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The integration of the industrial internet of things (IIoT) and blockchain has become a popular concept that provides IIoT with a
trustworthy computing environment. Numerous IIoT nodes together form a decentralized network with rich location-aware
computation resources, which can offer great data processing capabilities and low-latency services. However, we still face the
challenges of how to efficiently process the massive IIoT data on resource-constrained IIoT nodes by blockchain smart
contracts, as their storage capacity only allows them to store limited blockchain data. This work is aimed at improving the
smart contract execution efficiency on these IIoT nodes by caching based on deep reinforcement learning. On the one hand,
focusing on the characteristics of IIoT, the ledger structure, network architecture, and transaction flow are optimized. IIoT
nodes are enabled to store and cache part of block data without affecting global data consistency. On the other hand, we
formulated the blockchain caching problem as a Markov decision process and implemented a lightweight caching agent based
on deep Q-learning. Proper features and a reward function are defined to minimize the execution delay of smart contracts. The
extensive experimental results show that our proposed scheme can effectively reduce the data dissemination costs and smart
contract execution delays of IIoT nodes that hold limited blockchain data.

1. Introduction

IoT is a things-connected network, where devices can
exchange data and process data according to predefined
schemes [1]. There is a growing interest in using IoT technol-
ogies in various industries, includingmanufacturing, transpor-
tation, and energy [2]. As a subset of border IoT, industrial IoT
(IIoT) focuses on the utilization of IoT facilities in the afore-
mentioned industries. Numerous IoT devices, ranging from
small sensors to complex controllers, are associated to opti-
mize industrial production procedures, enhance customer
experience, reduce costs, or improve efficiency [3].

However, the intrinsic features of IIoT have resulted in
some problems, such as poor interoperability, privacy, and
security vulnerabilities [4]. The emerging blockchain technol-
ogy is considered a suitable complement for IIoT to overcome
the above problems. Blockchain is a tamper-resistant digital

ledger implemented in a distributed fashion [5]. With block-
chain, a trustworthy environment can be built to improve
the interoperability, privacy, and security of the IIoT. Cur-
rently, blockchain has been adopted in some IIoT applications,
such as healthcare, smart factory, and energy trading [6–8].

Numerous IIoT nodes together form a decentralized net-
work with rich location-aware computation resources, which
can provide great data processing capability and support
low-latency services. However, when we use smart contracts
to process massive industrial data on IIoT nodes, the efficiency
still faces serious challenges. A smart contract is an immutable
autonomous program that is deployed on blockchain and used
for general-purpose computations. With smart contracts,
nontrusting members can interact with each other without a
trusted intermediary [9]. Taking industrial production proce-
dures as an example, massive raw data are being continuously
collected from numerous sensors. Some of these data may
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need to be processed in smart contracts on IIoT nodes and
finally revealed on blockchains. However, IIoT nodes are usu-
ally characterized by constrained resources, which means that
they probably cannot provide blockchain data with sufficient
storage capacity. The size of blockchains can be extremely
large since the recorded IIoT data grow rapidly. In practice,
blockchain data are stored in cloud storage services or dis-
tributed storage systems [10, 11]. In this situation, IIoT
blockchain nodes have to frequently request data from else-
where while executing smart contracts. The expensive com-
munication costs limit the ability of these IIoT nodes to
offer those delay-sensitive applications satisfactory smart
contract execution efficiency.

To the best of our knowledge, there are still no published
works on improving smart contract execution efficiency for
storage-constrained IIoT nodes. In this paper, for the first
time, we propose a caching-enabled permissioned block-
chain scheme for IIoT based on deep reinforcement learning
(DRL), where storage-constrained IIoT nodes are enabled to
store and cache an appropriate part of blockchain data in
their local storage to improve the execution efficiency of
smart contracts. The ledger structure, network architecture,
and transaction flow are optimized to better support our
cache-enabled scheme. The consensus processes become
more efficient because of the reduction of data dissemination
costs in blockchain networks.

Moreover, we propose a DRL caching agent to help the
IIoT nodes determine which part of blockchain data should
be cached in their local storage tominimize the execution delay
of smart contracts. To achieve this aim, we formulate the cach-
ing problem as a Markov decision process (MDP). Complex
features related to networks, blockchain data, and smart
contracts are taken into consideration during the decision-
making process. Meanwhile, a proper reward function is
defined to guide the agent to take expected actions and
improve its convergence performance. As a result, we imple-
ment the caching agent based on deep Q-learning [12–14].

In the experiments, we evaluate the performance of data
dissemination and smart contract execution of our proposed
scheme. The extensive simulation results show that our pro-
posed scheme can effectively reduce the data dissemination
costs in blockchain networks and smart contract execution
delays on resource-constrained IIoT nodes.

The main contributions of this paper are summarized as
follows:

(1) We propose a caching-enabled permissioned block-
chain scheme based on DRL, which is aimed at
improving the efficiency of smart contract execution
on storage-constrained IIoT nodes

(2) We optimize the ledger structure, network architec-
ture, and transaction flow to enable IIoT nodes to
store and cache appropriate parts of blockchain data,
offering low data dissemination costs

(3) We present a DRL caching agent for our scheme.
Proper features and a reward function are defined
in the MDP to minimize the execution delay of

smart contracts. In addition, an implementation
based on deep Q-learning is presented

The remainder of this paper is organized as follows. In
Section 2, we overview the literature related to blockchain stor-
age optimization approaches andDRL-based caching schemes.
In Section 3, we define the ledger structure, network architec-
ture, and transaction flow of our proposed scheme. In Section
4, we formulate the MDP of our proposed caching agent and
present an implementation based on deep Q-learning. In
Section 5, we evaluate several metrics to prove the effectiveness
of our scheme. Finally, we draw conclusions in Section 6.

2. Related Work

Currently, there have been many works that make effort to
reduce the storage requirement of blockchains. Liu et al. [15]
proposed a scheme named LightChain, where unrelated
blocks are offloaded through unspent transaction output
(UTXO) analysis to reduce storage, but only those UTXO-
based blockchains can adopt their scheme. In [11, 16], block-
chain data are designed to be addressable in a decentralized
network and retrievable with low communication complexity.
In [17, 18], blockchain data are redundantly encoded into seg-
ments and stored on different industrial nodes. In [19–21],
sharding technology is applied, where nodes in a blockchain
network are divided into groups, and each group maintains
an independent blockchain ledger. With the above schemes,
less storage is required on blockchain nodes since data are
scattered. Unfortunately, the communication costs are still
expensive if a blockchain node has to frequently request block
data from elsewhere while executing smart contracts.

When it comes to specific IIoT context, Toyoda et al.
[22] limit the data that can be stored on blockchains and
losslessly compress the sensor data on blockchains periodi-
cally to relieve storage pressure. Xu et al. [23] store the mas-
sive industry supply chain data in an off-chain database and
the hashes of them on chain. Jeong et al. [24] applied a
scheme that combines on-chain and off-chain storage to
their vehicle data marketplace platform to securely and
effectively handle black box videos. Gao et al. [25] proposed
a multichannel blockchain scheme for the internet of vehi-
cles, where the blockchain ledger is divided into multiple
channels with different block sizes according to vehicle den-
sity to save storage on infrastructure nodes. However, these
solutions are strongly related to their context.

At present, caching technology based on DRL has been
proven effective in improving industrial applications in
some aspects. For example, He et al. [26] proposed a caching
agent based on dueling DQN to improve the quality of expe-
rience (QoE) of edge-enabled IoT. Wang et al. [27] proposed
a novel framework DeepChunk, which leverages deep Q-
learning for chunk-based caching in wireless data processing
networks. Shi et al. [28] proposed a novel DRL-based vehic-
ular caching scheme that responds to driving safety-related
content requests from vehicle users. Li et al. [29] proposed
a scheme based on deep Q-learning to make decisions on
which user is selected to deliver content in a device-to-
device network, aiming at improving the QoE. These works
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show that caching could be a promising solution to help those
storage-constrained IIoT nodes improve their efficiency.
Chen et al. [30] proposed an approach that uses distributed
proximal policy optimization (DPPO) to cache the frequently
used blocks on users. Their approach can work well in block-
chain schemes like [31], a privacy-preserving distributed
identity for IoT where light nodes frequently verify transac-
tions. However, it mainly aims to help users faster verify
transactions without considering more complex circum-
stances like general-purpose computation in smart contracts.

3. System Model

Our system model is mainly abstracted from Hyperledger
Fabric [32], which is a high-performance permissioned block-
chain platform that supports smart contracts implemented in
general-purpose programming languages. Hyperledger Fabric
has a highly modular and configurable architecture, enabling
innovation, versatility, and optimization for a broad range of
industry use cases. Up to now, Hyperledger Fabric has been
adopted by many industrial and IoT applications [33–36]. In
this section, we will introduce the ledger structure, network
architecture, and transaction flow of our system model.

3.1. Ledger Structure. Specific changes are made in our pro-
posed ledger structure to help it better support caching. As illus-
trated in Figure 1, a ledger comprises a state database and a
blockchain. The state database is a collection of key-value pairs,
which holds the latest values of keys. The blockchain is a trans-
action log that records all changes that have resulted in the cur-
rent state database. In short, the blockchain determines the state
database, and the state database is derived from the blockchain.
The state database frequently changes as keys are created,
updated, and deleted, but the blockchain is append-only.
Through the state database, smart contracts can access block-
chain data quickly rather than traversing the entire blockchain.

Once a smart contract call is successful, a new transac-
tion that includes the contract function name, input data,
and execution result will be revealed on the blockchain.
The execution result specifies what keys in the state database
are read and written along with their versions and new
values (if existing). Besides, a signature must be attached to
each transaction to ensure its proposer has proper permis-
sion to participate in the blockchain network.

The same as the most typical chain structure, the block-
chain in our proposed ledger consists of a sequence of
blocks, where each block links to the previous one through
a cryptographic hash except the first. A block comprises a
header and a body. A header requires very little storage
because it contains only the key properties of the block, such
as block hash, previous block hash, Merkle root hash, and
timestamp. A body contains a set of concrete transactions.
The following changes are applied to our ledger structure.

Firstly, a new field VariationSet, which is also a collec-
tion of key-value pairs, is introduced into block headers.
Suppose that the values of keys fk1,⋯,kng are, respectively,
affected by operations fop1,⋯,opng in the transactions of
the block Bi, where an operation is only allowed to be cre-
ate, update, or delete. The VariationSet of Bi is expressed as

V i = kj, opj
� �

1 ≤ j ≤ nj
n o

: ð1Þ

Secondly, as in the scheme in [11], the body of a block is
stored on only a responsible part of nodes according to the
hash function of a distributed hash table (DHT). A DHT is
a decentralized system that provides a lookup service, where
the responsibility for maintaining mappings from keys to
values is distributed among the nodes. Any participant can
efficiently retrieve the value of a given key. Besides, block-
chain nodes can use their idle storage space to cache some
other block bodies, on behalf of the execution efficiency of
smart contracts.

Thirdly, if the body of Bi is not in local storage, any key
kj, whose latest value is defined in the transaction that Bi

contains, will be mapped to the block number of Bi instead
of the actual value in the state database. Hence, the size of
the state database can be reduced, without undermining
the ability to locate values on blockchains.

With the above changes, our proposed ledger structure
supports the following operations.

(1) Append a new block header: once a new block is gen-
erated, its header will be delivered to all blockchain
nodes. As soon as the header H i of a new block Bi
is received, a node will first update the state database
of its ledger according to V i in H i. There are three
conditions: (1) if a key kj is created in Bi, a mapping
from kj to the block number I i of Bi will be put in
the state database. (2) If a key kj is updated in Bi,
the current value that kj is mapping to in the state
database will be replaced with the block number I i
ofBi. (3) If a key kj is deleted inBi, it will be directly
removed from the state database together with the
value it is mapping to. After updating the state data-
base,H i will be appended to the tail of the blockchain
of the ledger as a result. The details are shown in Algo-
rithm 1. This operation ensures nodes can keep con-
sistent with the latest-version global ledger without
concrete block data. Moreover, the data dissemination
costs can be reduced because only lightweight block
headers are required to be transmitted

(2) Insert block body: if a blockchain node intends to pro-
actively cache or is assigned to store a complete block
replica Bi, it needs to insert the corresponding block
body Di into its ledger while appending the header
H i to the ledger. The same as appending block
headers, the state database of the ledger should be
updated first. If the latest value of a key kj is defined
in Bi, the block number I i that kj currently maps
to in the state database will be replaced with the actual
latest value. Finally, insert Di into the blockchain of
the ledger. The details are shown in Algorithm 2

(3) Delete block body: when data in a blockBi are depre-
cated because newer versions of data have emerged or
are unwanted by the caching policy, the blockchain
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node will use this operation to deleteDi from the led-
ger to release the occupied storage space. Thereafter, if
the latest value of a key kj in the state database is
defined in Bi, the value that kj is mapping to in the
state database will be replaced with the number I i
in Bi. The details are shown in Algorithm 3

3.2. Network Architecture. Since IIoT blockchains are usually
maintained by organizations rather than individuals, we
assume that each entity in blockchain networks belongs to
a specific organization. As shown in Figure 2, we design a
general blockchain network structure for IIoT, where each
node can be assigned the following roles.

BlockchainState DB

Blockchain

IIoT blockchain node

IIoT blockchain node

P2P network

172.16.0.0
172.16.1.0
172.16.2.0

State DB

BlockchainState DB

Gossip

Gossip

Gossip

Distributed
hash table

Address

IIoT blockchain node

Figure 1: Ledger structure. The ledger consists of a state database and a blockchain. The blockchain includes a sequence of blocks, where
each block contains a set of transactions that change the key-value pairs in the state database. The DHT is responsible to decide which part
of IIoT nodes should store the body of a block, according to a hash function. Through the DHT, all block bodies and transactions can be
quickly addressed.

Require: New Block header H i, Blockchain BC , State Database SDB:
1: I i−1 ⟸ the last block number in BC

2: I i ⟸ the block number of H i
3: if I i =I i−1 + 1 then
4: V i ⟸ the VariationSet of H i
5: for each key-value pair ðk, opÞ in V i do
6: if op = create or op = update then
7: SDB½k�⟸I i
8: else if op = delete then
9: Delete k from SDB
10: Append H i to BC

Algorithm 1:Append new block header.

Require: Target block number I i, Blockchain BC , State Database SDB
1: V i ⟸ the VariationSet of the header H i
2: for each transaction tx in the body Di do
3: for each affected key-value pair ðk, vÞ in tx do
4: if SDB½k� =I i and V i½k� ≠ delete then
5: SDB½k�⟸ v
6: Insert Di into BC

Algorithm 2: Insert block body.
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(1) Consensus node: the order of transactions needs to be
agreed by all stakeholder organizations in a blockchain
network. Thus, each of them should offer at least one
node to participate in transaction ordering. These con-
sensus nodes together form a consensus service, which
receives transactions from the transaction proposers,
arranges batches of them into a well-defined sequence,
assembles them into blocks, and delivers. The service
usually uses underlying algorithms such as DPoS, Raft,
and PBFT [37, 38] to provide high-performance con-
sensus. The header of a block will be delivered to all

blockchain nodes, but the body will only be sent to a
specific set of storage nodes according to the DHT

(2) Storage node: to reduce global storage consumption,
we adopt the storage scheme in [11], where the
blockchain data are uniformly, dispersedly, and
redundantly stored in the whole blockchain network.
Each storage node is responsible for maintaining a
specific set of block bodies according to a hash func-
tion, and all of them together form a DHT-based
storage service. All block bodies and transactions
can be addressed and retrieved with low complexity

Require: Target block number I i, Blockchain BC , State Database SDB
1: V i ⟸ the VariationSet of the header H i
2: for each transaction tx in the body Di do
3: for each affected key-value pair ðk, vÞ in tx do
4: verv ⟸ the version of v
5: verk ⟸ the version of SDB½k�
6: if verv = verk and V i½k� ≠ delete then
7: SDB½k�⟸I i
8: Delete Di from BC

Algorithm 3: Delete block body.

1. Collect data

2. Request data

2. Execute Smart Contracts

3. Submit transactions

4. Generate blocks

Consensus nodes Storage nodes

IIoT devices Computing nodes

5. Deliver blocks

5. Deliver block headers

Figure 2: Network architecture. A network includes a number of organizations as its participants. Each organization holds consensus nodes,
storage nodes, storage-constrained computing nodes, and many IIoT devices. The computing nodes collect data from IIoT devices and
handle them by smart contracts. New transactions will be submitted to the consensus nodes. These transactions will be ordered,
assembled into new blocks, and delivered. Finally, the new blocks will be stored completely in the specific storage nodes, and their
headers will be delivered to all other nodes.
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in the DHT. Every time a new block is generated, a
set of storage nodes, which are responsible to store
complete replicas, will always be chosen by the con-
sensus nodes according to the hash function. These
storage nodes handle the data requests from other
nodes and offer them the block data it has stored.
Although an organization does not maintain a com-
plete ledger anymore, it can still be easily figured out
whether a transaction or a block body was tampered
with simple payment verification (SPV)

(3) Computing node: a computing node is usually an IIoT
node with limited storage resources and serves a spe-
cific group of IIoT devices nearby. As soon as data
are collected from IIoT devices like sensors, they will
be instantly handled by computing nodes. Using these
data as inputs, computing nodes execute the smart
contracts to get execution results and reveal them on
blockchains in the form of transactions. During smart
contract execution, existing data might be frequently
read from the ledger. To minimize the costs of
requesting data from the storage nodes, each comput-
ing node always utilizes an independent caching agent,
which we will discuss in Section 4, to cache an appro-
priate part of the blockchain data locally. Computing
nodes and storage nodes use the same ledger structure,
but the formers proactively choose what data should
be stored, and the latters are passively chosen by the
hash function of the adopted DHT scheme

Note that a physical node can serve different roles at the
same time. Physical nodes can select proper roles according
to their computing, storage, and network resources, adapting
to the heterogeneity of IIoT nodes and improving the utiliza-
tion of hardware. Taking the most common conditions as
examples, if a cloud server has high bandwidth and sufficient
storage space, it can play a consensus node and a storage node
simultaneously on behalf of the consensus throughput and
data addressing performance (shorter search paths are
required in DHT). If an edge node, which mainly serves as a
computing node to provide low-latency services by smart con-
tracts to the edge devices, has considerable unoccupied storage
space, being a storage node can lower the data request costs of
the nearby computing nodes.

3.3. Transaction Flow. The transaction flow describes the
lifecycle of transactions from being created to being con-
firmed. As illustrated in Figure 2, the transaction flow can
be summarized in the following phases.

(1) Data collecting phase: each computing node listens
to its nearby IIoT devices through wireless connec-
tions for new data events. Once an event arrives,
the computing node will immediately read the new
data from the corresponding IIoT device

(2) Smart contract execution phase: functions of smart
contracts will be called. While a computing node is
executing the smart contract, it might need to

frequently read the values of existing keys from the
ledger. In general, if the latest value of a key is stored
or cached locally, it will be read directly from the
local ledger; otherwise. it will be searched from the
DHT and requested from other storage nodes. As a
result, a new transaction will be created, signed,
and sent to one of the consensus nodes

(3) Consensus phase: the aforementioned consensus
service establishes a total order on all the received
transactions through its consensus algorithm. Once
the block interval or block size reaches the limit,
the consensus service will package the ordered trans-
actions into a new block. In a legal block, every
transaction must be validated by the following steps.
(1) Each consensus node will perform the permis-
sion check and read-write conflict check. The former
verifies the membership of transaction initiators
through their signatures. The latter ensures that no
other transactions have changed the data that a
transaction depends on. (2) Each stakeholder organi-
zation needs to check whether transactions are
honestly executed by others. The transactions, whose
initiators belong to other organizations, will be
endorsed by the trustworthy computing nodes by
checking the correctness of transactions through
duplicate executions. A transaction is valid if it is
confirmed by most consensus nodes

(4) Data delivery phase: each consensus node delivers the
new block replica and the header, respectively, to the
specific storage nodes and all other nodes. Note that
a consensus node only delivers data to storage nodes
or computing nodes that belong to the same organiza-
tion. If a storage node or computing node received a
new block or block header from others, it will update
its ledger (with Algorithm 1 and Algorithm 2) and dis-
seminate the header to its neighbors through Gossip.
This phase continues until data consistency is
achieved in the whole blockchain network

4. Caching Agent

In this section, the caching problem will be formulated as an
MDP, aiming at guiding the agent to learn from context
features and minimize smart contract execution delay.
Thereafter, we will show how to implement the caching
agent using deep Q-learning.

4.1. Problem Formulation. According to our defined system
model, a caching agent is responsible for making decisions
on which part of block bodies should be cached on a com-
puting node in order to improve the smart contract execu-
tion efficiency. Our proposed caching agent works with
cache replacements. Each time the caching agent is called,
an action is taken that replaces a block body in the ledger
with another one.

Before formulating the MDP, a series of symbols need to
be defined. fk1, k2, k3,⋯g denotes all keys that have been cre-
ated, despite their current existence. Let T be the most recent
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period of time, NRj indicates how many times kj has been
requested in T; NU j indicates how many times that kj has
been updated in T;DL j indicates the total delay of requesting
kj from other storage nodes in T. fB1,B2,B3,⋯g and
fD1,D2,D3,⋯g, respectively, denote all confirmed blocks
and their bodies. Ki indicates the set of keys whose latest
values are defined in Bi. DP i indicates the current per-
centage of deprecated transactions in Bi, where a transac-
tion is deprecated once the values that it created or
updated are deleted or overwritten in newer blocks. fS
C1, SC2, SC3,⋯g represents all smart contracts deployed
on the blockchain. CT i,j indicates the number of transac-
tions that are related to SC j in Bi. CF j indicates the fre-
quency of SC j being called in T.

To find the optimal caching agent π, we formulate the
caching problem as an MDP, which is denoted as a tuple
fS ,A ,Mðsn+1jsn, anÞ,Rðsn, anÞ, γg.

S is the collection of states. We denote the state of an
arbitrary block Bi as

BF i = 〠
kj∈Ki

NRj, 〠
kj∈Ki

NU j, 〠
kj∈Ki

DL j,DP i, 〠
SC j

CT i, j ×CF j

0
@

1
A:

ð2Þ

We assume that a computing node can cache at most C
block bodies. At timestep n, if a computing node needs to
decide whether to store the candidate block body DC+1 as
there are already C block bodies fD1,D2,⋯,DCg cached
in its ledger, the current state sn is denoted as

sn = BFC+1 −BF1,⋯,BFC+1 −BFCf g, ð3Þ

where DC+1 is explicitly compared with fD1,D2,⋯,DCg to
help the caching agent directly learn from the difference
between states, rather than letting it learn how to compare itself.

A is the collection of actions. The action at timestep n is
denoted as an. There are C + 1 possible actions for a state,
following the action space definition in [39, 40]. Let

A = 0, 1, 2,⋯,Cf g, ð4Þ

where an = 0 means that the ledger will keep the same and
an ∈ f1, 2,⋯,Cg means that the candidate DC+1 will be
requested from other storage nodes and used to replace Dan

.
M is the state transition function that maps a state-

action pair ðsn, anÞ at timestep n to the probability distribu-
tion of states at timestep n + 1.

R is the immediate reward function that determines the
reward for performing the action an at state sn. A proper
reward function is important to the convergence perfor-
mance of DRL agents. However, the sparse reward problem
is notable in caching environments because the impact of a
single action on the environment is too slight to be observed.
The metrics, such as QoE and cache hit ratio, are often taken
into consideration by the reward functions for DRL-based
caching schemes. [26, 39–42]. These reward functions offer

poor convergence performance. Reward shaping, an effective
technique for incorporating domain knowledge into RL [43,
44], could be a feasible way to solve the sparse reward problem
in caching. For example, Wu et al. [45] defined handcrafted
extrinsic rewards, which are related to living, health loss,
ammo loss, etc., to teach their agent to take expected actions
in the first-person shooter game. Likewise, we define an extrin-
sic reward in our reward function to teach our agent to store
those items with expected features. When action an replaces
Du with Dv, then the extrinsic reward is expressed as

Rets sn, anð Þ = DL i∑ku∈Ki
NRu −NUuð Þ

DL j∑kv∈K j
NRv −NUvð Þ : ð5Þ

The extrinsic reward is positive only if caching Du brings
more execution delay reduction than Dv in T. The agent will
receive higher extrinsic rewards as it tries to cache those block
bodies whose data are requested more frequently but less
updated. Otherwise, a negative extrinsic reward will be
returned as a punishment to avoid the agent to take those
bad actions. However, note that the extrinsic reward is
auxiliary; our agent aims to minimize the smart contract exe-
cution delay. Thus, we define intrinsic rewardRitsðsn, anÞ for
action an, which is the average execution delay reduction
observed in a fixed number of timesteps after performing an.
As a result, the complete reward function is a weighted sum
of the extrinsic reward and the intrinsic reward

R sn, anð Þ = rn = β∙Rits sn, anð Þ + 1 − βð Þ∙Rets sn, anð Þ ð6Þ

where β is a dynamic weight factor. Therefore, the smart
contract execution delay can be reduced as the reward
increases. After the reward became stable, the value of β
should be gradually increased to deprecate the extrinsic part
of the reward function.

γ ∈ ð0, 1� is the discount factor that determines the effect
of future rewards on the current decision-making process.
Given the accumulated reward definition Rn =∑∞

m=0rn+mγ
m

at timestep n, the lower the value of γ, the more significant
the impact of immediate rewards.

Let π = πðsn, anÞ be a mapping from the state sn to the
probability of action an. As shown in Figure 3, the following
steps are repeated:

(1) Before timestep n, observe the features of the candi-
date block body and cached block bodies to obtain
the state sn. The candidate is supposed to be a block
body whose data is currently requested from other
storage nodes

(2) Utilize π to predict the probabilities of all actions
and perform the action an that maps to the maxi-
mum probability

(3) The reward rn =Rðsn, anÞ is received, and the state
transits from sn to sn+1, respectively, according to
Rðsn, anÞ and Mðsn+1jsn, anÞ
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We aim to find the optimal caching agent π∗ that can
achieve the maximum expected Rn at different states. It is
denoted as

π∗ = argmax
π

E Rn πj½ �: ð7Þ

The value function is defined to measure how good π is.
Meanwhile, it represents the expected Rn for deterministi-
cally selecting an as the initial action at the state sn following
π. It’s denoted as

Qπ s, að Þ = Eπ Rn sn = s, an = aj½ �: ð8Þ

The optimal value function for given state s and action a
is defined as Q∗ðs, aÞ =maxπQπðs, aÞ. The optimal agent can
be obtained by greedily selecting the action an, which maxi-
mizes Q∗ðs, aÞ, from all available actions at the state sn. Q

π

can be decomposed into a Bellman Equation according to
Markov Property, which is expressed as

Qπ s, að Þ =〠
s′,r

p s′, r
��s, a� �

r + γ〠
a′
π a′

��s′� �
Qπ s′

��a′� �" #
,

ð9Þ

where pðs′, rjs, aÞ is the probability that reward r is received
and transits to the state s′ after performing action a at state
s. The distribution of pðs′, rjs, aÞis affected by M and R.
Thus, ifM andR are available, we can leverage policy evalu-
ation to continually improve Qπðs, aÞ by greedily selecting
until an optimal agent is found.

4.2. Implementation. Deep Q-learning is a practical DRL
approach for tasks with continuous state spaces and discrete
action spaces. Watkins et al. [46] proposed Q-learning,
which provides agents the learning capability to act opti-
mally in Markovian domains by updating action selection
using the Bellman optimal equation and the Epsilon-
Greedy scheme. Mnih et al. [12] proposed the Deep Q-
Network (DQN), where the Q-function is approximated by
a deep neural network, to enable Q-learning to handle tasks
with continuous state spaces. The agents are enabled to
directly learn from raw, high-dimensional features without
any prior knowledge about environments. Q-learning
updates Qπðs, aÞ according to the following equation

Qπ sn, anð Þ = 1 − ηnð ÞQπ sn, anð Þ + ηn Rn + γ max
a∈A

Qπ sn+1, að Þ
h i

,

ð10Þ

Caching
Agent

...

...

Observe states

Computing node

State keys

Smart contracts

Blocks

Perform actions

Figure 3: Caching agent overview. The caching agent can observe states from the environment, where a state contains statistical features of
keys, smart contracts, and blocks. To minimize the average execution delay of smart contracts, each action performed by the agent might
replace a cached block body with another one to maximize the reward.
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where ηn is the learning rate at timestep n. By greedily select-
ing the action an that maximizes Qπðsn, anÞ from all available
actions at the state sn, the Q values and the rewards can be
continuously improved. As a result, we will obtain π∗ that
maximizes Rn. Hasselt et al. [13] proposed double Q-learn-
ing, where a target network is introduced to decompose
the value selection and evaluation and alleviate the overesti-
mation problem of Q-learning. The parameters of the main
network are copied to the target network after every fixed
number of timesteps in order to stabilize the estimation of
target Q-values. Besides, Wang et al. [14] proposed dueling
DQN that decouples the value function and advantage func-
tion and led to dramatic improvements over the existing Q-
learning methods. Our caching agent is implemented based
on a double-dueling DQN. It comprises a main network
and a target network, which are two dueling DQNs with
completely the same architecture.

Once limit C is reached, the agent will keep updating the
ledger. Each time a key, whose latest value is nonexistent in
the state database, is requested, the corresponding block
body will be treated as a candidate. Upon using the previ-
ously defined state sn as the input of π, action an will be
selected according to the output Q values. Otherwise, if an
Epsilon Greedy scheme is followed, an will be selected ran-
domly from A with probability 1 − ϵ despite the Q values,
which helps the agent avoid overfitting and behave more
aggressively while exploring the environment. Every state
transition tuple ðsn, an, rn, sn+1Þ, where rn is the reward for
performing an and sn+1 is the next state, will be saved in an
experience buffer. Experience replay is performed every fixed
number of timesteps and samples a minibatch of transitions
from the experience buffer as the input to train π by mini-
mizing the loss function

L θð Þ = 1
MB

〠
i∈MB

yi −Qθ si, aið Þ
� �2

, ð11Þ

where θ is the parameters of the main network; MB is the
size of a mini-batch; and yi = ri +maxai′Q

θ−ðsi′, ai′Þ is the tar-
get Q-value output by the target network, whose parameters
are θ−.

While training a caching agent on a computing node,
the growth of the training timestep can only be triggered
by two events that affect the current state that the agent
is observing. The first one is that a new block was gener-
ated, and the second one is that a query request was sent
by the maintaining smart contracts. Both of these events
can change the block states by read or write actions there-
fore affecting the current environment state. Each block
affected by the above events will be treated as a candidate
if its body has not been cached. Subsequently, the agent
will use the aforementioned steps to decide whether to
replace a cached item with the candidate. If a replacement
action is chosen, the computing node will search for the
candidate on the DHT, request it from a responsible stor-
age node, and do the replacement. The details of the above
process are shown in Algorithm 4.

5. Experiment

5.1. Data Dissemination Performance. The simulation is con-
ducted in a local P2P network, whose topology is predefined
using the Watts-Strongatz model. This is a random graph
generation model that produces graphs with small-world
properties, including short average path lengths and high
clustering. Each node is a Raspberry Pi 4 in a local area net-
work and serves as a computing node and a storage node at
the same time. Besides, a server in the same local area net-
work, which is equipped with an Intel Xeon E5-2630 v2
CPU (2.60GHz, 12 cores, 24 logical processors) and 32GB
of RAM, is used as a consensus node to disseminate block
data to the P2P network. We assume that all nodes have
an equivalent distance to any of their neighbors, and the dis-
tance between two arbitrary nodes is the length of the short-
est path between them. 10,000 blocks, whose sizes are subject
to a scaled standard normal distribution ranging from
128KB to the block size limit (1MB, 2MB, 4MB, or
8MB), are disseminated in sequence. For each new block,
the consensus node always randomly chooses 30 percent of
the storage nodes according to the hash function of DHT
and directly delivers them a complete block replica. After-
ward, these nodes disseminate the block header to all other
computing nodes and storage nodes through Gossip [47],
where the nodes always transmit newly arrived block
headers to a random part of their neighbors.

We count the total dissemination costs by aggregating
the sizes of all end-to-end messages. The transmission cost
for the consensus node to send a complete block to a specific
storage node is defined as the product of the block size and
the shortest distance between them. Since our proposed
scheme is implemented based on Hyperledger Fabric, we
use it as the baseline scheme to compare. In Hyperledger
Fabric, the nodes disseminate complete blocks to each other,
instead of block headers that are much more lightweight.

In Figure 4(a), we evaluate the total dissemination costs
in networks with different numbers of nodes from 20 to
100. The fan-out of each node is 2, and the maximum block
size is 2MB. The value of fan-out represents how many
neighbors at most a node randomly selects to forward the
data it received. Thus, once a node receives a new block
header, it will select 2 random nodes from all of its neigh-
bors, except the one the header came from, and forward
the header to them. As the number of nodes grows, the costs
of Hyperledger Fabric increase much faster than our scheme.
This is because it is hard for a node to avoid forwarding mes-
sages to the neighbors that have held the duplicates as the
network topology becomes more complex. It leads to consid-
erable redundant transmission costs as a result. Compared
to Hyperledger Fabric, since block headers require fewer
costs to be transmitted, our scheme is more efficient, espe-
cially in larger-scale networks. The main costs come from
the processes where consensus nodes send complete blocks
to specific nodes. Thus, our scheme performs better in
large-scale IIoT networks.

In Figure 4(b), we study the relationship between block
size limit and dissemination costs. A higher block size limit
allows the consensus service to pack more transactions into
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the same block. Two conditions trigger the generation of
new blocks: one is that the total size of the collected transac-
tions exceeded the block size limit, and the other is that the
time has reached the block interval limit. Therefore, setting a
proper block size limit is important to improve the through-
put of a blockchain system. An inappropriate block size limit
can break the balance between system throughput and
latency. Thus, we evaluate the costs, respectively, under
block sizes limit from 1MB to 8MB. The fan-out is 2 like-
wise and the network size is 100. The results show that
setting a larger block size limit is helpful to reduce dissemi-
nation costs. Our scheme only costs around 30 percent com-
pared to Hyperledger Fabric when the maximum block size
is 1MB. This ratio becomes around 35% when the maxi-
mum block size is larger than 4MB. Thus, our scheme pro-
vides better efficiency while using larger block size limits.
When it comes to industrial, a higher block size limit is
required considering the rapid generation of data, which is
preferred in our scheme.

In Figure 4(c), we explore the impact of fan-out on data
dissemination performance. With a proper value of fan-out,

the consensus of new blocks can be reached faster in the
network. An unfit fan-out might lead to network congestion
as too many messages are transmitted simultaneously. Since
Hyperledger Fabric mainly uses the push action of Gossip to
broadcast new blocks, where a push action implies a node
forwards a message it newly received to another one, we
count the number of total push actions as a measure of data
disseminating performance. However, note that fan-out is
unlimited in our proposed scheme. Because the size of a
block header is small enough, which means far fewer data
are required to be transmitted, disseminating a block header
to all neighbors is allowed without concern about the
congestion it might bring to the network. The values of
fan-out from 1 to 5 are applied while evaluating Hyperledger
Fabric. As shown, it needs to set a fan-out value that is not
smaller than 5 to achieve a total push number approximate
to our scheme. To avoid conflicts between transactions,
new blocks are usually generated very frequently in a per-
missioned blockchain, where the interval is as short as a
few seconds. While frequently disseminating blocks in the
local network, high fan-out values can cause unexpected

Require: Cache Agent π, Main Network Update Frequency Fθ, Target Network Update Frequency Fθ− , BlockchainBC , State Data-
base SDB
1: Initialize the main network of π with θ
2: Initialize the target network of π with θ−

3: Initialize experience buffer buf ⟸∅
4: Initialize timestep n⟸ 0
5: for each new transaction tx or smart contract query request req do
6: if tx ≠ null then
7: ws⟸ the keys whose values were affected by tx
8: if req ≠ null then
9: rs⟸ the keys whose values were read by req
10: for each key k in ws or rs do
11: Bi ⟸ the block that defines the latest value of k in SDB
12: Update the state BF i of Bi according to Equation (2)
13: Treat the block body Di of Bi as a candidate
14: if Di is not in cache then
15: Obtain sn according to Equation (3)
16: if n ≠ 0 then
17: buf ⟸ buf ∪ fðsn−1, an−1, rn−1, snÞg
18: with probability 1 − ϵ select
19: an ⟸ argmaxa∈AQπðsn, aÞ
20: otherwise
21: Select random an from A

22: if an ≠ 0 then
23: Delete Dan

from BC and update SDB according to Algorithm 3
24: Address Bi on DHT for the responsible storage nodes by hashing I i
25: Request Di from a storage node with low latency
26: Insert Di into BC and update SDB according to Algorithm 2
27: Obtain rn according to Equation (7)
28: if n mod Fθ− = 0 then
29: Copy θ to the target network of π
30: if n mod Fθ = 0 then
31: Sample a mini-batch from buf
32: Minimize Equation (11) and update θ
33: n⟸ n + 1

Algorithm 4: Train Caching Agent on Computing Node.
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network congestion. Due to fewer communication times, our
scheme can improve the performance of reaching a consen-
sus on new blocks in dense networks.

5.2. Caching Performance. We conduct the caching agent
(using Python 3.8 and PyTorch 1.10) and deploy it on a Rasp-
berry Pi, which serves as a computing node only. The model of
the agent sequentially contains a convolutional layer with a
kernel size 1 × 5, two parallel DNNs that are, respectively, a
value function network and an advantage function network,
and an output layer with 128 neurons. The value function net-
work contains two linear layers, sequentially with 128 neurons
and 64 neurons. The advantage function network contains
two linear layers, sequentially with 128 neurons and 1 neuron.

The input (state space) size and the output (action space) size
of the agent are, respectively, 128 × 5 and 128, following the
aforementioned MDP definition. It means that our agent can
consider 128 cached blocks each time it makes a decision.
The capacity of the experience buffer is 100,000, which means
how many recent interactions with the environment can be
remembered while using the experience replay technique to
train the agent. The mini-batch size MB = 32, which means
how many interactions will be sampled from the experience
buffer and used as a training batch. The discount factor γ =
0:9, which means how important the agent thinks of the
long-term history. The reward function weight factor β starts
at 1:0 and gradually declines to 0:0 after keeping the rewards
stable, which means that we will first use the hand-crafted
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Figure 4: (a) The proposed scheme vs. Hyperledger Fabric. Comparison of blockchain data dissemination costs under different network
sizes from 20 to 100. (b) The proposed scheme vs. Hyperledger Fabric. Comparison of blockchain data dissemination costs under
different block size limits from 1MB to 8MB. (c) The proposed scheme vs. Hyperledger Fabric. Comparison of the total numbers of
push actions under different Gossip fan-out values from 1 to 5.
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reward to train the agent and slowly transit to the actual
reward. The main network is updated every 4 timesteps. The
target network is updated every 10,000 timesteps.

A ledger can contain a huge number of block bodies, so
the state space and the action space can be very large,
depending on the value of C . Training such a caching agent
with large input and output in an acceptable time is compu-
tationally intensive. Since our scheme is oriented to those
IIoT nodes with limited computational resources, it’s
impracticable for the agent to directly take all cached block
bodies as input. It’s necessary to reduce the sizes of the state
space and action space. Thus, while our agent is obtaining
states from the environment, it considers only 128 cached
items that are randomly selected from the C ones. Although
the agent cannot fully consider all cached items at once in
doing so, it can still work well because each cached item
has an equal chance to be selected if the agent interacts with
the environment frequently enough. It lightens the model
and makes it practical for these resource-constrained nodes
to use the agent. Training with experience replay enables
the agent to continuously learn from the historical interac-
tions, which means it can take the previously selected cached
items into account while making decisions.

The simulated DRL environment includes 30 smart
contracts and a ledger that can cache at most C = 10, 000
blocks. The delays for requesting the block bodies are sub-
ject to an even distribution ranging from 1ms to 10ms. A
smart contract always reads or writes a random part of spe-
cific keys in the ledger. The probabilities that data in block
bodies are read or written by the contracts are subject to
Zipf distribution, which is implemented using the Numpy
Zipf library and with parameter α > 1:0. According to Zipf’s
law, the frequency of an item is the reciprocal of its rank
multiplied by the highest frequency. The greater α is, the
more concentrated the data distribution will be. Every time
data in an uncached block item are requested, the agent will
treat it as a candidate and decide on whether to replace a
cached item with it. Following the above distribution
setting, we keep generating new blocks and evaluate the
performance of our agent.

In Figure 5, we plot the rewards returned by the environ-
ment under different values of α. As shown, the rewards all
increase fast at the beginning, which implies that our agent
only requires a few steps to learn how to improve the
rewards. These rewards are mainly produced by the extrinsic
part of the reward function because most of the initial
cached items are not popular enough. Actions that replace
them with more popular items can easily receive high extrin-
sic rewards, according to our definition. It also explains why
the rewards start declining after their peaks and stabilize
after 200,000 timesteps. As the decision-making process
continues, the impact of the extrinsic reward becomes weak,
because all the cached items tend to have approximate pop-
ularity, and performing a cache replacement action that
involves two approximate items will only receive a small
reward. Therefore, the rewards stabilize at similar values as
intrinsic rewards have taken the dominant position. This
figure testifies to the effect of the proposed reward function
on the convergence performance.

In Figure 6, we evaluate the effect that our caching agent
can make on reducing the time spent requesting data while
executing smart contracts. As baselines, we introduce LRU
and LFU. LRU records the last time that each block body
is cached and selects the least recently requested item. LFU
counts the number of requests for each block body and
selects the item with the minimum number of requests.
We can see that the total delay reductions of our agent lag
behind the baselines. This is because our agent needs a few
steps to experience various kinds of actions and learn to
determine what actions are preferred. LRU and LFU are
already deterministic caching strategies that do not require
time to learn from the context. As expected, our agent soon
outperforms LFU by a large margin under different values of
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Figure 5: Reward fluctuations. Different Zipf parameters α from
1.1 to 1.7 are applied to the environment.
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α. The results show that our agent can effectively shorten the
time of requesting data from other nodes and therefore
improve the efficiency of smart contracts on IIoT nodes with
limited storage.

In Figure 7(a), we study the relationship between param-
eter α and delay reduction. The smaller the value of α is, the
more difficult the caching tasks will be due to more data
items that are required to be considered. As illustrated, the
total delay reductions of our scheme are around 13% better
than LFU when α = 1:8. This ratio can increase up to 20%
as the value of α decreases to 1:1. The advantage over the
baselines is more significant when the popularity of data
items is more dispersed. This figure shows that our agent

offers good adaptability to environments, especially those
with extremely diverse popularity distributions.

In Figure 7(b), we grow the number of total blocks in the
environment to explore whether the agent can provide equal
caching performance under different cache capacities. Note
that, the value of C we set always equals 10% of the number
of total blocks. Setting α = 1:1, we, respectively, evaluate the
total delay reductions under numbers of blocks from 60,000
to 150,000. Our agent outperforms LFU by around 15% when
ledger capacity C = 6, 000. As the value of C increases to
15,000, this advantage can be over 25%. It implies that our agent
can offer satisfactory caching performance when it handles a
caching problem that involves a large number of data items.
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Figure 7: (a) Our proposed caching agent vs. LFU and LRU. Comparison of total delay reductions under various α from 1.1 to 1.8. (b) Our
proposed caching agent vs. LFU and LRU. Comparison of total delay reductions under various numbers of total blocks from 60,000 to
150,000. (c) Our proposed caching agent vs. LFU and LRU. Comparison of deprecated data percentages under various α from 1.1 to 1.8.
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In Figure 7(c), we try to verify whether the agent can learn
to avoid caching those blocks, whose data are not fresh. As
aforementioned, the values of keys can be updated or deleted.
Some values defined in a block might have been deprecated
and will not be read anymore. We call them deprecated data.
If the value of a key is frequently updated, the freshness of the
block where its latest value is defined will be undermined. In
contrast, if the value of a key is frequently read but rarely
updated, the block which contains its latest value should be
more likely to be cached. As a metric, we use the percentage
of deprecated data to measure how fresh a cached block is.
As shown, our scheme can effectively reduce the percentage
of deprecated data compared to the baselines, especially when
the popularity distribution is concentrated. As the value of α
increases, the percentage gets lower.When α = 1:8, it can pro-
vide a deprecated data percentage that is 75% lower than LFU.
The results show that our agent has the ability to avoid
caching those nonfresh blocks.

6. Conclusions

In this paper, we proposed a caching-enabled permissioned
blockchain scheme for IIoT based on DRL, which is aimed
at helping IIoT nodes improve smart contract execution effi-
ciency when they do not have sufficient storage resources to
maintain complete blockchain ledgers. First of all, we opti-
mized the ledger structure, where block bodies are optional
to be stored and a new field VariationSet is introduced into
the block header to enable IIoT nodes to reach consensus
faster without concrete block data. Focusing on the charac-
teristics of the IIoT, we designed a general network architec-
ture and the corresponding transaction flow. Afterward, we
formulated the caching problem according to our defined
system model as an MDP. Proper features about keys,
blocks, and smart contracts are taken into consideration in
the decision-making process. Additionally, an extrinsic
reward is introduced into the reward function to help the
caching agent faster converge. Finally, we implemented a
lightweight caching agent based on deep Q-learning. The
extensive experimental results show that our proposed
scheme can effectively reduce the costs of disseminating
blocks and the execution delay of smart contracts on IIoT
nodes that can only hold limited blockchain data.

7. Future Work

Blockchain oracles, which provide a mechanism to fetch
external information for smart contracts, have shown the
potential to improve the interoperability of blockchain sys-
tems [48]. We believe that this technology is important for
IIoT blockchains to access extremely large-scale off-chain
data. However, a smart contract that requires oracles to be
involved can generate many transactions that do not contain
meaningful blockchain data. To better support the IIoT
blockchains that work with oracles, we plan to explore how
to enable our scheme to avoid caching those meaningless
oracle-related transactions to improve storage efficiency in
the future.
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