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How to perform efficient service migration in a mobile edge environment has become one of the research hotspots in the field of
service computing. Most service migration approaches assume that the mobile edge network on which the migration depends is
stable. However, in practice, these networks often fluctuate greatly due to the fault of edge devices, resulting in unexpected service
interruptions during the migration process. Besides, most of the existing solutions do not consider the migration cost and path
selection in the event of edge network fault. Aiming at the above problems, we propose a service migration approach based on
network fault prediction (SMNFP) for mobile edge environment. The SMNFP method first introduces the software-defined
network as a global controller, which is used to monitor and collect the changing of the edge network and schedule the migration
tasks. Second, a network fault prediction model based on Wide&Deep model is proposed to predict the upcoming faults in the
network according to the alarm information of network equipment. Finally, the service migration problem is constructed as a
Markov decision process, and a fault penalty function is introduced to avoid faulty nodes, together with the deep Q-learning
method to solve the migration strategy. Simulation experiments are conducted on the public metro network fault dataset, and
results show the proposed method can effectively predict network faults and complete service migration.

1. Introduction

In recent years, the development of mobile Internet has
enhanced the performance of the network, such as band-
width, transmission rate, and throughput rate. Mobile edge
computing (MEC) allows us to deploy servers geographically
closer to users, provide computing power closer to smart-
phones or various types of mobile terminals, and sink these
computing power into base stations. However, in MEC, the
limitations of edge server coverage, the mobility of edge end
users, and the differences in mobile requests in different
regions often cause load imbalance between servers, which
in turn leads to service quality degradation and even service
interruptions [1, 2].

To ensure the continuity of services when users move,
service migration technology has begun to receive extensive
attention. In the mobile edge network scenario, service
migration refers to migrating the application services used
by the user from the connected edge server according to a

certain algorithm or decision-making mechanism under the
premise of ensuring the minimum cost and delay during the
rapid movement of the user to the best server at different
times.

Existing service migration methods usually assume that
the user’s moving path is known [3, 4], and some research
work has predicted the user’s mobility, using mobility predic-
tion and perception methods to carry out their work [5, 6], in
which services are premigrated to relevant areas, effectively
reducing the migration workload. In addition, some research-
ers use Markov decision process to model service migration
[7, 8], reducing the overall computational complexity of the
model.

However, we emphasize that there are two main pro-
blems with the previous methods. One is that these methods
assume the edge network in which they migrate is in a stable
condition, and these methods are valid with a limitation to
the fault-free edge network. In reality, the edge network is
unstable. As shown in Figure 1, edge devices may cause the
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temporary failure of edge nodes due to various reasons. The
other is that most of the previous studies only consider the
migration path selection problem in intact edge networks,
lacking the collection and aggregation of all migration tasks
and network topology information in edge networks and
thus lacking a unified real-time scheduling means for service
migration for different network situations.

To address the above issues, we employ the software-
defined network (SDN) mechanism to predict the failures
of the edge network. We then put forward the service migra-
tion approach based on network fault prediction (SMNFP)
method to circumvent the faulty nodes and make reasonable
migration path selection. The main contributions of this
paper are as follows:

(i) First, we proposed an edge network fault prediction
module network fault prediction model based on
Wide&Deep model (NFP-WD), which is used to
predict the fault of the entire edge network within
a fixed time window and mark all edge servers that
may fail before the next time window.

(ii) Second, we present the SMNFP method, in which the
service migration problem is constructed as a Markov
decision process, and a fault penalty function is
designed to avoid faulty nodes in the migration path
selection. Finally, the deep Q-learning method is used
to solve the service migration strategy.

(iii) Finally, we introduced the SDN framework as the
migration controller for the model as a whole. Then
we conduct simulation experiments on the MAN
fault data set, and the experimental results show
that our SMNFP method has a better migration
effect than the baseline method.

2. Related Work

2.1. Service Migration. In terms of service migration, many
researches and methods are aimed at cost balancing and
optimization in the migration process. Liang et al. [9] used

a combinatorial optimization algorithm and integer relaxa-
tion iterative algorithm to optimize the offload rate, mobility,
and MEC throughput of services in cellular networks, which
indirectly reduced the migration cost. Wang et al. [10] inves-
tigate a user-centric service migration and exit point selec-
tion problem which introduces a neural network-based
smart migration judgment to navigate the performance and
computation overhead tradeoff. Park et al. [4] formalized the
migration cost, communication cost, and energy consumption
associated with the migration process as a complex optimiza-
tion problem, employing deep reinforcement learning to
approximate the optimal policy. Wang et al. [8] designed a
service migration framework Mig-RL by using the reinforce-
ment learning method; when encountering similar migration
patterns, the migration strategy can be directly retrieved, which
significantly reduces the decision-making cost.

Another part of the research work is based on user mobil-
ity perception and prediction. Yin et al. [5] proposed a
mobility-aware service migration mechanism, which selects
the target node for migration according to the migration cost
and the moving direction. Labriji et al. [6] used the mobility
prediction method to solve the problem of vehicle service
migration. The method combines neural network and
Markov chain for vehicle mobility prediction, which can still
maintain a good performance in the scene of large-scale traffic
flow. Xu et al. [11] proposed a servicemigrationmethod based
on the Bernoulli test and made a quantitative analysis of delay
and user mobility prediction through theoretical analysis and
simple probability statistics, which effectively reduced service
communication delay and migration cost. Miao et al. [12]
proposed a mobility-enabled service migration scheme, called
MSM, for real-time decision-making on service migration.

2.2. Network Fault Prediction.At present, the related research on
network fault prediction is mainly based on the methods of
machine learning and deep learning. In terms of machine learn-
ing, Lin et al. [13] predicted faults in smart distribution networks
by introducing multiple support vector machines (SVMs) and
an improved voting random forest algorithm, which improved
the accuracy rate and recall rate. Yadwad and Vatsavayi [14]
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FIGURE 1: A network fault scenario caused by equipment faults.
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combine hidden Markov models with Bayesian networks for
outage prediction of network devices. In terms of deep learning,
Google’s Wide&Deep model [15] is widely used in the field
of recommender systems; some researchers [16] used the
Wide&Deep model to carry out network fault prediction
work. In addition, Klein et al. [17] used two-dimensional con-
volutional neural networks to extract temporal feature data
streams and then used graph convolutional neural networks
to extract spatial features, combined with domain expert knowl-
edge to jointly predict network faults. Tefera et al. [18] used long
short-term memory network (LSTM) and gated recurrent unit
for early prediction of base transceiver stationfaults caused by
power system and environmental anomalies.

2.3. Deep Reinforcement Learning. Reinforcement learning is
an important machine learning method. It takes the next
action based on the feedback of the environment, through
constant interaction and trial and error with the environ-
ment, and achieves the final goal in the case of obtaining
the maximum benefit as a whole. Q-learning is a typical
reinforcement learning method based on Q value. Wang
et al. [8] leveraged the Q-learning approach to design a ser-
vice migration framework for reducing the total service cost
in mobile edge environments. However, in the actual service
migration environment, the edge network environment is
relatively complex, which easily leads to large state space.
Therefore, it is unrealistic for reinforcement learning to store
action values through a Q table. To solve this problem, Mnih
et al. [19] first combined the convolutional neural network
and Q-learning method and proposed a deep Q-network
(DQN) model for processing visual perception-based proces-
sing. The control task is a pioneering work in the field of
deep reinforcement learning. It not only has the perception
ability of deep learning but also has the decision-making
mechanism in reinforcement learning. van Hasselt et al.
[20] innovatively proposed the deep DQN algorithm to
improve the problem of overestimating Q value in deep rein-
forcement learning, which is more accurate in Q value esti-
mation. Subsequent researchers [21] added a recurrent neural
network structure to the DQN model, which enabled the
model to have time memory capabilities and better process
time-series data. At present, themodels of deep reinforcement
learning are developed in the direction of structural diversifi-
cation and complex modules. There are many kinds of deep
learning methods that can be integrated into reinforcement
learning [22, 23]. By adding an attention mechanism to the
model, the intelligent physical ability makes more reasonable
judgments according to the importance of the system envi-
ronment and state space, that is, automatic decision-making
and tuning.

3. Proposed NFP-WD Model

In the wide model part, we introduce the field-aware factori-
zation machine (FFM) to process the characteristics of con-
ventional network alarm logs. In the deep model part, we use
LSTM to process features with time series in device alarm
data. The proposed model structure of the NFP-WD is
shown in Figure 2.

3.1. Improved Wide Model Based on FFM. The Wide side of
the model uses the FFM to deal with a large number of sparse
features in the network alarm log data. The linear model of
combined features simply considers each feature independently
and does not consider the relationship between features.
Therefore, we consider using the field-aware factorization
machine model FFM to characterize the correlation between
features.

There are some sparse features belonging to the same
field in the actual data. For example, in the network alarm
log data, “alarm level” belongs to a general field feature,
which consists of fields such as “prompt,” “important,
“minor,” “urgent,” etc. When combining features, we should
generalize these sparse features into the same feature field.
The field-aware factorization machine can divide the same
features into the same field, and the output of the FFM can be
expressed as follows:

ϕFFM w; xð Þ ¼ w0 þ ∑
n

i¼1
wixi þ ∑

n

i¼1
∑
n

j¼iþ1
<vi;fj ; vj;fi >xixj:

ð1Þ

In which,ω0 is the initial weight, for each one-dimensional
feature component xi, the model automatically learns an
implicit vector Vi;fj for the field fj where the other feature is
located. Using the FFMmodel as the structure on the wide side
can make the model generates multiple independent latent
vectors better and learn new warning features. After that, the
output of the FFM will be connected to the fully connected
layer, and the fully connected layer will extract the cross fea-
tures generated by the FFM.

3.2. Improved Deep Model Based on LSTM. The deep side of
the model adopts the LSTM to train the time series features
of the network fault alarm information in the edge environ-
ment. LSTM saves the past state information by introducing
the unit state ct , where the forgotten gate ft determines the
content that needs to be forgotten in the unit state, and the
input gate it determines the content that needs to be newly
added to the unit state.The output gate ot is used to decide
whether the cell state ct will be propagated to the final state
ht . The relevant recursive equations are as follows:

it ¼ σ Wi ht−1; xt½ � þ bið Þ
ft ¼ σ Wf ht−1; xt½ � þ bf

� �
ot ¼ σ Wo ht−1; xt½ � þ boð Þ
ct ¼ ft × ct−1 þ it × tanh Wc ht−1; xt½ � þ bcð Þ
ht ¼ ot × tanh ctð Þ;

ð2Þ

where it , ft , ot , ct , ht represent the input gate, forget gate,
output gate, unit state, and hidden state, respectively, bi, bf ,
bo, bc are their corresponding bias terms.σ, tanh represent
the sigmoid activation function and the tanh activation func-
tion, respectively.

The fully connected layer of the model combines the
output of static features after passing through the wide
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module and the output of dynamic time series features after
passing through the deep module and uses the sigmoid acti-
vation function to output the probability value of edge net-
work fault prediction in each time window. The output can
be formally expressed as follows:

ycon ¼ sigmoid wcon ⋅ concat ywide; ydeep
� �þ bcon

� �
; ð3Þ

where concat is a combination function, which is used to
perform vector splicing of the processing output of static
nontemporal features and the output of time-series features
in each time window. ywide and ydeep are the outputs of the
FFM and LSTM neural networks, and wcon and bcon are the
weight and bias parameters to be trained.

3.3. Loss Function and Optimization. Our objective function
consists of Wide model part and Deep model part. In the
Wide part, we use the field-aware factorization machine to
cross-feature combinations and generate new alert features.
The model uses logistic loss as the loss function and uses the
L2 penalty term. To avoid overfitting, L2 penalty term is
introduced to penalize the weights of the model, encouraging
the model to prefer smaller weight values, thereby reducing
model complexity. At the same time, it prompts the model to

assign smaller weights to irrelevant or redundant features,
improving the model’s generalization ability.

The optimized loss function is as follows:

LW ¼ ∑
N

p¼1
log 1þ exp −ypϕ w; xp

� �� �� �þ λ

2
‖w‖22; ð4Þ

where yp 2 0;f 1g is the label of the pth sample. λ is the
regularization coefficient.

Using the LSTM neural network to predict whether the
edge network will fail in the next time period is essentially a
binary classification problem, and the loss function can be
expressed as follows:

LD ¼ −∑
N

i¼1
y log y

^ þ 1 − yð Þ log 1 − y
^� �

; ð5Þ

where N is the total number of samples, y is the real label of
the sample fault, y

^
is the probability value that the model

predicts the sample to be a positive class value. The NFP-
WD model outputs the probability value of network fault in
each time window, which leads to corresponding local
errors at each step. For the problem of fault prediction,
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the focus should be the output probability of the model in
the last step. Therefore, by adjusting the proportion of the
prediction probability of the last step in the global, the
object that the loss function should focus on is controlled.
The optimized loss function is as follows:

LD∘ ¼ 1
N

1 − αð ÞLD þ 1
T
αLD: ð6Þ

Among them, T is the length value of the input sequence,
and the hyperparameter α 2 0;f 1gis used to control the
importance of the output in the prediction process to the
final prediction result. The overall loss function of the final
model is as follows:

L ¼ Lw þ LD∘ : ð7Þ

The goal of NFP-WD model training is to minimize the
loss function L. Based on the above design, the Wide model
and the Deep model are combined through a fully connected
layer, and the final network fault prediction value is obtained
after joint training.

4. Proposed Service Migration Method

We first introduce an SDN controller into the mobile edge
network and use the controller to monitor the operation of
all edge servers, collect all observable computing tasks and
network device alarm information, and predict the faults of
network equipment in each time window according to the
alarm information. When a user moves from one location to
another, service migration will be triggered. In order to avoid
passing through faulty servers during the migration process,
we introduce the NFP-WD module to avoid servers that are
about to fail by setting a reasonable reward function; finally,
we use deep reinforcement learning to solve the service
migration strategy. The overall architecture of the model is
shown in Figure 2.

4.1. Service Migration Model Based on Markov Decision
Process. We adopt a deep reinforcement learning method
to solve the problem of service migration. Our method is
based on time windows, that is, each time window t is
regarded as a sampling interval, and in each sampling inter-
val, network faults are predicted according to the edge net-
work conditions, and the corresponding service migration
decisions are made. Reinforcement learning problems can
be formally represented by quintuples of Markov decision
processes: M ¼ S;ð A; P;R; γÞ, where S is the state space,
representing a set of state states, and A is a set of actions,
P s0∣s;ð aÞ represents the transition probability of taking
action a in state s and transitioning to state s0. R represents
the reward function. γ represents the discounting factor.

4.1.1. State Space S and Action Set A. Suppose the edge net-
work consists of edge servers with N nodes, denoted as N ¼
1;ð 2;…; nÞ, the service runs on K servers, the collection of
these services is represented as SE ¼ se1;ð se2;…; sekÞ. Define
a set of nodes Nf ¼ f1;ð f2;…; fnÞ indicates the nodes that will

fail after being predicted by the NFP-WD module within a
specific time window, during the actual migration process,
these nodes will be avoided according to a certain migration
strategy. Assume that at a certain moment the user enjoys the
service Set provided by the edge node Nt , we define s tð Þ as the
distance between user u at time slot t and the edge server Nt
serving it: s tð Þ ¼ ∥locut − locNt

∥, where locut represents the
location of user, locNt

represents the location of edge server.
State space S ¼ s tð Þ;f t ¼ 1; 2;…; ng. In each time window t,
the state changes from s tð Þ to s0 tð Þ after taking action a s tð Þð Þ.
Action set A is the set of these actions a sð Þ,
where a s tð Þð Þ ¼ 0; No Service Migration:

1; Perform Service Migration:

�

4.1.2. Cost Constraints. We consider the migration cost and
communication cost in the process of migrating services
from a source server to a target server. Suppose the address
of the origin server is lori, the target server address is ldest, the
user address is luser. We measure the distance between two
servers by the number of hops between two cellular net-
works: δ ¼ ∥lori − ldest∥, the distance between the user and
the target server after the service migration is performed as
τ ¼ ∥luser − ldest∥. We define the migration cost function as

m δð Þ ¼ ωo þ ωdθ
δ δ>0

0; δ ¼ 0

�
. The communication cost func-

tion as n τð Þ ¼ μ0 þ μdλ
τ; τ>0

0; τ ¼ 0

�
, where ωo;ωd; μo; μd, 0 ≤

λ ≤ 1; θ ≥ 1 are real values. So the total cost function is
C s;ð aÞ ¼ m δð Þ þ n τð Þ.
4.1.3. Reward Function. Suppose that in a certain state s, for a
service to be migrated, there is an edge node sequence Ns ¼
N1;f N2;…;Ndestg representing the migration path of the

current service, Nf ¼ f1;ð f2;…; fnÞ represents the set of
nodes that may fail predicted by the NFP-WD module in
the current state of the system. Define NK to represent the set
of nodes where the service has been deployed. In order to
encourage the reinforcement learning mechanism to try to
avoid faulty nodes in the migration decision, we define the
fault penalty function Penalty(s). The value of the penalty
function is determined by whether the faulty node is included
in the current migration decision and the origin of the service
request. For each state s in the state space S:

Penalty sð Þ ¼ ∑
fi2Nf

g fi;Ndestð Þ þ ∑
n2 N−NKð Þ

xn dis
μ2NK

n; μf g;

ð8Þ

where g fi;ð NdestÞ indicates the number of paths affected by a
single failed node fi, in the network topology, it is expressed
as the total number of paths without loops that reach the
target node Ndest with the faulty node fi as the starting point.
xn represents the total number of requests at node n. dis
n;f μg represents the shortest distance from node n to the

first node of the deployed service. It can be seen that the
penalty function is divided into two items. The first item
indicates that if there is a faulty node in the migration
path, the penalty will be obtained. If a service request is
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initiated at the edge node where the service is deployed, a
penalty will be obtained, and the amount of penalty will also
increase with the increase of the number of requests. So the
final reward function is as follows:

R s; að Þ ¼ Penalty sð Þ − Penalty s0ð Þ − wpC s; að Þ; ð9Þ

where C s;ð aÞ represents the cost function. If the state of the
system is improved after the migration action is performed, it
will receive a positive immediate reward, otherwise it will be
punished. The migration strategy needs to strike a balance
between the penalty function and the cost function, so we
introduce a compromise weight factor wp to achieve this
purpose.

4.2. Service Migration Method Based on Deep Reinforcement
Learning. Reinforcement learning is generally used in scenar-
ios that need to interact with the environment. For a given
state in the state space, the program selects a corresponding
action according to a certain strategy. After the action is
executed, the environment changes and the state changes
to a new state. After each action is performed, the program
will get a reward value, and then the program adjusts its
strategy according to the size of the reward value. After all
steps are executed, when the program reaches the terminal
state, the sum of the rewards obtained is the largest, and the
strategy obtained at this time the optimal strategy.

The Q-learning algorithm is a representative algorithm
among value-based algorithms in reinforcement learning. Q
(s, a) is a state-action value function in reinforcement learn-
ing, which represents the sum of the expected total rewards
after taking action a in state s. The update process of Q (s, a)
is as follows:

Q s; að Þ← Q s; að Þ þ α r þ γmax
a0

Q s0; a0ð Þ − Q s; að Þ
� �

;

ð10Þ

where Q s0;ð a0Þ is the expected total return after taking the
next action a0, α 2 0;½ 1� is the learning rate used to control
the convergence of the model, r represents the reward
obtained after taking action a in state s. γ 2 0;½ 1� is discount-
ing factor, which is used to control the degree of influence of
the new Q value on the previous Q value.

However,Q-learning uses aQ table to store action values.
In the service migration environment we constructed, in
order to verify the impact of equipment fault on the migra-
tion effect, a large number of edge devices are required,
which easily leads to an excessively large state space. There-
fore, it is not practical to store the Q value of each time step
by constructing a Q table. To solve this problem, we use the
Deep Q Network (DQN) algorithm in deep reinforcement
learning to calculate the Q value that can be obtained by
selecting an action a for given state s. To prevent overfitting,
DQN includes an evaluation neural network and a target
neural network, which has the same structure but different
weight vectors and corresponding biases of the depth neurons.

Equation (12) has a similar structure to Equation (11), with the
difference that the neuron weight vector in the evaluation
network is θ, and the output is Q s;ð a; θÞ, θ varies with each
time step t. The parameters in the target network are the

parameters θ
^
in the evaluation network some time ago, and

the output is Q
^

s;ð a; θ
^Þ. After a period of time, the parame-

ters of the evaluation network Q
^

s;ð a; θ
^Þ are assigned to the

target network. γ 2 0;½ 1� is still discounting factor. The ser-
vice migration algorithm is described as Algorithm 1. The
update process of the action value function can be expressed
as follows:

Q st; at ; θð Þ←

Q st; atð Þ þ α rt þ γmax
atþ1

Q
^

stþ1; atþ1; θ
^

	 

− Q st; at ; θð Þ

� �
:

ð11Þ

In order to solve the problem of unstable training effect
caused by the nonindependence of training samples, we use
the experience replay buffer as the training method of neural
network. Experience replay buffer refers to storing the quad-
ruplets obtained during the training process in the experience
pool and then randomly selecting a batch of quadruplets st ;ð
at; rt; stþ1Þ from the experience pool as a batch for training.
This random sampling can reduce the correlation between
data samples and improve the training efficiency of the neural
network. The loss function can be expressed as follows:

L θð Þ ¼ E rt þ γmax
atþ1

Q
^

stþ1; atþ1; θ
^

	 

− Q st; at ; θð Þ

	 

2

� �
:

ð12Þ

The execution time of Algorithm 1 is as follows:

T episode tð Þ ¼ t0 þ t1þ
t2 þ t2:1 þ t2:2 þ t2:2:1 þ t2:2:2 þ…þ t2:2:9ð Þ × Tð Þ × E

¼ tc1 þ tc2 þ tc3 × Tð Þ × E

¼ tc1 þ tc2 × E þ tc3 × T × Eð Þ
¼ tc1 þ tc2 × E þ tc3 × T × E

¼ tc3 × T × E

¼ T × E:

ð13Þ

where t0 represents the time required to initialize the experi-
ence pool. t1 represents the time to initialize the evaluation
network and the target network. For each episode, the exe-
cution time consumed is t2, repeatedly running E times.
Then, each individual step in Algorithm 1 corresponds to
an independent step-by-step time. When the values of epi-
sodes and t of the algorithm are very large, the constant
terms in T (episode, t) and the coefficients of T and E are
negligible. The main influence of the T (episode, t) is not
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E alone but T× E, because T× E grows much faster than E
itself. Therefore, T (episode, t) =O (nt ne), where ne repre-
sents the number of episodes and nt represents the number
of time steps in each episode.

5. Experiment

In this section, we will first conduct experiments on the
proposed network fault prediction method and compare its
prediction effect with the baseline method. Then we apply
this method to the service migration process to evaluate the
effect of the migration.

5.1. Datasets and Metrics. We select the network alarm log
information of the public metropolitan area network from
January to November 2013 to train the NFP-WD model. In
order to simulate the migration situation when the edge
network fails, we refer to the failure information of 10

associated devices in the data set in December 2013 to per-
form active fault injection on the edge servers.

We use the DeepFace face recognition application as a
test program. A cloud server is set up to store the face recog-
nition video dataset iQIYI-VID. The face recognition appli-
cation is initially deployed in the edge server closest to the
user. The mobile user first downloads the face recognition
video from the cloud server and then uploads the video to the
edge server for recognition. The SDN senses that the user
moves to the coverage area of the next edge server. Service
migration will be triggered during the migration process, and
the face recognition application will be interrupted until after
the migration is completed, the user establishes a connection
with the new edge server, and the video stream continues.

The alarm log includes the alarm type, alarm severity,
alarm name, alarm source, NE type, alarm time, alarm clear
time, and confirmation time et, as shown in Table 1.

The alarm levels in the alarm log are divided into four
different levels: prompt, minor, important, and urgent. The
types of alarms are divided into common alarms and root-
cause alarms. In actual situations, only the records with the
alarm level of “urgent” in the alarm dataset are defined as
fault conditions, and the prediction of network faults is the
prediction of emergency-level alarms. Our goal is to predict
whether the devices in the network will fail urgently under
the conditions of a given time window based on the alarm
information.

In order to evaluate the proposed network fault predic-
tion effect, we select Recall, F-Measure, and AUC value as the
evaluation indicators of the model.

Recall ¼ TP
TPþ FN

AUC ¼ TPþ TN
TPþ TNþ FPþ FN

F1 ¼ 2 × precision × recall
precisionþ recall

:

ð14Þ

where TP indicates the situation that the failure is predicted
to occur and the failure occurs, FP indicates the situation that
the failure is predicted but does not occur, FN indicates the
situation that the failure is predicted not to occur but the
failure occurs, and TN indicates that the prediction does not
occur and the failure does not actually occur.

In the simulation experiment part of service migration,
we select the migration success rate, migration cost, and
migration times as the evaluation indicators of the model.
Service migration success rate is an important experimental
metric in our experiments; we define it as the percentage of
how many face recognition applications have completed
running properly.

5.2. Baselines and Parameters Settings. First, we compare the
proposed network fault prediction method NFP-WD with
methods: Bayesian Network [24], Random-Forest [25], SVM
[26], Wide&Deep [15], and DeepFM [27]. Afterward, we

Input:

State set S, Action set A, discounting factor γ, explore
probability ϵ

Output:

Migration strategy π ¼ 0;ð 1; 2;…TÞ.
1: Initialize the Experience Pool with a capacity of M

2: Initialize the evaluation network neuron weight vector θ

3: Initialize the target network neuron weight vector θ
^ ¼ θ,

the rest of the parameters are the same as the evaluation
network

4: for episode= 1, 2…E do

5: Initialize user location locu and the location of edge
server locN ,initialize the first state s1

6: for t= 1, 2…T do

7: Predict the faulty node f and add it to the set of faulty
nodes Nf

8: Randomly choose action at with probability ϵ

9: Or choose the action at ¼ arg max st ;ð at ; θÞ
10: perform action at ,calculate the penalty value p,

reward value rt and the next moment state stþ1

11: Put the sample jst ; at ; rt ; stþ1j into the experience pool
12: Randomly select a small batch of samples

jsj; aj; rj; sjþ1j from EP

13: if if episode terminates at step t+ 1 then

14: set yt ¼ rt
15: else

16: set yt ¼ rt þ γmaxatþ1
Q
^

stþ1;ð atþ1;θ
^Þ

17: end if

18: Train the network according to the loss function
yt − Q st ; at ; θð Þð Þ2

19: Set θ
^ ¼ θ every x steps

20: end for

21: end for

ALGORITHM 1: Service migration based on network fault prediction
and DQN.

Wireless Communications and Mobile Computing 7



compare the NFP-WD-integrated service migration method
SMNFP with the following methods:

(i) ASM [28]: always perform service migration, also
known as the greedy migration method. As users
move, services are always migrated to the edge
server that is closest to the mobile user, and this
method tends to lead to large migration costs.

(ii) Mig-RL [8]: A method for service migration based
on the Q-learning algorithm in reinforcement learn-
ing, which aims to minimize service cost and maxi-
mize service quality.

(iii) DSM [29]: A method for modeling service migration
as a distance-aware Markov decision process, focus-
ing on the location between mobile users and edge
servers.

(iv) SRSM [30]: A servicemigrationmethod based on fault
state-triggered adaptation, which establishes four dif-
ferent fault models for network states and can con-
strain migration cost, delay, server resource capacity,
and bandwidth for different fault conditions.

Edge servers in different geographical locations represent
edge nodes. We abstracted ten edge nodes into a Docker
container cluster and used the Kubernetes container man-
agement platform (K8S) to implement container resource
management. Docker containers can be used to conveniently
store and migrate resources and provide certain computing
power, and the SDN controller can unify the container clus-
ter management through the OpenFlow protocol.

The experimental environment is CPU Intel® Core™
i9-9980XE @3.00 GHz, 128 GB RAM, and two Titan XP
graphics cards. The experimental operating system is
Ubuntu20.04; we use Tensorflow to implement the algorithm.
We conduct simulation experiments on the Mininet network
simulation platform. The experimental environment consists
of four parts: mobile terminal equipment, edge server, con-
troller, and cloud server. Mobile devices access edge servers
through wireless hotspots. In the experiment, the POX con-
troller is selected as the SDN controller. All edge nodes install
a local POX controller to collect network topology informa-
tion and fault conditions, sense, and initiate service migration
and schedule migration tasks. Edge nodes run Open vSwitch
software to parse the OpenFlow protocol. The global control-
ler acts as a personal PC for equipment fault monitoring and
management of local SDN controllers. All parameters of the
experiment are shown in Tables 2 and 3.

5.3. Performance Evaluation. The experiment explores the
influence of the prediction time window on the prediction
effect and selects the device 4 with more faults in the network
fault data set as the research object to predict whether the
device will fail in a given time window. We set the time
window as 10min; the experimental results are shown in
Table 4; our proposed NFP-WD model outperforms the
baseline model in all three metrics.

From Table 3, we have the following observations: when
the prediction time window is the same, the traditional

TABLE 2: Simulation parameters.

Parameter Values

Number of ES 5–10
Number of mobile users 5–30
Area 2 km× 2 km
ES coverage radius 300m
ES overlap coverage radius 45m
Moving speed of users 5m/s
Bandwidth for up/down 20–100Mbps
Latency between ES and users 50ms
Fault recovery time 20–60 s
Replay memory size 10,000
Learning rate 0.001
Number of episodes 1,800
Compromise factor wp 0.05
Discounting factor 0.9
Exploration probability 0.1

TABLE 1: Statistics of metro network fault dataset.

ID Alarm type Alarm level Alarm name Alarm source Positioning information
Time of

occurrence

26 Source alarm Important
Power module power failure

warning
Device 1 Entity name= PWR board 8 10/16/2013 17:07:45

1253 Common alarm Minor Link down Device 3 Interface index = 16 01/10/2013 08:07:43
2259 Common alarm Urgent Temperature exceeds threshold Device 12 Entity name = LPU slot 2 02/07/2013 17:09:29
2259 Derived alarm Prompt Link down Device 28 Interface index = 6 02/16/2014 18:53:22

TABLE 3: NFP-WD parameters.

Parameter Values

FFM

Field size : 3
Feature sizes : (64, 64, 64)

Embedding size : 4
Dropout shallow : (0.5, 0.5)

LSTM

Hidden size : 3, 512, 256, 128
Num of layers : 3

Epochs : 64
Batchsize : 256

learning rate : 0.003

Joint training Activation : Sigmoid

Loss function α : 0.9
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machine learning classification model lacks the generaliza-
tion ability of the model features compared with the three
subsequent models integrated with the deep neural network,
so the prediction effect is poor. After the DeepFM model
replaces the LR part of the Wide&Deep model with FM, it
can learn the low-order and high-order feature combinations
of the alarm information at the same time without manual
feature engineering, which alleviates the sparsity problem in
the alarm data set to a certain extent, and the prediction
effect is obtained. At the same time, we noticed that there
is a lot of time series information in the alarm log in the
actual situation, and the DeepFM model does not have the
ability to process time series features due to the lack of mem-
ory vectors or memory neural units. In order to solve this
problem, our NFP-WD model introduces the LSTM neural
network in the Deep layer, which enhances the memory of
the model; and the introduction of FFM can distinguish the
importance of different combined features compared to FM,
for example, in the alarm log, the combination of alarm
severity and alarm time is an essential feature. After combin-
ing these two advantages, the prediction effect of the model
for equipment fault has been improved to a certain extent.

All our experiments take the method of controlling vari-
ables and study the influence of a certain factor on the exper-
iment when other factors are the same.

We first explore the service interruption time during the
service migration. In our experiments, we calculate the ser-
vice interruption time every 100 episodes and then calculate
the average of all interruption times. As shown in Figure 3,
the dashed lines represent the average service interruption
times of various methods, and our SMNFP method achieves
the smallest average service interruption time of 4.2 s, with
SRSM, Mig-RL, DSM, and ASM values of 7.4, 15.5, 17.3, and
34.6 s, respectively. This is because Mig-RL, DSM, and ASM
work in a fault-free network environment; for the face rec-
ognition detection service, if there are servers in the migra-
tion planning path that are about to fail in the short term, the
face recognition program will be temporarily hung resulting
in service interruption until a specific fault recovery time is
experienced and the migration process will continue, so the
service interruption time for these three methods is longer
than the fault-triggered adaptive method SRSM and our
SMNFP method.

Figures 4 and 5 show the effect of different numbers of
edge servers on the number of service migrations and the
average cost. In the scenario of network fault, as the number
of servers continues to increase, the state space continues to

expand, and the number of hops between the user and the
original server that remains connected increases when
the user moves quickly within a certain period. To complete
the migration goal, the number of migrations and the total
cost needs to be increased accordingly. When the number of
edge servers is 10, the number of migrations and the average
cost of the ASM method are the highest, reaching 272 and
641, respectively, because it is always connected to the server
closest to itself and constantly initiates migration requests
during the frequent movement of users. The number of
migrations and the average cost of the DSM method are
217 and 473, respectively. The number of migrations and
the average cost of Mig-RL are 165 and 437, respectively.

TABLE 4: Recall, F1, and AUC for predicting whether device 4 will
fail when the time window is 10min.

Methods Recall F1 AUC

Bayesian net 0.7345 0.7252 0.6893
SVM 0.8386 0.8294 0.8147
Random forest 0.8771 0.8681 0.8433
Wide&Deep 0.8882 0.8743 0.8521
DeepFM 0.8943 0.8917 0.8696
NFP-WD 0.9116 0.9032 0.8819
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SRSM and SMNFP use the DQN to make migration deci-
sions, which can still maintain good performance when the
state space increases.

In terms of the number of migrations, the SRSM method
and SMNFP method are 127 and 92, respectively, and the
average cost is 352 and 287, respectively. The service migra-
tion method based on fault adaptation is more complex
when faults are frequently triggered and also leads to a
high average cost when self-adaptation fails. By predicting
and avoiding faulty nodes, our method improves the success
rate of migration and reduces the time cost and communi-
cation cost of migration as well as the number of migrations.

We also study the effect of different numbers of mobile
users on migration costs, as shown in Figure 6. Compared
with the cost impact of the number of servers, the cost of each
method increased significantly when the number of mobile
users increased from 5 to 30. This is because as the number of
users increases, the total amount of data requested by users
increases, and the amount of data that needs to be migrated
also increases. Due to the limitation of storage capacity and
bandwidth resources, some services cannot be migrated for a
short period during the mobile process, resulting in a sharp
increase in communication costs. Our proposed SMNFP
method has the lowest migration cost among all methods,
with a value of 792 when the number of users is 30.

To better simulate the migration situation when a net-
work fault occurs, we choose to periodically clear the fault
after a short period of active fault injection into the device. A
short fault recovery time can reduce the service interruption
time during the migration process, thereby improving the
success of the migration rate. When the number of mobile
users is five, Figure 7(a) shows the effect of fault recovery
time on the migration success rate from 20 to 60 s, and
SMNFP achieves the highest migration success rate at differ-
ent periods. All methods show a decreasing trend as the
recovery time increases. When the time is 60 s, the success

rate of migration reaches the lowest, which are 0.327, 0.497,
0.544, 0.821, and 0.903, respectively, and the migration suc-
cess rate of the three methods of ASM, DSM, and Mig-RL
decreases greatly. The migration rate of SMNFP has a little
downward trend; this is because after NFP-WD predicts the
faulty node, only a very small part of the services will be
migrated to the faulty node, so the fault recovery time has
little effect on SMNFP.

When the fault recovery time is 20 s, we study the effect
of the number of concurrent requests on the success rate of
migration. The experiment selects different numbers of
mobile users from 5 to 25. It can be seen from Figure 7(b)
that with the increase in the number of mobile users, differ-
ent migration methods all showed a significant downward
trend. When the number of mobile users is 25, the success
rates are 0.343, 0.473, 0.508, 0.642, and 0.714, respectively.
This is because, with the increase of users, the number of
concurrent face recognition applications increases. Due to
the limitation of its bandwidth, computing power, and fre-
quent faults, edge servers have caused a large number of
service computing faults and migration faults, and the migra-
tion success rate has dropped significantly.

Besides, we study the effect of network bandwidth and
the number of edge servers on the success rate of migration.
From Figure 7(c), we can see that the success rate of migra-
tion decreases with the increase of network bandwidth; when
the bandwidth increases from 60 to 80Mbps, the increase is
the highest. When the bandwidth is 100Mbps, the migration
success rate of each method is the highest, which are 0.572,
0.683, 0.733, 0.891, and 0.931, respectively. Continuing to
increase bandwidth has little effect on improving the success
rate because the factor limiting the success rate of migration
is no longer bandwidth but other computer hardware factors.

Figure 7(d) shows the effect of the number of mobile
edge servers on the migration success rate. For the added
servers, we also follow the previous fault injection method.
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It can be seen that with the increase in the number of servers,
the migration success rate of various methods decreases
slightly. Experiments show that the number of edge servers
has a great impact on the number of service migrations but
has little impact on the success rate. This may be because the
number of servers has not yet reached a very large number in
the actual edge network.

6. Conclusion

In this paper, we first propose a network fault prediction
method NFP-WD, which is used to predict the fault of the
mobile edge network. Then we model the service migration

problem as a Markov decision process, and a penalty function
is designed to avoid faulty nodes during migration. Simula-
tion experiments on service migration show that our pro-
posed SMNFPmethod outperforms several baselinemethods.

In the follow-up work, we plan to analyze the user’s
movement trajectory and predict their movement patterns
under network fault scenarios to further improve the success
rate of migration.

Data Availability

The original dataset used in this work is available from the
corresponding author on request.
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