between nodes to make location estimates, and
range-free techniques, which instead make location esti-
mates based on the closeness of a number of reference
nodes. Range-free approaches are replacing range-based
methods in WSN localization due to their lower hardware
and computational requirements. The clustering and local-
ization algorithm is a well-known example of a range-free
technique since it uses adjacent reference nodes’ positions
to estimate the node’s own location. During the setup phase,
the starting positions of the reference nodes are either hard-
coded or computed.

1.1. MLPANN Applications in WSNs. Network traffic identi-
fication is becoming increasingly popular as a field of study
in the field of network administration, drawing researchers
from all over the world [8]. The growth in network capacity
is closely proportional to this rise. New forms of network
applications, such as peer-to-peer (P2P) file sharing, have
rendered some of the more traditional methods of traffic
identification, including port-based or deep packet inspec-
tion, ineffective. Selecting an appropriate feature selection
method, which can select the best features according to the
impact of the great traffic behaviour characteristics, is essen-
tial for achieving higher recognition efficiency and greater
identification accuracy when performing traffic identifica-
tion based on ML (Machine Learning). The MLP (Multilayer
Perceptron) approach is superior to other identification
algorithms in terms of identification accuracy. It has been
shown that as the number of training samples grows, the
identification rate also rises. But MLP is not without its
own value and drawbacks that mean it needs to be enhanced.

There is now a great deal of academic focus on creating
fingerprint localization algorithms that make use of artificial
neural networks (ANNs). Despite noisy RSSI measurements,
the ANN can still give accurate recognition of the node’s
position, which is a major advantage. Using ANNs eliminate
the need for detailed knowledge of the indoor environment
or the locations of reference nodes. In order to approximate
a mapping between the multidimensional fingerprint space
and the coordinates of nodes, ANN interpolates the acquired
data in the fingerprint database. During the ANN’s training
process, the collected RSSI vectors are used to fine-tune the
weights of connections between neurons. Although training
may take a while, the localization process is far faster than
any analytical estimates of the node’s position.

Multilayer perceptron (MLP) is the most widely utilized
ANN architecture in modern range-free wireless sensor
node localization applications. In WSN, fingerprint-based
localization was accomplished using the MLPANN. For this
evaluation, we evaluated 43 distinct backpropagation train-
ing algorithms to determine the method’s accuracy. Some-
thing very close to that was proposed as a tactic. The ANN
training has been kept up-to-date at regular intervals so it
can adjust to changing conditions on the wireless channel.
Four MLPANNs, each with a different amount of inputs,
formed an ensemble that was shown to the audience. This
tactic specifies that, if the localization operation must be exe-
cuted, an ANN with the same number of inputs as the cur-
rently connected reference nodes is selected and issued.
Given the poor scalability of this approach, we settled on a
cap of four connections between reference nodes. When
compared to methods based on fuzzy learning systems or
genetic algorithms, the localization results generated by the
ANNs ensemble were shown to be more reliable. Here we
propose a cooperatively optimized and secure multilayer
perceptron artificial neural network (MLPANN) for scalable
and broad area networks that combines range-based and
range-free localization technique approaches from the realm
of artificial intelligence (AI) to problems inherent to wireless
sensor networks (WSNs) [9], such as data aggregation and
fusion, routing, task scheduling, optimal deployment, and
localization as shown in Figure 1. In this context, the term
“computational intelligence” refers to a subfield of machine
learning that combines techniques with roots in biology, such
as neural networks, fuzzy systems, and evolutionary algo-
rithms, to develop forecasting models. This algorithm for
learning could be built using cascading decision chains for rec-
ognizing nonlinear and complex functions. However, the
high-computational requirements for learning the network
weights and the substantial administrative overheadmean that
distributed neural networks are not yet widely used in WSNs.
Neural networks, on the other hand, are well-suited for han-
dling many network difficulties with a single model because
of their ability to simultaneously learn multiple outputs and
decision boundaries in centralized solutions.

1.2. WSN Routing Attacks. Attacks on the wireless sensor
network’s network layer can hinder performance by render-
ing a genuine node unreachable to the service. The following
section will go through some of the more common types of
attacks seen in WSNs. With these kinds of attacks, sensitive
data is compromised before it even reaches the target node.
The attacks in wireless sensor networks operate in all layers
of the network exploiting resources and degrading the ser-
vice quality of the network.

1.2.1. Wormhole Attack. The wormhole attack is created by
two malicious nodes having a tunnel path in the two locations
and misapprehension. Wormhole attack attracts and manipu-
lates significant network data traffic launching various attacks.
It advertises its packets using the intermediate nodes to sniff,
modify, and drop from reaching the destination [10].
Figure 2 cluster A shows a wormhole attack scenario depicting
when source node S sends the packet to the sink node. A
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wormhole tunnel is created between malicious nodes A and B.
The packet is dropped and modified by the tunnel before
reaching the base station. At least the two hostile nodes
employing a secure communication channel known as a tun-
nel can detect a wormhole assault [11]. It is at this point that
the wormhole tunnel will begin to collect the data packets
and forward them on. The malicious node on the other end
of the tunnel receives a control packet. At the other end, it uses
a private channel to relay the packet to another node that has
caught its attention. For enhanced metrics, such as fewer hops
or less time, the private channel is selected as the conduit for
communication between the source and the destination. The
attack usually consists of two phases. Multiple initial direc-
tions are of relevance to the wormhole nodes. The second
stage is when the packets begin to make use of the malicious
nodes. It is possible for these nodes to hinder the network’s
performance in a number of ways. Wormhole nodes can be

used to steal information or communicate it to a third party
if they delete, tamper with, or send it.

1.2.2. Sinkhole Attack. Sinkhole attack advertises routing
paths to the base stations, making itself a normal node mis-
guiding the neighbor nodes that cause threats to the net-
work. The malicious nodes create a hole in the routing
path that can damage the regular operations of the network.
The sinkhole attack uses a compromised node with fewer
hops to advertise the route to the destination. This misuse
of routing information misguides the legitimate node and
attracts the node closer. Figure 2 cluster B illustrates the sce-
nario of a sinkhole attack for attracting and capturing
packets from the neighbor nodes. The sinkhole attack uti-
lizes a secret tunnel for attracting nodes and capturing
packets. The malicious node then deceived and sent packets
to the base station.
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Figure 1: Illustration of MLPANN for detection and localization of WSN attacks based on localization algorithms.
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Figure 2: Illustration of wormhole and sinkhole attacks in WSNs in cluster A and B, respectively.
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1.2.3. Blackhole Attack. Blackhole attacks capture and repro-
gram sensor nodes to block packets instead of receiving and
forward to the base station [10]. The blackhole attack com-
promises the information with the malicious node that enters
the blackhole region. The blackhole attack undermines the
network performance by using the network partitioning so
the essential updates cannot reach the base station. It degrades
the network performance metrics and consumes large net-
work traffic. The source node S sends a packet to the base sta-
tion using the intermediate C and D nodes, as shown in
Figure 3 of cluster 1. The blackhole node consumes the entire
traffic and is not forwarded to the destination node.

The blackhole attack performs suspicious activity using
loopholes for discovering the routing [12]. The blackhole
attack compromises the legitimate node with a malicious node
so that the packets are dropped and unable to reach the desti-
nation nodes. The suspicious node cause packet is dropping
for targeted nodes and customizing set of nodes for packet
dropping. The information that comes to the blackhole is
dropped and sent fake packets to the base station. The routing
requests and routing response messages by the blackhole
attacks have higher order number which is greater than the
normal node request and response so that the normal node
will not respond to the routing request with higher order num-
ber which causes deletion of routine from the networks [13].

1.2.4. Sybil Attack. Sybil attack forges and spoofs the identity
of the legitimate node in wireless sensor networks [14]. Sybil
attack interrupts the routing table and the trust value of the
node of the legitimate node. Sybil attack duplicates multiple
identities for confusing the neighbor nodes [15]. This attack
uses geographic routing protocols for targeting authorized

nodes. Sybil attack takes numerous identities to disguise
the storage entities of the legitimate node [16], as shown in
Figure 3 of cluster 2. The malicious node transmits data with
imaginary events multiple times. This type of attack creates
illusion that makes it difficult to detect the whole network.

1.3. Problem Formulation. Most of the existing literature
review papers dealt with single attacks with low localization
and detection accuracy in WSNs. Thus the deployment of
wireless sensor nodes seeks optimal and intelligent localization
methods for accurate node position and attack identification.
To overcome this problem, it is essential to design and imple-
ment a new effective technique. This paper proposes a security
localization and detection scheme employing optimized mul-
tilayer perceptron artificial neural network for various classes
of attacks against wireless sensor networks, which are vulner-
able to a wide variety of denial-of-service (DoS) attacks that
exploit the network’s resources. The proposed method is
designed for multiple attack detection and classification, rep-
resenting the input and output relationships using the ANN
technique. The design and planning of distributed hierarchical
clustered topology are also discussed that consists of sink
node, cluster head, malicious and sensor nodes as shown in
Figure 4. Also, we discuss the effectiveness of the proposed sys-
tem using the benchmark datasets including CICIDS2018,
UNSW-NB 15, WSN-DS and NSL-KDD with different evalu-
ation metrics using training and testing samples as a bench-
mark for performance evaluation. The dataset is processed
using batch mode.

1.4. Research Contribution. The proposed attack localization
and detection scheme is based on an optimization multilayer
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Figure 3: Illustration of blackhole and Sybil attack scenario in WSNs for cluster 1 and cluster 2, respectively.
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perceptron neural network [17]. The proposed system pos-
sesses different phases with the proper network planning
and node configuration. These include network data pro-
cessing and feature extraction, training, and testing for
attack detection and classification. Some of the novel contri-
butions of this work are as follows:

(1) To design and simulate wireless sensor network topol-
ogy with attack detection and localization features

(2) To explore the various routing attacks and tech-
niques simulating these attacks using clustering and
routing protocols

(3) Evaluate the network performance using a sample
public dataset as a benchmark with attack detection
localization metrics

(4) Explore machine learning techniques secure localiza-
tion and detection of routing in wireless sensor net-
works in all layers of the network

(5) A multilayer perceptron neural network technique
enables the detection and classification of malicious
nodes using network traffic data and feature extrac-
tion. It maximizes the location and position accuracy
of the suspicious node

(6) To detect and localize multiple attacks with greater
classification accuracy for clustered and hierarchical
network architecture

(7) Measure the security performance of the scheme
using comparison performance for effective vali-
dation and confirmation with similar previous
works

(8) Explore hybrid range-based and range-free localiza-
tion techniques for unknown and malicious nodes
that affect quality of service in WSN using collabora-
tive approach

The rest contents of this paper are organized into differ-
ent sections and structures. Section 2 encompasses the previ-
ous literature works. Section 3 describes the network and
attack models depicting graphically in detail using clustering
and routing protocols. The next part is Section 4, which dis-
cusses the proposed attack localization and detection tech-
nique in WSNs using MLPANN approach. The next
Section 5 details the simulation and experimental analysis
using a benchmark dataset for different classes of routing
attacks. The last section is Conclusion and remarking for
future works.

2. Related Works

Messous and Liouane [1] presented an online successive dis-
tance vector hop scheme for node localization accuracy in
WSNs. They also discussed the variation of anchor nodes
with optimized distance between nodes in the network.
Dong et al. [2] examined the distance vector hop algorithm
against Sybil attacks for effective node localization and

Base Station

Cluster heads
Sensor nodes Routing path

Malicious nodes

Figure 4: Clustering in hierarchically distributed wireless sensor network model.
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accuracy for improved security in WSN. The scheme also
reduces the average error localization by 3%, setting the bea-
con nodes 50 in the simulation that is 78%. Chelouah et al.
[18] addressed localization algorithm in mobile WSNs. They
also presented the mobility of nodes for coverage optimiza-
tion, connectivity, and analysis. Hadir et al. [19] presented
a localization technique in WSNs using an effective distance
vector hop scheme. They also discuss the average hop size
and localization accuracy by exploiting the information.
Almomani et al. [20] designed a low cost and efficient, intel-
ligent DoS attack detection and prevention technique. They
also discuss different DoS attack classifications using a spe-
cialized dataset for WSN. Patel and Mistry [21] presented
Sybil node detection [22] using various schemes. They also
discussed and analyzed the protocols used in WSNs. Yavuz
et al. [23] proposed detecting IoT-routing attacks using a
deep learning machine learning technique. The Cooja simu-
lator generates high-fidelity attack data in the IoT network
with 1000 sensors. Sujatha and Anita [24] examined the
detection of Sybil attack detection using hybrid fuzzy and
powerful extreme learning machines. They also discussed
ARM as the main CPU with LEACH environment and Zig-
Bee transceivers on real-time testbeds. Qi et al. [25]
researched a localization algorithm to improve the node
position accuracy and reducing localization error in WSNs
using MA-MDS. They also use the Prussian analysis algo-
rithm for accurate coordinate transformation. Li et al. [26]
presented a localization trust valuation scheme to detect
spoofing and Sybil attacks. This scheme is obtained by
selecting localization performance, estimated distance, and
transmission with the threshold property set in WSNs. Song
et al. [27] proposed a chaotic hybrid mutation and chaotic
inertial weight-updating technique with a glowworm swarm
optimization approach. The scheme also avoids premature
convergence with better convergence and higher accuracy.
Saud Khan and Khan [28] presented Sybil attack detection
using signed response authentication techniques for global
mobile communication systems. They also discussed the
probabilistic model to analyze Sybil attack detection
performance.

Abbreviations, acronyms, and shorter variants of terms
and phrases used as resources in this paper are included as
shown in Table 1

3. Network Model

Sink, cluster head, sensor, and attacker nodes are all repre-
sented in the simulated network. The sensor nodes tend to
group together throughout the system. When sending infor-
mation to the beacon nodes and the base station, each clus-
ter chooses its own cluster head node to act as the central
hub for that cluster. The beacon nodes decide on the optimal
routing path by employing an optimization strategy based
on a fitness function. In this context, the terms beacon nodes
and anchor nodes are synonymous. Sybil attacks and worm-
hole assaults are the types of attacks that can be used against
this network paradigm. The positioning and placement of
anchor nodes are dependent on their relationship to other
nodes. Once an anchor node has been put in a network, it

will remain in the same location permanently. The sensor
nodes have claimed their territory. The localization scheme
is used for providing accurate position and location of the
sensor nodes by making clustering of the nodes having one
cluster head for each group [29, 30]. Unknown nodes locate
their positions using the anchor node assistance. Sensor
nodes update their locations periodically by the system.
Malicious nodes broadcast their positions by creating multi-
ple fake identities and advertising themselves as the beacon
nodes. The malicious node also creates tunnels for dropping
packets before reaching the destination. The hierarchical
clustering of the sensor deployments enables less energy
consumption and enhances the network life time as shown
in Figure 4.

The legitimate nodes are assumed to be homogenous in
computational processing, storage capacity, communication
level, and activation energy in the model [31]. Malicious
nodes are considered more effective than the legitimate node
for the activity in capturing the security key of the base sta-
tion and clusters. The attacker disrupts the normal function-
ing of the network by cloning the authorized node.

3.1. Cluster Formation and Data Aggregation. Clustering is a
method of organizing a set of sensors to increase the durabil-
ity of the network and decrease its power consumption [32].
The network’s sensor nodes are organized into groups of
similar devices. Collectively, the sensor nodes that make up
the cluster gather data and send it on to the cluster coordina-
tor. The data is aggregated and filtered by the cluster head
before being sent to the hub. The sensor’s stable functioning
and neighbor evaluation are aided by the clustering method.
Cluster heads (CHs) are the most important nodes in the
cluster since they serve as the hub for monitoring. The three
selection criteria are used to determine which of the sensor
nodes will become the cluster head.

(i) The number of nearby neighbor nodes

(ii) The quality of the received signal from the sensor
node

(iii) The node’s remaining energy before it is activated

(iv) The minimum distance to the base station as calcu-
lated by the distance vector protocol. The distance D
between any two sensor nodes is computed using
the distance vector technique as shown below

D =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui − uj

À Á2 + vi − vj
À Á2q

: ð1Þ

The u and v coordinate for nodes i and j, respectively.
Computing the distance between the base stations to any
node with a small distance is likely the cluster head. The
energy employed for the communication and activation of
the network model is evaluated by setting the threshold
parameters with the multipath model approach. The amount
of energy ETX for k-bits of data transmission over D distance
and Do threshold distance is given as in
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ETX =
k × Ee + k × Ef ×D2, if D ≤Do,

k × Ee + k × Em ×D4, if D >Do,

(
ð2Þ

where ETX is the transmitted energy, Ef is the reception
energy, and Ee is the power dissipated in the transmitter or
receiver for single-bit data transmission. The dissipated
energy depends on signal spreading, filtering, modulation,
and channel-coding factors. The threshold transmission dis-
tance Do with k-length of data transmission is given by

Do =

ffiffiffiffiffiffi
Ef

Em

s
: ð3Þ

For k-bits of message reception, the energy consumed by
the receiver node is

ERX kð Þ = k × Ee: ð4Þ

3.2. Localization Techniques. Numerous wireless sensor net-
work (WSN) applications rely on localization to locate a tar-
get by comparing the signal strengths of transmitters and
receivers already set up in the region of interest [33, 34].
Some algorithms are essential for finding and assessing the
location and position of the nodes and security enhance-

ment for precise location of the target. The scheme is divided
into range-based and range-free localization techniques. The
latter one is cost-effective with special hardware require-
ments. The received signal strength indicator (RSSI) and dis-
tance vector hop localization algorithms evaluate wireless
sensor node accurate position and location. The distance
vector localization procedure is essential to compute the
coordinates of the sensor nodes and cluster heads using the
beacon nodes [1]. The scheme calculates and manipulates
the position and distance of the unidentified nodes. The dis-
tance vector hop procedure helps to find the spaces among
the beacon nodes in WSN. The calculated minimum dis-
tance is the average hop size using the distance vector
approach. This algorithm was first identified by [2]. The dis-
tance vector localization scheme is a range-free strategy [19]
with a series of steps in Table 2.

The average distance hop for the anchor node is com-
puted and obtained relative to another beacon with the min-
imum hop count given by

HSi =
∑i≠j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui − ujð Þ2 + vi − vjð Þ2

q
∑i≠jhij

: ð5Þ

The interpretation of the variables is shown in Table 3.

Table 1: List of abbreviations and acronyms used in this paper.

Abbreviations Descriptions

BS Base station

WSNs Wireless sensor networks

CH Cluster head

D Distance

E Energy of the sensor node

RSSI Received signal strength indicator

DV-H Distance vector hop

IoT Internet of Things

ANN-IDS Artificial neural network-based intrusion detection system

FEMs Fuzzy extreme machines

MK-ELM Multikernel extreme learning machine

LEACH-ANN Low-energy adaptive clustering hierarchy based on ANN

CNN-MCL Convolutional neural network and mean convolutional layer

HTM-LSTM Hierarchical temporal memory and long short-term memory

MLPANN Multilayer perceptron artificial neural network

RL-IDS Reinforcement learning-based IDS

GBFS-IDS Gradient boosting feature selection for IDS

ML-ID Machine learning-based intrusion detection

UWB Ultrawide band

DI-ADS Deep intelligent attack detection scheme

PO-CFNN- Political optimizer based on cascade forward neural network

RNN Recurrent neural network

ECGAL Energy-efficient clustering and localization centered on genetic algorithm

LSTM-FFNN Long short-term memory and feed-forward neural network

DNN-CSO Deep neural networks with chicken swarm optimization
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Anchor node transmits its information [2] followed by
hop-size calculation. The distance between sensor node
and anchor computed with hop-size details is given by

Dpk =HpSii×hppk: ð6Þ

The polygon technique enables the estimation of the posi-
tion (P) of each anonymous node. P is the spot of the uniden-
tified node denoted as (u, v) and di, the space among anchor
and indefinite nodes. The position of the strange node p
assuming n beacon nodes involved is estimated by [2].

u − u1ð Þ2 + v − vð Þ2 =D1
2,

u − uð Þ2 + v − vð Þ2 =D2
2,

:

:

:

u − unð Þ2 + v − vnð Þ2 =Dn
2:

ð7Þ

We can get a set (n − 1) of expressions subtracting from the
first equations to make the system linear, given as depicted in

u1
2 + v2 − un

2 − vn
2 − 2 u − vnð Þu − 2 v1 − vnð Þv =D1

2 −Dn
2,

u2
2 + v2

2 − un
2 − vn

2 − 2 u2 − unð Þu − 2 v2 − vnð Þv =D2
2 −Dn

2,

:

:

:

un−1
2 + vn−1

2 − un
2 − vn

2 − 2 un−1 − unð Þu − 2 vn−1 − vnð Þv =Dn−1
2 −Dn

2:

ð8Þ

Rearranging the previous equations into the formula of ui

= BA−1, where A, ui, and B are expressed as in

A =

2 u − unð Þ2 v1 − vnð Þ,
2 u2 − unð Þ2 v2 − vnð Þ,

:

:

2 yn−1 − unð Þ2 vn−1 − vnð Þ,

8>>>>>>>><
>>>>>>>>:

ð9Þ

B =

u1
2 + v2 − un

2 − v2 +Dn
2 −D1

2

u2
2 + v2 − un

2 − vn
2 +Dn

2 −D2
2

:

:

un−1
2 + vn−1

2 − un
2 − vn

2 +Dn
2 −Dn−1

2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
, ð10Þ

Ui =
u
v

� �
: ð11Þ

The location of the node is computed solving the least
square method stated as in

U = A′A
� �−1

A′B: ð12Þ

The clustering and distance vector-routing protocols are
used in the proposed scheme for effective wireless sensor net-
work deployment.

In contrast to its range-based equivalents, RSSI-based
localization algorithms have gained a lot of traction in the
academic community for a variety of compelling reasons
[35]. Today’s wireless sensor nodes typically include features
like RSSI measurement and data transmission to higher
stack layers. For RSSI-based localization, no time-
synchronization between nodes, ultrawide band (UWB)
radios for more precise time of arrival calculations, or
antenna arrays are needed. In terms of both software and
hardware, it is a straightforward and inexpensive approach
to achieving node localization. However, the DV-hop algo-
rithm completely skips measuring the real distances between
the one-hop neighbor nodes and leveraging these distances
for more precise localization in massive-scale wireless sensor
networks.

To localize wireless nodes using the DV-hop technique,
the hybrid approach takes two extra steps, as indicated above
for improvement of the localization accuracy and malicious

Table 2: Steps in distance vector technique for computing the position of unknown nodes.

Steps Description of steps

Routing initialization
Beacon node broadcasts to all nodes and the hop count of its location information

with 0 value initialized in the network [19].

Calculating distance
The average size of the hop and the unknown node distance is calculated with

the assistance of the beacon node.

Position estimation
Unknown nodes estimate their position by the triangulation algorithm or maximum

likelihood estimators or polygon method with the help of the anchor node.

Table 3: Equation (1) variable description and interpretation.

Variable Description of the variable

i, j True anchor nodes

ui, við Þ, uj, vjð Þ The known and true coordinates for i and j

Hij Hop counts of the anchor nodes

HSi Average hop distance

8 Wireless Communications and Mobile Computing



node detection. Instead of relying on the average hop distance
like the original DV-hop algorithm did, we first use the RSSI
data to estimate the distances between the anchor nodes and
their one-hop surrounding sensor nodes. Using the RSSI value
does not necessitate any specialized hardware or additional
expenditures because theMAC sublayer inmost modernwire-
less sensor nodes computes RSSI value for every received
packet and sends that value to higher layers. Second, after a
sensor node N has been located, it is elevated to the role of
anchor, which is utilized to localize other sensor nodes. With
more (repurposed) anchor nodes to work with, the remaining
sensor nodes can be localized with greater precision. That is
especially useful in wireless networks when there are fewer
anchor nodes. Third, differential evolution (DE) is a technique
used in evolutionary computation to find the optimal solution
to a problem by iteratively trying to enhance a candidate solu-
tion with respect to some quality metric. Metaheuristics are
approaches that search enormous spaces of possible solutions
while making few or no assumptions about the underlying
problem. Unfortunately, metaheuristics like DE cannot prom-
ise you will get the best possible result every time.

Since DE does not rely on the gradient of the optimiza-
tion problem, DE can be applied to optimization problems
involving multidimensional real-valued functions even if
the problem cannot be differentiated, as is the case with tra-
ditional optimization techniques like gradient descent and
quasi-newton methods. For this reason, DE can be applied
to optimization problems that are inherently noncontinu-
ous, noisy, dynamic, etc. Using its basic equations, DE opti-
mizes a problem by keeping a population of candidate
solutions, generating new candidate solutions by merging
old ones, and finally keeping the candidate solution with
the highest score or fitness on the optimization task at hand.
As a result, the gradient is unnecessary because the optimi-
zation issue is viewed as a black box that only delivers a mea-
sure of quality given a candidate solution.

The problem of the localization of techniques is trans-
formed into multilayer perceptron artificial neural network by
computing the distance and position of each type of nodes with
unique identity for detection and localization of the malicious
nodes as shown in Figure 5. The sensor nodes in our purpose
are assumed to both homogenous and heterogeneous wireless
sensor networks. The beacon nodes have high-computational
data processing and have their own localization that helps for
other nodes to estimate and compute their location and positon
of the ordinary sensor nodes in the network. Adding machine
learning to WSN localization helps increase the precision of
range-free node positioning [36]. In particular, the use of artifi-
cial neural networks (ANNs) in range-free localization algo-
rithms has significantly improved their accuracy and
performance compared to more conventional methods. The
MLPANN learning strategy is needed that starts with a labelled
dataset in order to construct a model that can appropriately
generalize to data that was not included in the training set
before we can make any adjustments to the weights [37].

3.3. Attack Model. One hundred nodes are distributed ran-
domly in 1000 × 1000m square areas with sensor, cluster
head, and malicious nodes. The proposed scheme aims to

enhance the detection accuracy of security localization [2] to
routing attack using the distance vector hop procedure and
clustering protocols inWSN using an artificial neural network
approach. Figure 6 is the Sybil attack model with three sets of
wireless nodes. A Sybil attack is a type of network assault in
which a malicious node purposely and illegally displays a large
number of forging or false identities to other sensor nodes
[38]. This is accomplished by either independently generating
new identities or illegally assuming the identities of other sen-
sor nodes. By creating an unpredictable number of fake node
identities, a Sybil node might interfere with WSN operations
like multipath routing, which uses a variety of routes to find
the best one between a source and a destination. The attack
model shows how malicious nodes launch fake behaviors cre-
ating multiple identities against the position and location of
the legitimate node with various routing paths. This degrades
the lifetime of the network by reducing the computational per-
formance of the authorized nodes.

The other routing attacks including scheduling, black-
hole, grayhole and flooding attacks are used in for simulat-
ing and implementation of the proposed scheme using the
WSN-DS dataset as a benchmark for evaluating for localiza-
tion and detection.

3.4. Benchmark Datasets. In this section, three benchmark
datasets including UNSW-NB 15, WSN-DS, and NSL-KDD
are utilized to measure the effectiveness attack detection and
localization accuracy. The raw network packets of the
UNSW-NB 15 dataset were generated by cyber LAB using
the IXIA PerfectStorm tool for cyber security for generating
attack behaviors [39]. The cyber security dataset [40] is struc-
tured into training and testing samples using the batch mode
for updating the total error for each weight, as shown below
in Table 4. The dataset contains ten classes of attacks with dif-
ferent statistical frequency distribution in the network.

There are various attack activities in the dataset for pro-
cessing and classification of the proposed system. The
attacks are classified as normal, shellcode, analysis, back-
door, backdoors, DoS, exploits, fuzzers, reconnaissance,
generic, and worms [39, 42–46].

The frequency distribution of the four types of routing
attacks found in the WSN-DS dataset is provided in
Table 5 and is utilized as a benchmark against which the per-
formance of the proposed can be measured. There are a total
of 84556 data points and 23 features available to use in cre-
ating a predictive model, eighty percent are utilized for train-
ing, while twenty percent are used for testing.

The other benchmark dataset for evaluating the pro-
posed technique is the NSL-KDD containing 100069 sam-
ples and with classes of attacks including denial-of-service
(DoS), probes, user to root (U2R), root to local (R2L), and
normal as shown in Table 5. The dataset has 41 features with
38 numerical and 3 categorical features.

4. Proposed System

The proposed system consists of a series of phases: design
and planning, deployment and routing, data processing,
training and testing, attack classification, attack detection,
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and localization. The data processing phase includes feature
selection and normalization of the network traffic security
dataset. The proposed system shown in Figure 7 is designed
using optimized multilayer perceptron artificial neural net-
work (MLPANN). The MLP is a feed-forward ANN with
backpropagation to calculate the gradient used for weight
calculation [48]. The ANN technique is a stochastic learning
model for decision-making using interconnected informa-
tion processing units [49]. ANN can estimate the nonlinear
relationship between inputs and outputs and map the
exchange of information among the nodes. The multilayer
perceptron (MLP), as shown in Figure 8, configured with
input layers, three hidden layers, and output layers. The pro-
posed system used a gradient descent optimization for
speeding and enhancing accuracy for detection and localiza-
tion of attacks. This approach also uses a statically driven
technique for training and testing using multilayer
perceptron.

Several procedures are included in the proposed frame-
work to identify malicious or unexpected routing. The
method begins with a network data collection and prepro-
cessing stage [50]. Next, it must find any missing values in

the system and then fill in those blanks with appropriate
values that were not present before processing began. We
use the mean as our default. Subsequently, the dataset is
cleaned up by removing any occurrences of duplicate values.
After that, data encoding and normalization are carried out.
In order to facilitate data handling, the encoded data
undergoes a dimension’s reduction procedure. To aid with
anomaly detection, it is necessary to do feature optimization
in order to extract the most useful characteristics from the
data. In order to spot outliers in the dataset, optimal feature
selection is crucial. For the same information, it aids in low-
ering the computational cost required to process it. Below is
an equation that can be used to determine the entropy

E = −〠
L

i

Pi log2Pi, ð13Þ

where p is the chance of finding a particular class label in the
dataset. In this study, a hybrid machine learning approach is
recommended for intrusion detection in a wireless sensor
network after the optimal selection of features for anomaly
detection.

4.1. Artificial Neural Networks. The multilayer perceptron
artificial neural network (MLPANN) is a supervised
machine learning approach using a human neuron model
for data classification [47]. ANN processes and produces
accurate information using a massive number of neurons
and classify data-based neuron model that digests data and
deliver correct output having layers and connecting nodes
and active duty [51]. The layers of ANN are connected with
nodes with the activation function. The configuration of typ-
ical ANN is depicted in Figure 9 with nodes and hidden
layers varying from to three of the network using trainable
parameters. ANN has wide applications in improving the
efficiency of various schemes, including detection and local-
ization of sensor nodes, routing and congestion control, and
data aggregation in WSN. Artificial Neural Networks are
data-driven tools for demonstrating nonlinear dynamic sys-
tems. They are efficient for the identification and modeling
of nonlinear systems. They have standard approximation
abilities and flexible structures to capture nonlinear
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characteristics [52]. The input data x1, x2,⋯, xn denotes the
input parameters of the dataset containing various protocols,
services and the identity of the nodes, and y1, y2,⋯, yn rep-
resents the classified DoS attacks depending on the bench-
mark dataset. The ANN addresses the localization of
sensor nodes and detection of the malicious nodes [18].
The proposed scheme has multiple trainable parameters
for accurate attack localization and detection including the
input nodes, hidden layers, bias and output nodes and also
the connecting neurons. The ANN technique in WSNs
improves the computational intelligence for scalable and
adaptable features [30]. The ANN scheme was also used to
obtain the accurate position of the sensor node using multi-
layer perceptron. It is also effective for prediction and clus-
tering to get the location and position accuracy of nodes in
WSNs.

The activation functions used for the artificial neural
network multilayer perceptron are sigmoid and softmax,
respectively. They are activation functions for the hidden
layers and output layer, respectively. The sigmoid and soft-
max functions are stated below as in

Y =
1

1 + e−x
, ð14Þ

z =
ex

∑n
k=1e

x
, ð15Þ

where x is the vector of input to the output layer and y is the
network’s response with k index and n elements for the mul-
tilayer perceptron. The softmax function z is applied for
activating for the classifier in the output layer. The number
of hidden layers varies from one to three in our case for con-
ducting the performance evaluation. The next step is to
shrink the sampling dataset in order to better localize the

feature that has to be extracted [53]. The pooling techniques
are used to achieve this. In order to reduce the size of the
image and the number of computations necessary, pooling
is used. The max pooling approach was employed. Max
pooling generates a new map after determining the feature
maps’ maximum value. A node’s output in response to an
input or combination of inputs is determined by the activa-
tion function of that node.

4.2. Optimization and Tuning Techniques. The goal of an
ANN’s optimization phase is to identify the optimal weight-
ing scheme that leads to optimal performance. This is a
tough optimization issue since it is categorized as a continu-
ing nonlinear optimization problem. There are a lot of algo-
rithms in books. Backpropagation is one of the most popular
algorithms. This last one achieves excellent results, although
it may run into a local minimum difficulty. To circumvent
this issue and improve the likelihood of rapid convergence,
we incorporate a local search method with a differential evo-
lution algorithm. When training a neural network model, we
utilize Adam optimizer to update the weights of the network
based on the model’s learned parameters with the greatest
possible efficiency. Authors claim that Adam is a combina-
tion of the best features of two existing extensions of sto-
chastic gradient descent: the Adaptive Gradient (AdaGrad)
algorithm and the Root Mean Squared Propagation
(RMSProp) algorithm. These two algorithms have a com-
mon characteristic: they both maintain a constant learning
rate across all parameters. Adam sees the value in AdaGrad
and RMSProp [53]. To fine-tune the weights of the neurons,
we compute the gradient of the loss function and apply gra-
dient descent optimization. The networks are trained via a
gradient-based algorithm and the gradient descent nonlinear
optimization method [29]. The gradient descent algorithm

Table 4: Frequency distribution of DoS attacks for training and testing in the dataset [41].

Attack class Frequency Percent Attack class Frequency Percent

Analysis 29 0.3 Generic 147 1.5

Normal 8632 86.0 Exploits 538 5.4

DoS 382 3.8 Reconnaissance 97 1.0

Backdoor 21 0.2 Shellcode 48 0.5

Fuzzers 122 1.2 Worms 17 0.2

Total 9186 91.5 Total 847 8.6

Table 5: Frequency distribution of DoS attack in WSN-DS and NSL-KDD dataset.

WSN-DS dataset NSL-KDD dataset
Attack type Frequency Percent Attack type Frequency Percent

Blackhole 2607 3.1 DoS 37403 33.7

Flooding 1019 1.2 Normal 61355 55.2

Grayhole 3287 3.9 Probes 10600 9.5

Normal 75300 89.1 R2L 913 .8

Scheduling 2343 2.8 U2R 839 .8

Total 84556 100.0 Total 111110 100.0
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speeds up the training phase on the artificial neural network
multilayer perceptron. The algorithm also helps to converge
the weight iterations of the network.

Optimal weights, the optimal number of hidden layers
and hidden nodes, and the optimal set of relevant charac-
teristics are all necessary for building a multilayer percep-
tron [54]. The layer-by-layer weighted output data are
collected at a secret node. The value of a bias node’s
weight is also given to it. One uses a nonlinear activation
function on the aggregate of the weighted input values.
The only restrictions are that the nonlinear function be
differentiable and that the function’s output values lie
inside some interval. Finding an optimal set of weights
that approximates both actual and estimated outputs is

the goal of the MLP optimization issue. Continuous opti-
mization is used to model this issue, invoking the problem
classification of optimization techniques.

4.3. LSTM-FFNN. Using long short-term memory and feed-
forward neural networks (LSTM-FFNNs), the suggested
optimized multilayer perceptron artificial neural network
achieved better results. Within the realm of DL, the long
short-term memory (LSTM) RNN is analogous to a recur-
sive function that repeatedly calls itself. With a recurrent
neural network, the same computation is performed repeat-
edly on each data point in a recursive fashion, giving rise to
the term “recurrent.” The RNN suffers from the gradient
vanishing and explosion issues. In contrast to other DL
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techniques like deep NNs, the LSTM can recognize interde-
pendencies in a time series and remember important data
from earlier iterations to use in future predictions. We sup-
pose that the model’s inputs consist of the three preceding
time steps. The data from the first unit flows into the second,
as seen in the unfolded version [55, 56].

In contrast to the RNN-like LSTM, NNs like the fast
forward neural network (FFNN) derive their predictions
without looking back at prior time steps. They make their
predictions based solely on data from the present lag.
Inputs plus an n-node hidden layer make up the FFNN.
Each node’s output is a function of its inputs and the

weights of the connections between them. Our model con-
sists of five distinct layers: a vector input layer, three hid-
den layers, and a single-node output layer that returns a 1
or 0 depending on the type of classification being
performed.

In this paper, we applied various activation functions
considering the threshold value. The ReLU activation
function is being used. It is an acronym for a nonlinear
operation’s rectified linear unit. Since the real world is typ-
ically highly nonlinear, the goal of adding nonlinearity to
the network is achieved. It can be defined as mathemati-
cally as in
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Re Lu xð Þ =
x if x ≥ 0,

0 if x < 0:

(
ð16Þ

The sigmoid (or logistic) activation function (δ) was used
to input the z value into the logistic function and generate
values between 0 and 1 using a threshold of 0.5 as the reference
value. This can be defined as mathematically

δ zð Þ = 1
1 + e−x

: ð17Þ

The choice of activation function is motivated by the pres-
ence of two classes of labels (outputs) for this method. There-
fore, the method of binary classification technique should be
used. Cross-entropy, a well-known loss function for ANNs,
was the one we employed. Specifically, [47] defines cross-
entropy (C) as

C = −
1
n
〠
n

x

ylna + 1 − yð Þ ln 1 − að Þ½ �,

a = δ zð Þ = δ 〠
j

wjxj + b

 !
,

ð18Þ

where Adam, the hybrid optimizer, will iteratively adjust the
weights w and biases b. Adam is an improved version of the
Stochastic Gradient Descent (SGD) algorithm. According to
the scikit-learn documentation, Adam performs reasonably
well on huge datasets. There are four variables you can adjust
in Adam: the rate at which one is learning, the exponential
decay rate for first-moment estimates, the rate at which one’s
second-moment estimates decay, and a very small amount to
avoid a division by zero. Also, Adam is superior to SGD in
noisy environments because it combines the advantages of
two other popular optimizers (the adaptive gradient algorithm
and root mean square propagation). We get things off with an
early architecture for hyperparameter optimization that seeks
optimal performance with as little computational complexity
as possible.

5. Simulation and Result Discussion

The simulation setting configuration and evaluation metrics
will be discussed in this section. Wireless sensors are distrib-
uted randomly forming clustering with cluster heads in the
target field with an area of 1000 × 1000m2. The routing pro-
tocols are used for making clustering and selection of the
cluster head in each round of the simulation and localization
of the unknown nodes with help of the beacon nodes and
sink nodes. The cluster head achieves more computational
data processing from the sensor nodes and communication
with base station. The simulation parameter configuration
is shown in Table 6. Intel (R) Xeon (R) Silver 4214 CPU @
2.20GHz 2.19GHz (2 processors) with 128GB (128GB use-
able), x64-based processor, and 64-bit operating system run-
ning Windows using MATLAB R2021a is used for network
planning and simulation.

Our primary effort is devoted to determining how well
various hybrid-based improvements to the original DV-
hop algorithm perform in detecting and pinpointing hostile
nodes that have hijacked the beacon node and are supplying
false routing information [57]. All of our proposed algo-
rithms have been implemented in the MATLAB simulator
for thorough testing and analysis of their localization faults
and precision. Numerous researchers rely on MATLAB, a
simulation programed and numerical computing environ-
ment, to test out new ideas, conduct research, and build
models. In our tests, we have examined the localization accu-
racy and the localization error per node by changing the per-
centage of anchor nodes, the total number of sensor nodes,
and the nodes’ communication range across four different
topologies. One way to measure an algorithm’s efficacy in
localization is by looking at how it performs on average with
regard to localization errors. We employ IBM SPSS, Python,
and the WEKA Java toolboxes for data processing and anal-
ysis to gauge the effectiveness of the suggested strategy
against the dataset [58]. The average error of localization
to all the nodes is calculated using Equation (15). The clus-
tering and routing protocols are used for clustering and
selection of the cluster head selection and maximizing the
network lifetime and improving the network performance.
The routing attacks including the sinkhole attacks, blackhole
attacks, and Sybil attacks are used in the simulation scenario
for evaluating the localization and detection accuracy.

The simulation results depict that the data processed
from the environment is authenticated and registered.
Figure 9 shows data processing and aggregation by the clus-
ter head sent to the base station (BS). Figures 9(a) and 9
show the dynamic clustering and data retrieval of the sensors
by the beacon nodes. The cluster head (CH) aggregates huge
message size as in Figures 9(c) and 2(d); the sensor nodes
(SNs) consume greater time form data execution.

Registration phases are utilized to identify sensor nodes,
aggregation nodes, and base stations using smart contact of
the public blockchain [59]. The intelligent communications
verify the existence of the aggregation node validated by its
MAC address and its identity checked by the base station.

Table 6: Simulation setup for the proposed network model.

Parameter Values

Number of sensors 300-1000

Beacon nodes 60-120

Unknown nodes 240-840

Protocol type Clustering and routing

Deployment area 1000 × 1000m2

Mobility Random

Number of clusters 10

Sink position 500, 1000

Number of attacks 5-60

Data size 4000 kb

Attacks Routing

Transmission radius 400m
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The public blockchain records of validated aggregated nodes
and stored data of the aggregated node provide reliable
authentication techniques in WSNs. The sensor nodes are
allowed to join the blockchain after the completion of the
registration process to reduce external attacks on WSNs.
The sensor nodes have aggregation nodes after random
deployment in the target field. The aggregation nodes
authenticate the identities of the sensor nodes using a private
for communicating with them, and the base station also
authenticates the aggregation node for communicating with
it using a public key. The aggregation nodes communicate
with each other using mutual authentication process.

Figure 10 shows the distribution and the experimental
simulation of the nodes. Moreover, this work introduces
the average localization error and coverage, localization,
and detection accuracy as evaluation metrics. The average
localization error (ALE), average localization accuracy
(ALA), accuracy, detection rate precision, and recall are used
as evaluation metrics. The average error localization, short-
ened as ALE [2], is computed as follows in Equation (19).
The ALE is the summation of the LE of all the unknown
nodes to the total number of unknown nodes. The LE is
the difference between estimated and actual position of
unknown nodes.

Localization Error LEð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui′− ui
� �2

+ v;i − við Þ2
r

,

Average Localization Error ALEð Þ = 〠
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui′− ui
� �2

+ v;i − við Þ2
r

nR
,

Average LocalizationAccuracy ALAð Þ = 1 − 〠
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui′− ui
� �2

+ v;i − við Þ2
r

nR

0
BB@

1
CCA

0
BB@

1
CCA × 100%,
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where (ui′ and vi′) are the real coordinates of the anonymous
node i and (ui, vi) are the computed coordinates, n denotes
unknown nodes, and R is radius of communication in the
network. Wireless sensor nodes are deployed and simulated
using localization process using the beacon nodes as in
Figure 10(a). The error for the anonymous sensor nodes is
displayed in Figure 10(b). The position and error for each
node are computed using the localization scheme. The com-
putation of the localization accuracy for each node enables
for effective identification and localization of the malicious
nodes with help of the beacon nodes and the base station.

The effectiveness of the distance vector hop algorithm is
measured by malicious node detection, localization accu-
racy, and localization efficiency [60]. The practical localiza-
tion estimation of the unknown and malicious nodes is
determined by the number of the anchor nodes for its eval-
uation metrics, as shown in Figure 11. The relative error
defines between the computed position of the node and the
actual location of the node. Malicious nodes affect nodes’
distribution and localization accuracy by creating the wrong
position and location of the unknown sensor nodes in
WSNs. Malicious nodes mislead the sensor nodes’ routing
path and information, making the network service and per-
formance degrade.

The average localization accuracy and detection accuracy
of the proposed system are 99.51% and 99.83% with 840
unknown nodes and 160 beacon nodes for accurate compu-
tation of malicious nodes, respectively, as shown in
Figures 11(a) and 11(b).

According to the findings of the simulation, anchor
nodes have a greater number of neighbors and a higher
degree of connectedness than regular sensor nodes, as
can be seen in Figure 12(a). If we use the regular model,
we can determine that the average connectivity of the
network is 404, and the average number of neighbor
nodes that each anchor node has is 63. As can be seen
in Figure 12(b), the overall network’s average localization
error was reduced to 0.0049 thanks to the simulation’s
efforts, and this was achieved across all nodes. This
would imply that all sensor nodes are precisely located
and have a unique identity thanks to the beacon nodes,
which help in the identification and localization of mali-
cious nodes.

The simulation results demonstrate that the suggested
method utilizes hybrid localization techniques utilizing both
range-free and range-based approaches to accurately deter-
mine the position and location of each unknown node while
minimizing energy consumption. As twenty mobile anchor
nodes are utilized in the proposed method, the price is kept
low while the accuracy of pinpointing malicious nodes in
WSNs is much enhanced. Figures 13(a) and 13(b) for the
beacon nodes and the unknown nodes, respectively, illus-
trate how the hybrid strategy combining the DV-hop tech-
nique with other approaches such as RSSI and DE
improves the average localization accuracy of the proposed
scheme.

The experimental findings for calculating the location
error against changing numbers of beacon nodes are dis-
played in Figures 14(a) and 14(b). In addition, the localiza-
tion error for all the algorithms gradually decreases as the
number of the activated sensor nodes grows [34]. The pro-
posed hybrid method has the lowest localization error score
of all the methods we have tested. With 200 beacon nodes,
more reference points are detected, reducing the margin of
error for localization. Figure 14 shows conclusive proof that
the new method outperforms conventional location-based
algorithms when it comes to pinpointing the origin of an
error. In the same setup, nearly all of the methods that have
been tried and tested have been effective. As a result of hav-
ing more points of reference for the target nodes, the sug-
gested method allows for a gradual decline. In contrast, the
network is strengthened by an adequate number of anchor
nodes, as the distance between the unknown nodes and the
anchor nodes decreases.

As may be shown in Figures 14(a) and 14(b), the ALE of
four different localization techniques decreases as the num-
ber of beacon nodes increases. Since there are more anchor
nodes now, the average distance travelled in one hop can
be calculated with more precision. The distances predicted
by the anchor nodes from the unknown nodes are more
accurate [61, 62]. This shows that the proposed approach
is effective to estimate the placement of unknown nodes as
the number of anchors grows because it has more
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circumstances to work with. Given that some fraction of the
nodes can serve as anchor nodes for node localization, the
suggested methodology exhibits lower error compared to
the previous methods.

5.1. Performance Metrics. In this section, a cybersecurity
dataset is applied with different types of attack categories.
The benchmark datasets are utilized for analyzing and pro-
cessing using the optimized artificial neural network tech-
nique to detect and localize multiple attacks to evaluate the

proposed system about the Sybil attacks. The dataset is used
as a benchmark for the security localization and detection of
accuracy of various classes of routing attacks in the network.
The Python programming language, SPSS, and WEKA tool-
boxes are used for data processing and classification to
detect the different classes of attacks in WSNs [20]. There
are different types of performance metrics for measuring
the effectiveness of the proposed scheme. Table 7 shows
the measurement entities of the system with mathematical
equations.

0
0 100 200 300 400 500

X (Lim)

Dynamic WSNs deployment

600 700 800 900 1000

100

200

300

400

500
Y 

(L
im

)
600

700

800

900

1000

(a) Clustering and localization of WSNs

0
0

100

200

300

400

500

600

700

800

900

1000
⁎Node distribution using DV technique

100 200

Beacon
Unknown
Malicious

300 400 500 600 700 800 900 1000

(b) Malicious node localization in WSNs

Figure 10: Sensor node deployment using distance vector protocol and triangulation process in WSNs.
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The parameters are false negatives = Fn [47], true positives
= Tp, true negatives = Tn, and false positives = Fp [63]. Accu-
racy is the parameter for evaluating the performance of pro-
posed classification model [64]. Informally, it is the section of
predictions the model achieved successfully. Formally, it can
be computed [20] as shown in Table 7. The F-measure [65] is
a combination of recall and precision [63] computed as in
Table 7. The Matthews correlation coefficient (MCC) is also
the measure of the performance for scoring prediction of the
model. The proposed system has training and testing phases
using the cybersecurity dataset as benchmark with different
classes of attacks. The system is based on the ANN approach
achieves an accuracy of 99.84% and error of 0.16% using three
hidden layers with 10-fold cross-validation using CICIDS2018
a benchmark dataset. The different attacks are correctly
detected and localized, greater than 78% proposed by Dong

et al. [2] using the distance vector hop scheme with an error
of 22% malicious node localization.

Receiver operating characteristic analysis is useful to
assess the model’s accuracy using the ANN technique [66].
The total area under the ROC represents the statistical prob-
ability prediction of the classification of the proposed model
for different types of attacks using a threshold cutting point
Cϵð0, 1Þ as shown in Table 7. This ROC analysis supports
the inference area under the curve and Precision-recall
curves. The ROC is a plot of the sensitivity versus 1-specific-
ity, as shown above in Figure 15(a). Sensitivity is the number
of attacks correctly identified in the network. 1-specificity is
the attack classes wrongly rejected. The cumulative chart
gain in Figure 15(b) shows the overall percentage of the total
observations for the given class of attacks in the network.
The target category is the percentage of the overall amount
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of samples in the dataset. The diagonal line is the baseline for
the classification of the target samples. The cumulative gain
chart is a cutoff choosing the attack classification andmapping
the appropriate cutoff values. Table 8 depicts the area under
the curve detection rate performance for each type of attack.

The area under curve is visualized in Figure 16 for each
attack category of the dataset. The area under the curve is more
significant for the standard class in the proposed network traffic
analysis. The ROC analysis shows that the MLPANN approach
is practical for multiclass attack localization and detecting DoS
attacks. The ROC shows that the proposed scheme is effective
for DoS attack classification using a benchmark dataset.

The area under the curve is a statistical summary of the
ROC curve, and the values represent each attack category.
The area under the curve also indicates the probability of
the classification model. The standard class of the attack

has a greater extent, which is effectively detected. The pseu-
dopredictive probability in Figure 17 describes each attack
class’s scaling by dividing their sum of classification accu-
racy. The effectiveness of the scheme can be proved using
other attacks types and datasets as threshold measurements.

The average classification of the proposed system is 96%
using the predictive probability model. Figure 17 shows the
effectiveness of the various attack classification model. The
classification model is trained 80% of the dataset, and 20%
tested samples using the batch mode with the activation
function using gradient descent algorithm with three hidden
layers and trainable parameters.

5.2. Performance Comparison. The performance of the pro-
posed methodology is validated and confirmed by compar-
ing and testing with other previous works using various
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benchmark datasets. The comparison performance of recent
works as shown in Table 9 suggests the optimized MLPANN
technique is effective for detection and localization of attacks
in WSNs.

Figures 18(a) and 18(b) show the performance compar-
ison of the proposed system using four benchmark datasets
and different attack detection models using the accuracy,
precision, recall, and F1-measure. This suggests that the pro-
posed scheme is effective for detecting and localization
attacks in WSNs.

This suggests that the proposed system is more effec-
tive than the previous work by Almomani et al. [20] arti-
ficial neural network-based intrusion detection system
(ANN-IDS) for routing attack detection and classification,
as shown in Figure 18(b) with an average detection accu-
racy of 97.2% using sample WSN-dataset using ten-fold
cross-validation with three hidden layers. Dong et al. [2]
used the distance vector hop algorithm to detect Sybil
attacks with a localization accuracy of 78%, which is less
than the proposed scheme. The proposed work is also

0.2
0 20 40 60

Number of beacon nodes

80 100 120 140 160

0.25

0.3

0.35

0.4

0.45

0.5
Minimization of localization error

Lo
ca

liz
at

io
n 

er
ro

r (
%

)

DV-hop technique
Hybrid DV-hop technique

(a) Localization error analysis beacon nodes

0
0 100 200 300

Unknown nodes

400 500 600 700 800 900

200

400

600

800

1000

U
nk

no
w

n 
no

de
s a

nd
 p

os
iti

on
in

g 
er

ro
r v

al
ue 1200

1400
Error of each unknown node

DV-hop
Hybrid DV-hop

(b) Positioning accuracy of unknown nodes

Figure 13: Improving the localization and position accuracy of wireless sensor nodes using hybrid scheme.

20 Wireless Communications and Mobile Computing



0.1
20 40 60

Number of beacon nodes

80 100 140 160 180 200

0.2

0.3

0.5

0.6

0.7

Lo
ca

liz
at

io
n 

er
ro

r (
%

)
0.8

Comparison of Localization error

ECGAL
Archimedes optimization
Proposed technique

0.4

(a) Comparison of localization schemes

0.2
10 15 20

Number of beacon nodes

40 60 80 100 140

0.3

0.4

0.5

0.6

0.7

Lo
ca

liz
at

io
n 

er
ro

r (
%

)

1

0.8

0.9

Comparison of Localization error

Gradient descent
Proposed technique

(b) Comparison with gradient descent

Figure 14: Comparison of the localization error of the proposed scheme with other modes by varying the number of nodes.

Table 7: Performances metrics of the proposed system with their technical and mathematical expressions.

Metrics Technical description Mathematical equations

Sensitivity The positive prediction of the model Sensitivity =
Tp

Tp + Fn

Specificity The negative prediction of the model Specificity =
Tn

Fn + Tp

Precision Truly identified instances of samples Precision pð Þ = Tp

Fp + Tp

ROC Classifier performances of the model ROC :ð Þ = FPR Cð Þ, TPR Cð Þ, Cϵ 0, 1ð Þf g

Recall Equivalent to TP rate Recall =
Tp

Tp + Fn

F-measure Combination of precision and recall F −measure =
2 × Tp

2 × Tp + Fp + Fn

Accuracy Classification prediction of the model Acc: =
Tn + Tp

Tn + Tp + Fn + Fp

FP rate Wrongly classified events FPR =
Fp

Fp + Tn

Energy Energy consumption analysis Ec = Et − El

Lifetime Over all alive nodes (N) Aliv Nð Þ = Total Nð Þ −Dead Nð Þ

MCC Binary classification Mcc =
Tp:Tn − Fp:Fnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tp + Fp

À Á
: Tp + Fn

À Á
: Tn + Fp

À Á
: Tn + Fnð Þ

q

ALE Average localization error ALE = 〠
n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui′− ui
� �2

+ v;i − við Þ2
r

nR
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practical compared to the MK-ELM model [67], which has
an accuracy of 92.10% using UNSW-NB 15 dataset.
Figure 18 shows the detection and localization for the pro-
posed ANN approach compared with other works for

Sybil attack detection. The comparison performance is
using sample experimental dataset examined by Sujatha
and Anita [24] with an average detection rate of 97%
using fuzzy extreme machines (FEMs).
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Figure 15: Receiver operating characteristics (ROCs) and cumulative chart of the proposed system.

Table 8: Area under the curve for each class of attack.

Class Analysis DoS Backdoor Exploits Fuzzers Generic Normal Reconnaissance Shellcode Worms

Area 99.8% 98.8% 97.2% 99.1% 99.9% 96.7% 100% 99.2% 97.8% 94.9%
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The proposed attack detection and localization scheme
achieve 100% using the same dataset. Hasan et al. [71] deter-
mined the detection accuracy of 91.66% of the malicious
node using an optimized artificial neural network using the
packet delivery and energy consumption evaluation metrics.
The various comparison performances conclude our pro-
posed scheme is effective for the detection localization of
attacks in WSNs. Khan et al. [68] analyzed the detection of
routing attacks using the LEACH++ protocol based on an
artificial neural network (LEACH++-ANN) and achieved a
detection accuracy of 98%. This proves the proposed scheme
is more effective for detecting routing attacks, with an aver-
age detection accuracy of 99.62%. The proposed system also
achieves average detection accuracy of 98.4% using the
benchmark dataset NSL-KDD as shown in Figure 18(b) for
each class of attack. The proposed approach is practical for
detecting and localization DoS attacks in WSNs compared
to the convolutional neural network and mean convolu-
tional layer (CNN-MCL) model proposed by Mohammad-
pour et al. [69] with an average detection accuracy of

99.46%. Zhang et al. [67] proposed an hierarchical intrusion
detection model (HIDM) for WSNs using a multikernel-
based extreme learning machine (MK-ELM) classification
technique using UNSW-NB and NSL-KDD benchmark
datasets.

The proposed system’s average localization and detec-
tion rate are validated by comparing previous works with
different classes of attacks. Table 10 shows that when applied
the UNSW-NB 15 dataset, which serves as a benchmark for
identifying and classifying routing assaults, the proposed
approach improves detection accuracy by class using 80%
of training and 20% of testing of samples with five hidden
layers. The demonstration further shows that the verification
of the suggested performance parameters and metrics (accu-
racy, precision, F1-score, and recall) against those of recently
published attack detection models.

The performance of the proposed system is effective for
detection and localization of DoS attacks in WSNs using
benchmark datasets in terms of the evaluation metrics such
as accuracy, precision, recall and F1-score as shown in
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Figure 17: Attack classification prediction probability of the model.

Table 9: Comparative analysis of the proposed technique with recent attack detection models using CICIDS2018 dataset.

Methods Accuracy Precision Recall F1-score

Zhou et al. [8] MLP 97.56 99.12 98.79 98.23

Almomani et al. [20] ANN-IDS 97.18 97.8 97.5 97.69

Sujatha and Anita [24] FEM 99 98 98 98.98

Zhang et al. [67] MK-ELM 98.34 98.03 97.63 97.64

Khan et al. [68] LEACH++-ANN 97 96.8 96 96.4

Mohammadpour et al. [69] CNN-MCL 99.46 99.76 99.15 99.46

Xinlong and Zhibin [70] HTM-LSTM 97.74 97.20 97.92 97.72

Proposed system MLPANN 99.83 99.71 100.00 99.85
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Figure 18: Performance comparison of the proposed system using benchmark datasets for attack detection and classification.

Table 10: Comparative analysis of the proposed technique with recent attack detection models using UNSW-NB 15 dataset.

Author Method Accuracy Precision Recall F1-score

Pasikhani,et al. [72] RL-IDS 98.35 98.36 97.04 98.34

Upadhyay et al. [73] GBFS-IDS 92.96 92.50 92.40 92.44

Abdan and H. Seno [11] ML-ID 98.9 87.7 99.6 92.78

Gudla et al. [74] DI-ADS 99.44 99.02 99.60 99.30

Alghamdi [75] PO-CFNN 99.86 99.89 99.58 99.72

Khilar et al. [76] DNN-CSO 99.46 99.75 99.62 99.76

Proposed system MLPANN 100.00 100.00 100.00 100.00
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Figure 19(a). The area under the curve (AUC) is also used
for evaluating the performance of the system as show in
Figure 19(b). This confirms that the optimized MLPANN
approach is effective in attack detection and localization of
WSNs attacks.

The proposed multilayer perception artificial neural
network (MLPANN) technique is further compared with

MK-ELM using the NSL-KDD benchmark dataset, taking
a section of 14,000 sample records with three hidden
layers, as shown below in Table 11. The average detection
accuracy of the proposed technique is 98.4% using 111,110
samples which is more effective than MK-ELM with
14,000 samples with an average detection accuracy of
98.34%.
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Figure 19: Performance comparison of the proposed system with recent works using benchmark datasets.
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The validation of the result can also be confirmed by
comparing the previous works as stated theoretically and
graphically. The multilayer perception artificial neural
network (MLPANN) effectively detects and classifies mul-
tiple attacks using public datasets, including UNSW-NB,
WSN-DS, and NSL-KDD, as a benchmark for perfor-
mance evaluation. By combining a tree based on the Par-
zen estimation (PTE) with hyperparameter and Bayesian
optimization (BO) techniques, we are able to better classify
the machine learning models for the proposed scheme on
the benchmark dataset as shown in Table 12. Every single
machine learning task uses hyperparameters to fine-tune the
aforementioned parameters and get optimal results. Hyper-
parameter optimization (HPO) accomplishes both of these
goals with less manual labor and better results from machine
learning [77].

The MLPANN technique also achieves better detection
accuracy of 99.62% using the WSN-DS benchmark dataset.
The proposed scheme is effective for the localization and
detection of different classes of attacks, approving that the
proposed system has optimal average detection for multiple
suspicious nodes. The novelty of this work is that it is effec-
tive in the detection and localization of various attacks. The
proposed scheme is innovative for its ability to scale in both
security and performance for optimal area coverage in wire-
less sensor networks with a hierarchical architecture and
both heterogeneous and homogeneous sensor nodes.

6. Conclusion and Remarks

In this work, we proposed a multilayer perceptron artificial
neural network (MLPANN) for detecting and localizing
multiple attacks in WSNs. The proposed scheme achieved
an average detection accuracy of 100%, 99.65%, 98.95%,
and 99.83% for the various malicious nodes using UNSW-
NB, WSN-DS, NSL-KDD, and CICIDS2018 benchmark
datasets, respectively. The optimized localization approach

is more effective and performs more significantly by 20%
than the distance vector hop technique, with average local-
ization accuracy of 99.12% using 160 beacon nodes. The
validation of the proposed method is confirmed with the
previous studies using the ANN classification technique
using Python, IBM SPSS, and WEKA toolboxes for data
processing and MATLAB R2021a for network planning
and simulation. The datasets are used to evaluate the pro-
posed system for detecting and localization accuracy of
different attacks. The effectiveness of the proposed scheme
is assessed using detection rate, ROC, false-positive rate, a
lifetime of the network, residual energy, and the area
under the curve metrics. The beacon, sensor, and mali-
cious nodes were used hierarchically to simulate the target
field. It is recommended to enhance further the detection
and localization of accuracy of malicious nodes using dif-
ferent approaches in WSNs. We will extend this work with
various attack classes and methods. The results show that
performance and security of the proposed scheme are
applicable for scalable and large network coverage in wire-
less sensor networks with heterogeneous and homogenous
sensors for ensuring quality of services and availably. The
proposed scheme will be examined in the future using
other network planning and tools with different public
datasets as benchmarks for detecting and localization
attacks in WSNs.

Data Availability

The underlying dataset used to generate the results pre-
sented in this article is available upon request to the corre-
sponding author.
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Table 11: Comparison of performance of the proposed MLPANN with MK-ELM using the section of the NSL-KDD dataset with hidden
layers.

Class of attacks
TP rate (%) FP rate (%) FN rate (%) TN rate (%)

MK-ELM Proposed scheme MK-ELM Proposed scheme MK-ELM Proposed scheme MK-ELM Proposed scheme

DoS 98.04 99.00 0.49 0.001 1.96 1.00 99.51 99.90

Probes 95.67 97.20 0.47 0.001 4.33 2.80 99.53 99.90

R2L 76.12 96.80 0.11 0.015 23.88 3.20 99.89 99.98

U2R 50.00 90.04 0.00 0.003 50.00 9.96 100.00 99.99

Table 12: Comparison performance of machine learning models using the CICIDS2017 benchmark dataset.

Classifier
ML models results Hybrid PTE-BO ML model results

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

XGBoost 99.82 99.82 99.82 99.80 99.82 99.86 99.82 99.83

Ensemble stacking 99.82 99.91 99.82 99.85 99.82 99.91 99.82 99.85

Random forest 99.77 99.77 99.77 99.75 99.82 99.82 99.82 99.80

Decision tree 99.77 99.77 99.77 99.75 99.82 99.91 99.82 99.85

Extra tree 99.82 99.82 99.82 99.80 99.82 99.80 99.82 99.80
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