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Various detection methods have been proposed for defense against group shilling attacks in recommender systems; however, these
methods cannot effectively detect attack groups generated based on adversarial attacks (e.g., GOAT) or mixed attack groups. In
this study, we propose a two-stage method, called KC-GCN, which is based on k-cliques and graph convolutional networks.
First, we construct a user relationship graph, generate suspicious candidate groups, and extract influential users by calculating
the user nearest-neighbor similarity. We construct the user relationship graph by calculating the edge weight between any two
users through analyzing their similarity over suspicious time intervals on each item. Second, we combine the extracted user
initial embeddings and the structural features hidden in the user relationship graph to detect attackers. On the Netflix and
sampled Amazon datasets, the detection results of KC-GCN surpass those of the state-of-the-art methods under different types
of group shilling attacks. The F1-measure of KC-GCN can reach above 93% and 87% on these two datasets, respectively.

1. Introduction

The amount of Internet data is exploding with the rapid
development of information technology, consequently lead-
ing to the increasingly prominent problem of information
overload. By analyzing a user’s historical behavior informa-
tion, recommender systems can extract user preferences
and automatically recommend favorite items or services to
users [1–3], which have become an essential component of
many online information services, including e-commerce
[4, 5], live broadcast platforms [6], personalized travel rec-
ommendation systems [7], and Internet of Vehicles wireless
systems [8], among many others. However, due to their
openness, fraudulent users can create and inject a large
number of fake user profiles into recommender systems,
which can change recommendation results and reduce user
experience. For example, The New York Times and Buzzfeed
News have reported that many sellers turned to black hat
tactics to drive Amazon sales on their products (https://
pattern.com/news/pattern-analysis-on-amazon-star-rating-
featured-in-new-york-times-buzzfeed/). In recent years, var-

ious types of shilling attack models have been presented,
including random attacks [9], average attacks [10], and the
latest adversarial attacks [11]. Group shilling attacks have
also been proposed to generate a group of attack profiles
on the basis of the abovementioned individual shilling
attacks [12]. Research on group shilling attacks showed that
group attacks greatly affect recommender systems when
compared to traditional individual attacks [13, 14] because
attack users in the same shilling group collude with each
other to attack targets, while each attack profile looks more
like a genuine profile [15]. Nowadays, people have become
increasingly conscious of the importance of shilling attack
governance in recommender systems. Many service plat-
forms, such as Amazon, Tripadvisor, and Taobao, are con-
stantly seeking efficient mechanisms to enhance user
experience and satisfaction (https://www.bbc.com/news/
business-61154748). Therefore, accurate detection under
group shilling attacks has emerged as a crucial problem for
the existing recommender system security.

In recent years, various detection approaches have been
put forward to defend recommender systems from group

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 2854874, 15 pages
https://doi.org/10.1155/2023/2854874

https://orcid.org/0000-0003-1175-429X
https://orcid.org/0000-0002-3562-7538
https://orcid.org/0000-0002-4174-8870
https://pattern.com/news/pattern-analysis-on-amazon-star-rating-featured-in-new-york-times-buzzfeed/
https://pattern.com/news/pattern-analysis-on-amazon-star-rating-featured-in-new-york-times-buzzfeed/
https://pattern.com/news/pattern-analysis-on-amazon-star-rating-featured-in-new-york-times-buzzfeed/
https://www.bbc.com/news/business-61154748
https://www.bbc.com/news/business-61154748
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2854874


shilling attacks [16–21]. Most of these methods detect shil-
ling groups based on frequent synchronization behaviors
on more than one item or through the analysis of the differ-
ences in the rating pattern of genuine and attack users. How-
ever, these approaches do not perform well if the group
attack profiles are generated and injected based on AOP
[9], adversarial attacks, or mixed attacks because all attackers
in the same shilling group may not attack identical target
items. The injected attack profiles are also diverse and look
more like genuine ones under these attacks.

To solve the abovementioned constraints, we present
herein a two-stage method, called KC-GCN. It is a semi-
supervised group shilling attack detection model based on
k-cliques and the graph convolutional network (GCN) [22,
23]. First, a user relationship graph is generated, and influ-
ential users are extracted using the k-clique algorithm and
the user nearest-neighbor similarity on the graph. We con-
struct the user relationship graph by calculating the edge
weight between any two users through the analysis of their
similarity over suspicious time intervals on each item. Sec-
ond, we obtain the user initial embeddings and train a
GCN-based classifier.

The significant contributions of this work are as follows:

(1) We construct a weighted user relationship graph, in
which the weight is calculated from the perspectives
of user preference, attack intention, and time syn-
chronization, to highlight the user relationship
between attack users

(2) We use the multilayer graph convolution network to
fuse the initial embedded features extracted from the
user rating behavior with the structural features hid-
den in the user relationship graph to extract more
effective detection features

(3) The experiments on the Netflix and Amazon data-
sets demonstrate that KC-GCN outperforms base-
line methods in terms of detecting various types of
group shilling attacks

The rest of this paper is structured as follows: Section 2
presents the background information and related work, Sec-
tion 3 provides a detailed description of the proposed detec-
tion methodology primarily divided into two sections (i.e.,
extracting influential users and identifying attack users using
the trained semi-supervised classifier), Section 4 provides a
comparative analysis of the experimental findings, and Sec-
tion 5 presents the conclusions.

2. Background and Related Work

2.1. Group Shilling Attacks. To escape from the existing
methods of detecting individual shilling attacks (e.g., ran-
dom attack, average attack, and AOP attack), Wang et al.
[24] proposed two generative models of group shilling
attack, called GSAGens and GSAGenl. In these attack
models, fake profiles are first generated based on one type
of individual shilling attacks. Based on which, group shilling
attack profiles are then constructed and injected into a set of

genuine profiles. The GSAGens model has more stringent
conditions when generating group shilling profiles; hence,
the group size under GSAGens is smaller than that under
GSAGenl. Considering the attack effect on the target items,
we only use GSAGenl to generate the group shilling attack
profiles, in which the fake profile includes the selected item
set, the filler item set, the target item set, and the unrated
item set. More details for the group shilling attacks used in
this paper are described as follows:

(1) GSAGenl Ran: generate loose group attack profiles
based on a random attack, where the selected items
are null, the filler items are randomly chosen, and
only one attacker from the whole group rates the
items. The filler item rating is the system mean.
The target item rating is set to rmax or rmin

(2) GSAGenl Ave: generate loose group attack profiles on
the basis of an average attack, where the selected
items are null, the filler items are randomly chosen,
and only one attacker from the whole group rates
the items. The filler item rating is the item mean.
The target item rating is set to rmax or rmin

(3) GSAGenl AOP: generate loose group attack profiles
based on 50% AOP attack, where the selected items
are null, the filler items are randomly chosen, and
only one attacker from the whole group rates those
items with top 50% popularity. The filler item rating
is the item mean. The target item rating is set to rmax
or rmin

(4) GSAGenl GOAT: generate loose group attack profiles
based on the adversarial attack, called GOAT [11],
where each fake user’s selected and filler items are
randomly chosen from an item-item graph based
on genuine user profiles. A generative adversarial
network is used to generate the ratings of the selected
and filler items based on the genuine rating distribu-
tion. The target items have ratings of rmax − 1 or
rmin + 1

(5) GSAGenl Mixed: generate mixed multiple shilling
groups generated according to the four abovemen-
tioned group shilling attacks

2.2. Related Work

2.2.1. Individual Shilling Attack Detection Methods. Chirita
et al. [25] and Burke et al. [26] proposed attack user detec-
tion indicators to identify shilling attackers based on fraud-
ulent user rating behavior patterns. These indicators were
suitable for detecting specific attacks (i.e., random attack),
but failed under obfuscated attacks (e.g., AOP attack). To
detect various attack types, Zhang et al. [27] proposed an
attack detection framework based on label propagation.
The framework used the label propagation algorithm to
obtain the suspicious probability of each user. Although this
method did not require the consideration of particular attack
strategies, it needs a certain number of seed users and must
know the number of attackers in advance. Zhang et al. [28]
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put forward an unsupervised attack detection method, called
UD-HMM, which first determined each user’s degree of sus-
picion based on their hidden Markov model behavior before
utilizing hierarchical clustering to identify attackers. How-
ever, this method did not work for detecting the AOP attack
profiles. Yang et al. [29] proposed a unified detection frame-
work that can detect various malicious attacks, including
common access injection and shilling attacks. Their frame-
work transformed the user rating behavior into a coupled
association network. The network connections and nodes
were assessed for trustworthiness by utilizing coupling factor
graphs and label propagation algorithms. Meanwhile, Hao
and Zhang [30] proposed a deep learning-based and com-
munity detection unsupervised approach, called DECDM.
They constructed a graph of weighted user relationships
based on user behavior similarity and then reconstructed
the user relationship graph using stacked denoising autoen-
coders (SDAEs) and the k-means algorithm. The experi-
ments showed that the method has excellent detection
performance on multiple individual shilling attacks. How-
ever, it uses the SDAEs multiple times to extract graph fea-
tures with different damage rates, resulting in a high
algorithm time complexity. Ebrahimian and Kashef [31]
proposed a hybrid shilling attack detection model based on
the convolutional and recurrent neural networks, which first
converted the rating matrix into a three-dimensional array
of users, products, and days; extracted the user feature vector
by using the convolutional neural network (CNN) model;
and finally used the RNN model to divide users into two cat-
egories: genuine and attacker users. This model did not rely
on specific types of attacks and considered the user charac-
teristics in the time dimension. However, the experimental
results on the two datasets of Netflix and MovieLens showed
that the detection performance was extremely unstable as
the filler size changed. Zhou and Duan [32] proposed a
coforest algorithm-based semi-supervised recommendation
attack detection method that requires setting a reasonable
value for each hyperparameter. Zhang et al. [33] proposed
GraphRfi, which trains the GCN to obtain the prediction
error and introduces neural random forests to detect fraud-
ulent users. Similar to that in [32], the method also requires
multiple hyperparameters, and the detection result is easily
affected by the hyperparameters.

2.2.2. Group Attack Detection Methods. Zhou et al. [16] pro-
posed the DeR-TIA to identify group attack profiles. In the
first stage, they calculated the user profile attributes using
improved RDMA and DegSim. In the second stage, they fil-
tered out attack profiles by using the target item analysis.
This method works well for identifying high-correlation
attack profiles but fails to detect attack groups with a strong
diversity. Zhou et al. [17] proposed a detection method,
called SVM-TIA, based on the support vector machine and
target item analysis. This method can improve the detection
precision by using target items but does not have a high
recall. Zhang and Wang [18] proposed the GD-BKM
method to detect group shilling attacks. They generated can-
didate groups based on the rating tracks for each item and
calculated the candidate group suspiciousness using the user

activity and group item attention degree. They then finally
spotted attack groups by using the bisecting k-means algo-
rithm. This method can exhibit an excellent detection perfor-
mance, regardless of the number of target items. However, it
becomes less effective when the size of the shilling group is
small. Zhang et al. [19] proposed the GAGE method based
on graph embedding. First, they extracted user embeddings
using the Node2vec method. Next, they obtained candidate
groups by using the k-means++ algorithm and calculated the
group suspicious degrees. Ultimately, they identified attack
groups using Ward’s hierarchical-clustering algorithm. Their
method uses Node2vec sampling with a certain randomness,
thereby leading to deviations in the candidate group division
and unstable detection results. Meanwhile, Yu et al. [20] pro-
posed the GAD-MDST method based on maximum dense
subtensor mining. This method can automatically generate
multiscale user features by fusing a CNN and a feature pyra-
mid network but is not suitable for detecting smaller-sized
shilling groups. In our previous work [21], we proposed the
TP-GBF method by using strongly correlated behaviors
among group members and group behavior characteristics,
which combined indirect behaviors with the direct collusion
behaviors to highlight the collusive relationship between
attackers in the same shilling group. TP-GBF performed well
on the Netflix dataset but was less effective on the real dataset
because it failed to detect smaller-sized attack groups.

For easy comparison of the above works, we summarize
them in Table 1.

3. GCN-Based Group Shilling Attack
Detection Model

Figure 1 depicts the two stages of the KC-GCN detection
framework: influential user extraction and attack user iden-
tification. In the first stage, we build the user relationship
graph by determining the user similarity based on the item
suspicious time window. Next, we use the k-clique commu-
nity discovery algorithm to generate suspicious candidate
groups. Finally, we obtain the influential users by calculating
the user nearest-neighbor similarity. In the second stage, we
extract the users’ initial embeddings from four dimensions.
We then combined the extracted user initial embeddings
with the structural features hidden in the user relationship
graph to train a semi-supervised classifier based on a two-
layer GCN, which only utilizes the labels of the identified
influential users.

The notations used in this paper are described in Table 2.

3.1. Extracting Influential Users

3.1.1. Constructing a Weighted User Relationship Graph.
Attackers in a shilling group typically cooperate to quickly
enhance or demote the recommendation of one or more tar-
get items. Based on this characteristic of group attacks, the
rating distribution of a target item may fluctuate during
the attacked time period. Therefore, we construct a weighted
user relationship graph by extracting the suspicious time
windows of the suspicious items and calculating the correla-
tion between users within the suspicious time windows.
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Table 1: Comparison of different shilling attack detection methods.

Category Approaches Advantage Disadvantage

Individual shilling attack
detection methods

Chirita et al. [25] and
Burke et al. [26]

Effective for specific attacks
Less effective under obfuscated attacks,

e.g., AOP attack

Zhang et al. [27]
A unified framework for detecting various

shilling attacks
Require prior knowledge of attacks

Zhang et al. [28] Effective for a wide variety of shilling attacks Less effective under the AOP attack

Yang et al. [29]
A unified framework for detecting common

access injection and shilling attacks
Require setting more parameters

Hao and Zhang [30] Automatic feature learning High computational cost

Ebrahimian and
Kashef [31]

Regardless of the specific attacks Unstable detection performance

Zhou and Duan [32] High detection precision Require setting hyperparameters

Zhang et al. [33] Consider both user preference and reliability Require multiple hyperparameters

Group attack detection
methods

Zhou et al. [16]
Effective for detecting those shilling group

profiles with high-correlation
Less effective for attack group profiles

with a strong diversity

Zhou et al. [17] High detection precision
Low recall under attacks with a small

attack size

Zhang and Wang
[18]

Excellent detection performance regardless of
the number of target items

Less effective under smaller-sized groups

Zhang et al. [19] Automatic feature extraction Unstable detection results

Yu et al. [20] Automatic feature extraction Less effective under a smaller group size

Cai and Zhang [21]
Effective for detecting tightly coupled shilling

groups
Less effective under smaller-sized shilling

groups on the Amazon dataset
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Figure 1: Detection framework of KC-GCN.
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Definition 1 (item window abnormal degree, IWAD). For
∀p ∈ P and ∀w ∈W, the abnormal degree of item p on win-
dow m refers to the ratio of the number of users who rated
item p with high ratings to the total number of users who
rated it on time window w, which is referred to IWADp,w
and calculated by

IWADp,w =
∑u∈UΓ u, p,wð Þ

NRp,w
, ð1Þ

where NRp,w represents the number of ratings of item p on
the time window w. The time window is regarded as suspi-
cious if IWADp,w > 0:5. Γðu,p,wÞ is an indicator function,
which is formulated as

Γu,p,w =
1, if ru,p ≥ 4,

0, otherwise:

(
ð2Þ

Definition 2 (user rating synchronization, URS). For ∀ui, uj

∈U , their rating synchronization refers to how close their
rating behavior is within the suspicious time window, which
is denoted as URSðui, ujÞ and calculated by

URS ui, uj

À Á
= 〠

p∈N ui ,ujð Þ,r ui ,pð Þ≥4,r uj ,pð Þ≥4
1 −

t ui, pð Þ − t uj, p
À Á

τ

 !
,

ð3Þ

where Nðui, ujÞ represents the set of items corated by
users ui and uj, and the rating time is within the suspicious
time window of item p;that is, IWADp,w > 0:5.

Definition 3 (user short preference similarity, USPS). For ∀
ui, uj ∈U , their short preference similarity is defined as the
ratio of jNðui, ujÞj to jNðuiÞj ∪ jNðujÞj − jNðui, ujÞj, which
is denoted as USPSðui, ujÞ and calculated by

USPS ui, uj

À Á
=

N ui, uj

À Á�� ��
N uið Þj j ∪ N uj

À Á�� �� − N ui, uj

À Á�� �� , ð4Þ

whereNðuiÞ andNðujÞ represent the rating item set of users ui
and uj, respectively. jNðui, ujÞj represents the number of items
for which user ui and user uj have the same preference within
the suspicious time window, and jNðuiÞj ∪ jNðujÞj represents
the total number of items rated by user ui and user uj.

Definition 4 (user similarity, US). For ∀ui, uj ∈U , their user
similarity refers to the closeness of their rating times and
similarity of their preferences on suspicious items, which is
denoted as USðui, ujÞ and calculated by

US ui, uj

À Á
= URS ui, uj

À Á
× USPS ui, uj

À Á
: ð5Þ

Based on the above definition, a weighted user relation-
ship graph can be constructed. The weighted user relation-
ship graph construction algorithm is described as follows.

Algorithm 1 is divided into two parts. The first part
(lines 1–6) calculates the suspicious time window for each
item, with a time complexity of Oðn ∗ vÞ. The second part
(lines 7–21) calculates the relevance degree US of each user
and constructs a user relationship graph, with a time com-
plexity of Oðm2Þ. In conclusion, Algorithm 1 has a time
complexity of about Oðm2Þ.
3.1.2. Extracting Influential Users. Li et al. [34] proposed the
maximization problem that is aimed at selecting seed nodes
from numerous nodes, thereby maximizing the influence of
information on large-scale network transmission [35]. Inspired
by the seed node idea, we only used the influential node labels to
reduce the cost of labeling a large number of samples.

We present herein a two-stage method for extracting
influential users. First, we generate suspicious candidate
groups on the weighted user relationship graph using the k
-clique algorithm [21]. Next, we extract influential users by
calculating the user nearest-neighbor similarity.

The main steps of generating candidate groups based on
the k-clique algorithm are as follows:

(1) Traverse each node in the user relationship graph to
find a complete subgraph Gi = fui1, ui2,⋯, uikg con-
taining k users, and add the users in Gi into the tight-
ness community set TCS

(2) Convert the TCS into an overlapping community
matrix O, where the diagonal elements in the matrix
O represent the number of users in the community,
and the off-diagonal elements represent the number
of shared users in adjacent communities

(3) Merge the small communities in the overlapping
community matrix O to obtain the community adja-
cency matrix A. In the matrix O, these diagonal ele-
ments with a value less than k and off-diagonal
elements with a value less than k − 1 are set to 0,
while the left elements are set to 1

(4) Generate the suspicious candidate group based on
the community adjacency matrix A

Table 2: Notations and their descriptions.

Notation Description

U = u1, u2,⋯, umf g Set of users in the rating dataset

P = p1, p2,⋯, pnf g Set of items in the rating dataset

R = rij
Â Ã

m×n User-item rating matrix

T = tij
Â Ã

m×n User-item rating time matrix

W = w1,w2,⋯,wvf g Set of time windows in the rating dataset

G = U , E,Gh i A weight user relationship graph

⋅j j The number of elements in a set

X Users’ initial embedding matrix
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Definition 5 (user nearest neighbor similarity, UNNS). For
∀ui ∈U , the user’s nearest neighbor similarity refers to the
average similarity between the user and its neighbors, which
is denoted as UNNSðuiÞ and calculated by

UNNS uið Þ =
∑uj∈Neighbor uið ÞUR ui, uj

À Á
Neighbor uið Þj j , ð6Þ

whereURðui, ujÞ represents the similarity of users ui and uj.

Definition 6 (influential user, IU). Influential users refer to
those users whose nearest neighbor similarity is larger than
that of all its first-order neighbors.

The algorithm for extracting influential users based on
the k-clique algorithm and user nearest neighbor similarity
is described as follows.

Algorithm 2 is divided into four parts. The first part
(lines 1–12) identifies tight communities in the graph and
generates a community relationship matrix with a time com-
plexity of Oðm ∗ lÞ +Oðl2Þ. The second part (lines 13–19)
merges communities to generate a community adjacency
matrix with a time complexity of Oðl2Þ +Oðl2Þ. The third
part (lines 20–24) generates candidate suspicious groups
according to the community adjacency matrix, with a time
complexity of Oð1Þ. The last part (lines 25–29) extracts an
influential user set based on the user nearest neighbor simi-
larity, with a time complexity of Oðl ∗mÞ. In conclusion,
Algorithm 2 has a time complexity of about Oðm ∗ lÞ.

3.2. Detecting Attack Users

3.2.1. Generating User Initial Embeddings. Some node-
embedding methods (e.g., matrix factorization and autoen-
coders) are automatic but usually generated using a random-
ization strategy and cannot represent well the initial node
embeddings. Therefore, we generate the user embeddings
herein from four perspectives.

Definition 7 (user lifetime proportion, ULP). For ∀ui ∈U ,
the user lifetime proportion refers to the ratio of the lifetime
of user ui in the system to the lifetime of the entire system,
which is denoted as ULPðuiÞ and calculated by

ULP uið Þ = URT ui, maxð Þ −URT ui, minð Þ
SL

, ð7Þ

where URTðui, maxÞ and URTðui, minÞ represent the latest
and the earliest rating time of user ui, respectively. SL repre-
sents the lifetime of the entire system.

Definition 8 (user nearest neighbor rating synchronization,
UNNRS). For ∀ui ∈U , the user’s neighbor rating synchroni-
zation refers to the average rating synchronization between
the user and its neighbors, which is denoted as UNNRSðuiÞ
and calculated by

UNNRS uið Þ =
∑uj∈Neighbor uið ÞURS ui, uj

À Á
Neighbor uið Þj j , ð8Þ

where URSðui, ujÞ means the synchronization degree of user

Input: the rating matrix R, the rating time matrix T , the size of sliding time window Ws, the time window anomaly threshold δ, and
the relationship strength threshold σ
Output: a weighted user relationship graph G
1. E⟵∅ ; C⟵ 0m×n
2. for each item p ∈ Pdo
3. for each time window ∀w ∈Wdo
4. compute IWADp,w according to Eq. (1)
5. end for
6. end for
7. for each user ui ∈Udo
8. for each user uj ∈Udo
9. compute URSðui, ujÞ according to Eq. (3)
10. compute USPSðui, ujÞ according to Eq. (4)
11. ifURSðui, ujÞ > σthen
12. compute USðui, ujÞ according to Eq. (5)
13. C½ui�½uj�⟵USðui, ujÞ
14. E⟵ E ∪ fðui, ujÞg
15. else
16. USðui, ujÞ⟵ 0
17. end if
18. end for
19. end for
20. construct a weight user relationship graph G = hU , E, Ci
21. returnG

Algorithm 1: Constructing a weighted user relationship graph.
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ui and user uj and jNeighborðuiÞj represents the number of
first-order neighbors of user ui.

Definition 9 (user nearest neighbor preference similarity,
UNNPS). For ∀ui ∈U , the user’s nearest neighbor preference
refers to the average preference similarity between the user
and its direct neighbors, which is denoted as UNNPSðuiÞ
and calculated by

UNNPS uið Þ =
∑uj∈Neighbor uið ÞUPS ui, uj

À Á
Neighbor uið Þj j , ð9Þ

where UPSðui, ujÞ represents the preference similarity of
user ui and user uj.

Based on the above definition, we extract the initial
embedding Xu = ðULPu, UNNRSu, UNNPSu, UNNSuÞ of
user u.

3.2.2. Identifying Attack Users Based on the GCN. In previous
graph embedding-based group shilling attack detection
methods, researchers focused on how to obtain high-
quality user node embeddings in the graph. Zhang et al.

[19] obtained a low-dimensional embedding vector of nodes
in the graph by adopting the Node2vec method that focuses
on obtaining the structural characteristics of the user’s topo-
logical neighborhood but ignores the characteristic informa-
tion of the nodes themselves. The existing group attack
detection methods also use hard classification, in which
members from the same group are classified as genuine users
or attackers, resulting in the misclassification of some users
[18–21]. To this end, we utilize user high-quality embedding
features from both implicit and explicit perspectives by com-
bining user initial embeddings with their higher-order topo-
logical neighborhood structures based on the GCN and
employing influential node labels to identify attack users.

We first extract the high-quality embeddings of user
nodes based on the user initial embedding matrix X and
the weighted matrix C. The GCN propagation process is for-
mulated as follows:

H l+1ð Þ = σ ~D
−1/2~C~D

−1/2
H lð ÞW lð Þ

� �
, ð10Þ

where Hðl+1Þ represents the output after one convolutional

layer. HðlÞ is the input of the lth layer. Hð0Þ = XjNj×4

Input: the user’s relationship graph G = hU , E, Ci, the size of smallest clique k
Output: set of influential users IUS
1. CSG⟵∅ ;O⟵ 0jLj×jLj ; A⟵ 0jLj×jLj
2. for each user ui ∈Udo
3. ifGi = fui1, ui2,⋯, uikg and Gi ⊆G and ∀Cðuim, uinÞ ≠ 0then
4. TG⟵ TG ∪Gi
5. end if
6. end for
7. forGi ∈ TGdo
8. O½i�½i�⟵ jGij
9. forGj ∈ TGdo
10. O½i�½j�⟵ jGi ∩Gjj
11. end for
12. end for
13. for∀i, j ∈ L and i ≠ jdo
14. ifO½i�½i� < k or O½i�½j� ≤ k − 1then
15. A½i�½i�⟵ 0
16. A½i�½j�⟵ 0
17. else
18. A½i�½i�⟵ 1
19. A½i�½j�⟵ 1
20. end if
21. end for
22. for∀i, j ∈ Ldo
23. ifA½i�½j� = 1then
24. CSG⟵Gi ∪Gj

25. end if
26. end for
27. for each community cs ∈ CSGdo.
28. for each user u ∈ csdo
29. ifUNNSu > UNNSNeighborðuÞthen
30. IUS⟵ IUS ∪ fug
31. returnIUS

Algorithm 2: Extracting influential users.
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represents the user initial embedding matrix. N is the total
number of user nodes in the graph, and the feature vector
of each user is represented as Xu = ðULPu, UNNRSu,
UNNPSu, UNNSuÞ. ~C = C + IN is the adjacency matrix by
adding self-connection. ~D is the degree matrix, and ~Dii =
∑j

~Aij. WðlÞ ∈ RP×H denotes the parameter matrix to be
trained, P represents the length of the feature matrix, and
H represents the number of hidden units. σ is the corre-
sponding activation function, such as Re LUð⋅Þ =max ð0, ⋅ Þ.

High-quality user embeddings can be obtained after
multiple convolutional layers. We utilize two convolutional
layers and ReLU as the activation function.

We then calculate the cross-entropy between the real
label one-hot vector Y of all influential user nodes and the
label vector T predicted by softmax. Subsequently, we utilize
the gradient descent method to train the parameter matrix
Wð0Þ andWð1Þ. The formula for calculating the loss function
is as follows.

loss = −〠
l∈ϒL

〠
T

t=1
Ylf ln Zlf , ð11Þ

where ϒL is the set of influential user nodes with labels.
Finally, the resulting model is expressed as

Z = f X, Cð Þ = softmax ĈReLU ĈXW 0ð Þ
� �

W 1ð Þ
� �

, ð12Þ

where Z represents the set of user labels after classifica-

tion by the softmax function. Ĉ = ~D
−1/2~C~D

−1/2
represents

the weighted matrix C after symmetric normalization.
The algorithm for detecting attackers is described as

follows.
Algorithm 3 is divided into two parts. The first part

(lines 1–8) uses GCN semi-supervised classification model
training to get the classification result Z of all user nodes.
The second part (lines 9–14) filters out the attack users
according to the classification result Z.

4. Experimental Evaluation

4.1. Experimental Datasets. The following two datasets are
utilized as the experimental datasets to evaluate how well
the proposed KC-GCN method performs.

(1) Netflix dataset (this dataset was constructed to sup-
port the participants in the Netflix prize (http://
netflixprize.com)): this dataset contains 1,032,938
ratings and the rating time for 17,770 movies by
480,186 users. The ratings are expressed in integers
from 1 to 5, where 1 and 5 indicate disliked and most
liked, respectively. We randomly sample 215,884 rat-
ings and the rating time of 2000 users on 4000
movies for use in the experimental dataset. Similar
to the previous research, the 2000 extracted users
are regarded as genuine users. Multiple group attack
profiles are generated and injected into the dataset

by using the group shilling attack model introduced
in Section 2.1. Under GSAGenl Ave, GSAGenl Ran,
and GSAGenl AOP, 10 attack groups are generated
each time. The filler size is set to 2%, and the attack
size is set to 2.5%, 5%, 7.5%, and 10%. The target
items in each attack group are randomly selected
from unpopular items. Two target item strategies
are set (denoted as ST1 and ST2) to prove the influ-
ence of the relationship between the attack users in
the same group on the detection performance. ST1
means that all attackers of the same group rate all
the target items (number of target items in the exper-
iments: 3). ST2 means that each attacker of the same
group rate any three of the five target items. This
results to 4 ∗ 2 ∗ 3 ∗ 2 = 48 experimental datasets
generated. We generate loose group attack profiles
to verify the universality of the proposed method
using the GSAGenl GOAT and GSAGenl Mixed
attack models introduced in Section 2.1 and two tar-
get item strategies. The dataset generated based on
the GSAGenl GOAT attack model specifically con-
tains eight attack groups. The dataset generated
based on the GSAGenl Mixed attack model contains
26 attack groups. For convenience of description,
under the condition of the target item strategies
ST1 and ST2, the shilling attack groups generated
are denoted as loosely and tightly coupled shilling
groups, respectively

(2) Amazon dataset [36]: this dataset contains 1,205,125
ratings and the rating time on 136,785 products from
645,072 users crawled from Amazon.cn until August
20, 2012. The ratings are integers between 1 and 5,
which indicate disliked and most liked, respectively.
We evaluate the proposed method using a sampled
dataset with 5055 labeled users. The dataset consists
of 53,777 ratings of 17,610 products by 3118 genuine
users and 1937 attack users

4.2. Evaluation Metrics. Three metrics including precision,
recall, and F1-measure are used to evaluate the detection
performance of the KC-GCN:

Precision =
TP

TP + FP
, ð13Þ

Recall = TP
TP + FN

, ð14Þ

F1‐measure =
2 × Precision × Recall
Precision + Recall

, ð15Þ

where TP represents the number of attackers accurately rec-
ognized, FN represents the number of attackers mistaken for
genuine users, and FP represents the number of genuine
users mistaken for attackers.

4.3. Parameter Selection. Figure 2 shows how the F1-measure
of the KC-GCN is influenced by parameters θ and k on the
Netflix and Amazon datasets. In Figure 2(a), the F1-
measure of KC-GCN is the highest for detecting the
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GSAGenl Ran attack on the Netflix dataset under a θ value
set to 0.01. Under a smaller θ value, the user relationship
graph contains a large number of weak relationship edges,
and the community structure is not obvious, leading to a
decrease of the detection precision. At a larger θ, the user
relationship graph shows an obvious community structure,
but some user nodes are filtered from the graph, thereby
degrading the detection recall. Moreover, k = 4 has a supe-
rior detection performance than k = 3; therefore, for the Net-
flix dataset, we set k to 4 and θ to 0.01. Figure 2(b) shows
that when θ = 0:052 and k = 3, the F1-measure of KC-GCN
is close to 0.8776 on the sampled Amazon dataset, which is
the best. Therefore, we set k to 3 and θ to 0.052 for the sam-
pled Amazon dataset.

4.4. Experimental Results and Analysis. To verify the effec-
tiveness of KC-GCN, we compare the precision, recall, and
F1-measure of KC-GCN with the following methods.

We assess the precision, recall, and F1-measure of KC-
GCN in comparison to the following methods to confirm
its efficacy.

(1) Catch the Black Sheep (CBS) [27]: this detection
method uses label propagation to iteratively calculate
the malicious probability of users and items, which
needs the number of spammers and a certain num-
ber of seed users in advance. In contrast to the exper-
iments, the number of seed users on the two datasets
is consistent with that of our method

(2) GAGE [19]: this is an unsupervised group shilling
attack detection method based on graph embedding,
which learns the low-dimensional vector representa-
tion of nodes in the user relationship graph using
Node2vec and obtains attack groups through cluster-
ing. In the experiments, the working strategy is
adjusted by setting parameters p = 7 and q = 0:2
and group size ðGSÞ = 30

(3) TP-GBF [20]: this is an unsupervised group shilling
attack detection method based on the strong
association between the group members and the
group behavior features, which uses a topological
potential-based community partition algorithm to

Input: the weighted user’s relationship graph G, the influential user’s set IUS, the user initial embedding matrix X, and maximum
training epoch K
Output: set of attack users AU
1. AU⟵∅
2. fork = 1 to Kdo
3. compute Z according to Eq. (12)
4. compute loss according to Eq. (11)
5. Gradient zeroing
6. Back propagation calculation gradient value
7. Update parameters by using gradient descent
8. end for
9. for each z ∈ Zdo
10. ifz = 1then
11. AU⟵AU ∪ fzg
12. end if
13. end for
14. returnAU

Algorithm 3: Detecting attack users.
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Figure 2: The influence of parameters θ and k on the F1-measure of KC-GCN.
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generate tight subgraphs as candidate groups and
cluster attack groups by group behavior features. In
the experiments, parameter θ is set to 2, while
parameter σ is set to 1 and 0.47 in the Netflix and
Amazon datasets, respectively

4.4.1. Comparison of the Detection Results on the Netflix
Dataset. Table 3 compares KC-GCN and three baseline
methods to identify the group shilling attacks with tightly
coupled shilling groups at various attack sizes on the Netflix
dataset. In Table 3, the precision and recall values of the CBS
remain stable for detecting three types of group shilling
attacks, only slightly changing the attack size from 2.5% to
10%. The CBS detection performance is much lower than
that of KC-GCN when detecting various types of group shil-
ling attacks with tightly coupled shilling groups, albeit the
number of attackers is assumed in advance. Meanwhile, the
precision values of GAGE under three types of group attacks
are the worst, indicating the misclassification of a large num-
ber of genuine users as attack ones. This happened because
GAGE generates the user node feature vectors using Node2-
vec, from which a certain degree of randomness may cause
some genuine and attack users to be divided into the same
candidate group. The detection performance of TP-GBF is
better than those of CBS and GAGE when detecting the
group shilling attacks with tightly coupled shilling groups.
The detection recall was not high under the GSAGenl
AOP. Compared with CBS, GAGE, and TP-GBF, KC-GCN
shows the best detection performance because it can extract
more effective features when correctly differentiating attack
profiles from genuine ones. KC-GCN uses a weighted graph
to aggregate the neighbor features, thereby effectively avoid-
ing the merging of user features with different labels. It can
fully integrate the user node and structural features, further
increasing the difference between attackers and normal
users. In conclusion, KC-GCN outperforms the baselines
for detecting various types of group shilling attacks with
tightly coupled shilling groups at various attack sizes on
the Netflix dataset.

Table 4 compares the performances of our proposed KC-
GCN and three baseline methods in terms of detecting
group shilling attacks with loosely coupled shilling groups
at various attack sizes on the Netflix dataset. In Table 4,
the precision and recall values of CBS under the three attack
models significantly decrease when the relationship between
users within the attack group is weakened. This indicates
that improving the detection performance is difficult when
relying only on the rating bias. The GAGE performance
becomes better with the attack size increase, but its precision
greatly fluctuates because it may falsely identify some nor-
mal users as attackers. TP-GBF shows an excellent detection
performance under the GSAGenl Ran and GSAGenl Ave
attacks but is less effective under the GSAGenl AOP attack.
Its detection performance becomes extremely unstable with
the change of the attack size. KC-GCN yields the best detec-
tion performance among the four methods. It shows a slight
decline in detecting loosely coupled shilling groups mainly
because the feature differences between the attackers and
the genuine users are weakened with a looser relationship

in a group. In conclusion, KC-GCN outperforms the base-
line methods in detecting various types of group shilling
attacks with loosely coupled shilling groups at various attack
sizes on the Netflix dataset.

Figure 3 compares the detection results of the four detec-
tion methods under the GSAGenl GOAT attack on the Net-
flix dataset. In the Netflix dataset, the precision, recall, and
F1-measure of CBS when identifying tightly and loosely
coupled shilling groups are 0.6791, 0.8184, and 0.7422 and
0.6352, 0.7656, and 0.6943, respectively. The detection per-
formance of CBS is constrained by the number and influence
of seed users. These results also indicate that CBS can
achieve superior detection performance when a closer rela-
tionship exists between the group members. The precision,
recall, and F1-measure of GAGE for detecting the tightly
and loosely coupled shilling groups are 0.4046, 0.6968, and
0.5119 and 0.3157, 0.9120, and 0.4690, respectively. These
results indicate that GAGE is less effective on the Netflix
dataset under the GSAGenl GOAT attack because the
GOAT attack model uses the genuine user profile as a tem-
plate to generate the attack profile, which is highly similar to
the genuine user. However, the user node feature vector
obtained by the Node2vec method cannot effectively distin-
guish genuine users and attackers. For TP-GBF, the preci-
sion, recall, and F1-measure of the tightly coupled shilling
groups are 0.9905, 0.7269, and 0.8385, respectively, while
those for the loosely coupled shilling groups are 0.7036,
0.5000, and 0.5846, respectively. TP-GBF shows an
extremely high precision in identifying the tightly coupled
shilling groups; nevertheless, the recall of TP-GBF is poor
when identifying the loosely coupled shilling groups because
it cannot distinguish weakly related attack groups. Figure 3
shows that GAGE and TP-GBF have poor performances
when detecting attack groups generated based on GOAT
because the profiles generated by GOAT are very similar to
the genuine profiles. The precision, recall, and F1-measure
of KC-GCN for detecting the tightly coupled shilling groups
are 1, 0.9857, and 0.9928, respectively, while those for the
loosely coupled shilling groups are 1, 0.9282, and 0.9628,
respectively. These results show that KC-GCN is effective
and outperforms the three baseline methods for detecting
groups under the GSAGenl GOAT attack on the Netflix
dataset. In other words, the feature differences between the
attackers and the genuine users can be reinforced by using
the weighted GCN to aggregate the user node features.

Figure 4 compares the detection results of the four detec-
tion methods under the GSAGenl Mixed attack on the Net-
flix dataset. In this dataset, the precision, recall, and F1-
measure of CBS for identifying the tightly and loosely
coupled shilling groups are 0.8190, 0.9992, and 0.9002 and
0.8191, 0.9996, and 0.9004, respectively. CBS remains stable
when detecting the tightly and loosely coupled group shilling
attacks. GAGE shows precision, recall, and F1-measure of
0.9542, 0.9275, and 0.9407, respectively, for the tightly
coupled shilling groups. For the loosely coupled shilling
groups, the precision, recall, and F1-measure of GAGE are
0.8212, 0.9376, and 0.8759, respectively. Its detection perfor-
mance significantly declines with the weakening user rela-
tionships. The main reason for this is that with the
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weakening user relationship in the group, its spatial struc-
ture changes, resulting in obvious changes in the initial user
embedding and a significant decrease in the detection per-
formance. The precision, recall, and F1-measure of TP-
GBF for detecting tightly coupled shilling groups are
0.7209, 0.8204, and 0.7674, respectively, while those for
loosely coupled shilling groups are 0.6620, 0.6141, and
0.6372, respectively. TP-GBF is less effective on the Netflix
dataset under the GSAGenl Mixed attack. The precision,
recall, and F1-measure of KC-GCN for identifying the

tightly and loosely coupled shilling groups are 0.9978,
0.9430, and 0.9696 and 0.9583, 0.9705, and 0.9644, respec-
tively. These findings demonstrate that KC-GCN is effective
and outperforms the three baseline methods in terms of pre-
cision and F1-measure under the GSAGenl Mixed attack on
the Netflix dataset.

Figure 5 shows the results of the four detection methods
on the sampled Amazon dataset. The detection performance
of KC-GCN is superior to that of the baseline methods on
this dataset, yielding precision, recall, and F1-measure of

Table 3: Comparison between KC-GCN and other detection methods for detecting group shilling attacks with tightly coupled shilling
groups at various attack sizes on the Netflix dataset.

Attack type Metrics Method
Attack size

2.5% 5% 7.5% 10%

GSAGenl Ran

Precision

CBS 0.7811 0.7979 0.7974 0.8019

GAGE 0.5630 0.8906 0.7856 0.9124

TP-GBF 0.9944 1.0000 0.9987 0.9973

KC-GCN 0.9954 0.9937 0.9965 1.0000

Recall

CBS 0.9716 0.9879 0.9870 0.9912

GAGE 0.9918 0.9904 0.9815 0.9696

TP-GBF 0.9152 0.9428 0.9054 0.8189

KC-GCN 0.9487 0.9822 0.9725 0.9886

F1-measure

CBS 0.8660 0.8828 0.8821 0.8866

GAGE 0.7183 0.9379 0.8727 0.9401

TP-GBF 0.9532 0.9706 0.9498 0.8993

KC-GCN 0.9715 0.9879 0.9844 0.9943

GSAGenl Ave

Precision

CBS 0.8045 0.8076 0.8125 0.8098

GAGE 0.8584 0.7445 0.8913 0.7624

TP-GBF 0.9944 0.9870 1.0000 0.9989

KC-GCN 0.9925 0.9932 0.9918 0.9986

Recall CBS 0.9797 0.9815 0.9865 0.9838

F1-measure

GAGE 0.9876 0.9856 0.8518 0.9748

TP-GBF 0.9383 0.9159 0.8941 0.9782

KC-GCN 0.9500 0.9735 0.9871 0.9914

CBS 0.8835 0.8861 0.8911 0.8884

GAGE 0.9185 0.8483 0.8711 0.8556

TP-GBF 0.9655 0.9501 0.9441 0.9884

KC-GCN 0.9708 0.9833 0.9894 0.9950

GSAGenl AOP

Precision

CBS 0.6915 0.7035 0.7242 0.7214

GAGE 0.7051 0.7479 0.806 0.7507

TP-GBF 0.9764 0.9837 0.9854 0.9914

KC-GCN 0.9740 0.9875 0.9773 0.9886

Recall CBS 0.8512 0.8657 0.8866 0.8843

F1-measure

GAGE 0.9806 0.9322 0.9725 0.9679

TP-GBF 0.8118 0.8025 0.8477 0.7744

KC-GCN 0.9615 0.9080 0.9556 0.9255

CBS 0.7631 0.7762 0.7972 0.7946

GAGE 0.8203 0.8299 0.8815 0.8456

TP-GBF 0.8865 0.8839 0.9114 0.8696

KC-GCN 0.9677 0.9461 0.9663 0.9560
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0.9179, 0.8407, and 0.8776, respectively. This indicates that
KC-GCN can effectively combine user node and graph
structure features to construct new user features by using
GCN, which can distinguish genuine and attack users on
the sampled Amazon dataset. The precision, recall, and F1-
measure of CBS are 0.6836, 0.8323, and 0.7507, respectively.
This means that CBS can detect attack users on the Amazon
dataset but that its detection performance is determined by
the number of seed users. Meanwhile, GAGE exhibits
0.8004, 0.9277, and 0.8594 of precision, recall, and F1-mea-
sure, respectively. The result indicates that GAGE has a cer-

tain randomness when sampling with Node2vec, which
leads to a bias in the division of the candidate groups, and
a precision measurement performance is lower than that of
KC-GCN. The precision, recall, and F1-measure of TP-
GBF are 0.9283, 0.6467, and 0.7623, respectively. This preci-
sion is not much higher than that of KC-GCN, but its recall
is lower than that of KC-GCN, indicating that TP-GBF may
have filtered out some attack groups with a low density. In
summary, KC-GCN shows a superior detection performance
over GAGE, CBS, and TP-GBF on the sampled Amazon
dataset.

Table 4: Comparison between KC-GCN and other detection methods for detecting group shilling attacks with loosely coupled shilling
groups at various attack sizes on the Netflix dataset.

Attack type Metrics Method
Attack size

2.5% 5% 7.5% 10%

GSAGenl Ran

Precision

CBS 0.7993 0.6441 0.6422 0.6479

GAGE 0.8749 0.8102 0.8749 0.9078

TP-GBF 1.0000 0.9985 0.8247 0.6856

KC-GCN 0.9683 0.9852 0.9858 0.9593

Recall

CBS 0.9730 0.7835 0.7796 0.7866

GAGE 0.9459 0.9868 0.9509 0.9933

TP-GBF 0.8555 0.8242 0.8451 0.7768

KC-GCN 0.9313 0.8965 0.8910 0.9940

F1-measure

CBS 0.8777 0.7070 0.7042 0.7105

GAGE 0.9090 0.8898 0.9113 0.9486

TP-GBF 0.9221 0.9030 0.8348 0.7284

KC-GCN 0.9494 0.9399 0.9360 0.9763

GSAGenl Ave

Precision

CBS 0.7972 0.6439 0.6439 0.6487

GAGE 0.6345 0.8544 0.8491 0.9070

TP-GBF 0.4497 0.5362 0.5939 0.9137

KC-GCN 0.9542 0.9783 0.9800 0.9600

Recall CBS 0.9723 0.7823 0.7823 0.7879

F1-measure

GAGE 0.9884 0.9482 0.9900 0.9138

TP-GBF 0.7055 0.7977 0.7687 0.7704

KC-GCN 0.9843 0.9184 0.9188 0.9941

CBS 0.8761 0.7064 0.7064 0.7115

GAGE 0.7729 0.8988 0.9142 0.9104

TP-GBF 0.5493 0.6413 0.6701 0.8360

KC-GCN 0.9690 0.9474 0.9484 0.9767

GSAGenl AOP

Precision

CBS 0.5401 0.5624 0.5655 0.5569

GAGE 0.5501 0.6043 0.4545 0.7517

TP-GBF 0.8733 0.5643 0.7359 0.6868

KC-GCN 0.9589 0.9294 0.9620 0.9540

Recall CBS 0.6664 0.6906 0.6944 0.6824

F1-measure

GAGE 0.9151 0.9170 0.9444 0.9372

TP-GBF 0.7773 0.7208 0.7655 0.7361

KC-GCN 0.9211 0.9875 0.9048 0.9432

CBS 0.5967 0.6200 0.6233 0.6133

GAGE 0.6871 0.7285 0.6134 0.8343

TP-GBF 0.8225 0.6330 0.7504 0.7106

KC-GCN 0.9396 0.9576 0.9325 0.9486
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5. Conclusions and Future Work

In this work, we put forward a two-stage semi-supervised
model to validly detect various types of group shilling
attacks on recommender systems. First, we construct a
user relationship graph and spot the influential users.
In the graph, the edge weight is calculated by analyzing
the user similarity over suspicious time intervals on each
item. Next, we generate the initial user embeddings
based on the proposed four indicators describing the

behavior difference between attack and genuine users. A
GCN-based classifier is trained, and the attack users are
detected based on the influential user labels. The experi-
mental results prove the effectiveness and the generality
of KC-GCN.

In the future work, we will automatically determine the
labels of most influential users by further analyzing the
structural properties of the weighted user relationship graph.
We will also study the multiaspect data [37] to further help
identify users of group shilling attack.
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Figure 3: Comparison of the detection results of the four detection methods on the Netflix dataset under the GSAGenl GOAT attack.
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Figure 4: Comparison of the detection results of the four detection methods on the Netflix dataset under the GSAGenl Mixed attack.
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Figure 5: Comparison of the detection results of the four detection methods on the Amazon dataset.
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