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In a cloud radio access network, malicious users mitigate the attributes of primary users in order to occupy a specific idle spectrum
band by sending false signals or carry out a denial of service attack. Moreover, with the increase in number of users and limited
spectral and energy resources, the malicious users will compete for the spectrum with legitimate users, thus resulting in increase in
spectrum scarcity problem. The most widely used defense approach against malicious users is the received signal strength method.
However, harmful users can still imitate signal attributes and transmit powers of the primary users. Therefore, in order to
elaborate the best method to tackle this vulnerability and hence make more spectrum available, the modified adaptive
orthogonal matching pursuit localization algorithm is proposed to detect harmful users existing in the network. However, in
order to elaborate the convergence speed of the proposed method, the regularized particle filter algorithm is applied to evaluate
the performance of the modified adaptive orthogonal matching pursuit under real-time conditions. The restricted isometry
property is used for the performance evaluation. Further, spectral and energy efficiencies are used in the simulation results for
performance evaluation, in order to observe spectrum and energy utilization efficiencies. The simulation results show that the
proposed method is better in terms of computational complexity, spectral efficiency, and energy efficiency compared to other

matching pursuit approaches.

1. Introduction

1.1. Motivation. Spectrum shortage problem experienced by
wireless communication network users can be addressed by
cognitive radio (CR) technology. In a CR network, second-
ary users (SUs) sense spectrum and access white space with-
out bringing about any harmful interference to the primary
users (PUs) [1]. However, the SUs generally have no overall
information about the network spectrum resource utilization
because a CR network should not interact with a primary
network. Therefore, security is an essential problem among
all the main technical issues of CR networks; however, it is
not well addressed. Conventional wireless networks face
security threats such as primary user emulation attacks
(PUEASs) which is one of the common and severe denial of
service attacks [2]. In PUEAs, a malicious attacker can imi-

tate the characteristics of a PU and then send a false signal
or conduct a wireless channel attack in order to occupy a
specific unused frequency band [3]. Besides, the access node
may prevent the SU from accessing the spectrum under the
pretext that there is no free resource, when the SU wants to
access spectrum resources. PUEAs restrain other legal SUs
from using the spectrum hole or causing harmful interfer-
ence to PUs. Nevertheless, cloud radio access network
(CRAN) faces serious challenges of security threats and trust
problems because of its transmission nature and self-
organizing feature. Therefore, due to limited spectral and
energy resources and increased number of connected
devices, the malicious users cause spectrum unavailability
to legitimate users by competing for the available spectrum
with the PUs [4]. Therefore, there is a need for security
approaches to sense and remove attacks from the system
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without affecting spectral and energy utilization and caus-
ing delay. This paper focuses on detecting harmful users
existing in a CRAN to guarantee the quality of experience
of valid user.

1.2. Related Work. The received signal energy is used in most
approaches in the literature to defend against PUEAs. An
energy detection method and a cyclostationary calculation
to indicate the features of the energy levels of a user have
been proposed [5]. These features are then delivered into
an artificial neural network. A new PUEA has been devised,
a technique that estimates the invariance of the medium
through which information is transmitted, and the variation
of the PU received signal strength has been proposed [6].
This information is used to verify if it is a PU or a harmful
user signal. Although the technique proves that the invariant
of a medium is vital for PUEA prevention, if the PU received
signal power is identical to the attacker’s signal power, it will
not work. Moreover, the received signal strength was pro-
posed as a method to detect the PUEA location [7]. A
method to confirm a transmitter based on the received signal
strength through prove of the signal attributes, the intensity
of the energy of the received signal, and the localization of
the signal source has been devised [8]. Although this method
can effectively defeat the PUEA, it intensifies load on the
network and is easily disturbed by obstacles. The power level
and the direction of arrival of a received signal are used by a
SU to compare the received signal with that of the PU in
order to differentiate the actual primary signal from mali-
cious user’s signal [9]. However, this method will fail if a
harmful user is at a site where the direction of arrival and
the received signal level are identical to the PU’s signal. Fur-
thermore, a novel multipath cluster-assisted single station
localization method based on a genetic algorithm-based
improved salp swarm algorithm was proposed to improve
localization accuracy in an outdoor propagation environ-
ment. The localization is based on geometrical properties
of propagation paths, such as angle of arrival and time of
arrival [10]. However, the salp swam optimization algorithm
has some conceptual and mathematical errors, which the
improved version in [10] has tackled [11].

Nevertheless, cryptographic approaches have been pro-
posed for the PUEA detection. A technique that produces
an authentication tag and inserts it in the PU’s signal has
been presented [12]. This technique is noise sensitive, and
thus, PU signals are distorted eventually. Moreover, the
deployment of the advanced encryption standard at the
transmitter, in order to prevent the PUEA without produc-
ing any change to the physical or system structure, has been
proposed [13]. However, finding the location of the harmful
user using the Taylor series necessitates a good initial value
in order to give high-quality outcomes for the site of the
intruder, and the accuracy of the method is low [14]. Never-
theless, in order to enable an SU to acquire authentic con-
nection signatures of the helper node, a physical layer
authentication scheme has been extensively studied. The sig-
natures are acquired by placing a helper node near a PU, in
order to verify whether the PU’s signal is true or not [15].
However, the SUs cannot identify the authenticity of the
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information of the cryptographic signature and the signature
authentic link when the helper node is assaulted.

Several studies propose the use of compressive sensing
for detection. A sparse coding of the compressed received
signal over a channel-dependent dictionary in order to
detect primary user emulation and jamming attacks in CR
using orthogonal matching pursuit (OMP) has been pro-
posed [16]. Nevertheless, a Forward-Reverse OMP-Union-
Subspace pursuit-based multiuser detection has been pro-
posed, based on fused modified OMP-modified subspace
pursuit algorithm to detect signal elements serially, in line
with corresponding decrease in amplitude [17]. The use of
one-class classification for detecting PUEA using sensing
data collected at the fusion center in an infrastructure-
based CR network has been investigated [18]. However,
there are a number of drawbacks of one-class classification.
There is a need to create complicated solutions that general-
ize well to more complex datasets. Besides, one-class classifi-
cation cannot deal with adversarial data. Moreover, a deep
network-based one-class classification approach is vulnera-
ble to adversarial attacks. It is required to have a domain
generalizable one-class classification. Further, it is hard to
interpret decisions that one-class classification makes, and
the proposed methods need to train one-class classifiers with
distributed data [19]. A survey on various machine learning-
based approaches in spectrum sensing, based on types of fea-
tures extracted from PU signal has been conducted in the lit-
erature. It has been justified that supervised, unsupervised,
and reinforcement machine learning algorithms are applica-
ble in the cooperative spectrum sensing [20]. Moreover, in
order to avoid the distributed denial of service attacks, a
metaheuristic approach has been utilized to cluster the
attack requests used on whale optimization algorithm-
based clustering for distributed denial of service attack
detection [21]. However, deep learning is costly, computa-
tionally extensive, and security-wise unreliable [22].

A number of studies were undertaken to investigate and
utilize PUEA prediction methods. A joint Bayesian model
and trilateration method is proposed in order to acquire a
good approximation of a PU location using the received sig-
nal strength indicator [23]. Moreover, in order to reduce the
impact of malicious attacks on a fading in wireless networks,
a Neyman-Pearson composite hypothesis test-based analyti-
cal model was investigated in [24]. Furthermore, the PUEA
in a CRN was considered, and Fenton’s approximation and
Wald’s sequential probability ratio test were proposed to
detect PUEAs without utilizing any location information
[25]. However, the advantages between the Neyman-
Pearson composite hypothesis test and Wald’s sequential
probability ratio test were analyzed [26]. It has been found
that the Neyman-Pearson composite hypothesis test is more
efficient against certain PUEAs than Wald’s sequential prob-
ability ratio test analyzed, when the PUEA probability of sig-
nal loss is above a critical threshold. Moreover, both
Neyman-Pearson composite hypothesis test and Wald’s
sequential probability ratio test do not apply to all network
types. An improved energy detection approach than the con-
ventional energy detection approaches was proposed using
“hard” fusion OR/AND decision method that supposed a
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PUEA assaults the network under a certain probability. [27].
However, costly hardware is required in situations where
multiple transmitters or harmful users equipped with direc-
tional antenna exist [28].

Methods based on user position are stronger than the
received signal strength- (RSS-) based defense techniques.
The reason is that in most cases for RSS-based defense
methods, harmful users are able to imitate the signal attri-
butes and transmit powers of PUs. Therefore, if a harmful
user is at a location where the direction of arrival and the
received signal level are identical to the PU’s signal, the mali-
cious user would not be detected [2, 13]. As a target localiza-
tion technique, compressed sensing (CS) is a spectrum
sensing approach because of its accuracy, smaller sensing
period, and sampling frequency [28]. Among the various
methods of CS theory for localization, OMP method is more
desirable due to its fast convergence and good reconstruc-
tion performance [2]. However, OMP algorithm has to run
until the number of iterations equals to the number opera-
tions based on the number of transmitters and users [29].
Since the number of operations is constant, accuracy cannot
guarantee for all the time. Moreover, the number of detec-
tion targets variation has not been considered in the litera-
ture. Therefore, in order to achieve a better performance,
when the transmitters are varying and unknown with time,
a CS theory for localization of signal sources based on adap-
tive orthogonal matching pursuit (AOMP) algorithm has
been proposed [2]. However, the number of measurements
can still be high since the AOMP has to run until the average
mean square error meets a predefined stopping criterion.
The modified adaptive orthogonal matching pursuit
(MAOMP) was proposed as a gesture recognition algorithm
[29]. Nevertheless, MAOMP has been proposed to detect
PUEAs in cognitive radio network heterogeneous-CRAN
(H-CRAN) [30]. In order to decrease the number of mea-
surements to some extent and improve accuracy, the
MAOMP method adopts sparsity estimation along with
adjustable step size [29]. However, it does not provide a clear
prove of how the method is fast. Moreover, the motivation and
significance of MAOMP in CR networks were not identified.
In order to reduce the number of iterations, the MAOMP
approach adopts a bigger step size at the beginning. The step
size is then reduced slowly, in order to improve accuracy.
However, the computational complexity of the initial estima-
tion of sparsity is increased. Therefore, the choice of the initial
step size matters. When the initial step size is smaller, the step
size will reduce to 1 quickly. Moreover, it is slow to converge
when the initial sparsity is not close to the real sparsity. Never-
theless, it has been shown that when the real sparsity is greater,
the real sparsity is twice the initial sparsity for any value of the
restricted isometric property (RIP) constant [31]. Therefore,
there is a big gap between the initial sparsity and the real spar-
sity. Hence, more iterations are needed for the algorithm to
converge. Therefore, in order to overcome these setbacks, an
appropriate step size coefficient to adjust the step size has been
proposed [29]. Hence, due to the smaller number of measure-
ments, the MAOMP can be faster than the preceding methods
and thus can give excellent performance in real-time system
conditions.

Several works that exist in the literature propose
methods to solve problems such as in the medical field and
in road traffic control. The authors of [32] proposed a
method to detect human health. Useful information about
a given sample placed in a collimator is obtained from the
difference between former and latter sensed optical spec-
trum. In [33], particle filtering algorithms combined with
the optimal parameter search criterion are used for the accu-
rate extraction of autoregressive model-based respiratory
rate from pulse oximeter recordings over a broad range.
The discrete wavelet transform and OMP techniques are
used to extract different coefficients from the electroenceph-
alographic signals for automatic seizure detection from the
continuous electroencephalographic monitoring data [34].
A compressive sensing based on OMP method and a rigr-
sure adaptive soft threshold noise reduction based on dis-
crete wavelet transform method are proposed to extract the
respiratory and heartbeat signals in patients [35, 36].

Moreover, in [37], road images were used to detect and
count vehicles in order to control traffic flow in an intelligent
manner. Medium filters were used for foreground process-
ing, while histogram oriented gradient was used for training
cascade classifier. In order to set a priority of a road, selec-
tion algorithm is used. Further, a real-time state estimator
and predictor are presented in [38]. The authors focused
particularly on enabling of detector fault alarms and also
its relation to queue-length-based traffic control using parti-
cle filter. Unlike the works in [32-38], the proposed method
in this paper uses previous RF channel state to predict the
next channel state and then applies MAOMP to detect
PUEAs existing in the network.

In the medical field, particle filtering gave accurate
results [33]. Besides, the OMP has been proved to be spe-
cific, accurate, and sensitive in its results. Moreover, OMP
combined with discrete wavelet transform effectively sup-
presses noise in remote monitoring of human vital signs
[34-37]. Furthermore, particle filters used in traffic control
produce results that are satisfactory and promising for fur-
ther work on developing a hybrid model that may be more
practical to achieve automatic adaptation to changing sys-
tem conditions [38]. The physical implementations of the
studies in [32-38] are different from the one in this paper.
Particle filtering and sparse representation are used to solve
problems in the medical field and road traffic control
[32-38]. In this paper, an optimized regularized particle fil-
ter (RPF) is used to predict the next state of an RF channel
in a CRAN with cognitive radios. The RPF is fast and useful
for real-time tracking [39-41]. Moreover, MAOMP is a
sparse representation method with improved accuracy and
speed than OMP. Thus, it can give excellent performance
in real-time system conditions [29]. Therefore, it is promis-
ing that more accurate and faster results can be obtained
when RPF MAOMP is applied in both medical applications
and road traffic control than the methods in [32-38].

1.3. Contributions. In this paper, the RPF algorithm has been
applied in order to evaluate the performance of MAOMP
under real-time conditions. The proposed method consists
of two parts: spectrum prediction and PUEA detection.



Once the next state of the channel is predicted, the MAOMP
algorithm is applied in order to detect and drop PUEAs
existing on the network. Hence, this approach will contrib-
ute greatly in efficient spectral and energy resource utiliza-
tion. The novelty of this study is as follows:

(1) In order to identify the existence or absence of harm-
ful users in the network, the MAOMP method is uti-
lized when the RPF channel state prediction
algorithm is used and when it is not used

(2) In order to reduce the computational complexity, an
appropriate step size coefficient is used to adjust the
step size

(3) To evaluate the performance of the MAOMP algo-
rithm, the RIP is utilized. Spectral and energy effi-
ciencies are used to evaluate the performance of the
proposed algorithm. Moreover, the acquired detec-
tion results are compared with OMP, AOMP, and
sparsity adaptive matching pursuit (SAMP) methods

(4) The computational complexity of OMP, AOMP,
SAMP, and MAOMP algorithms is calculated, and
the results are illustrated in graphs

The organization of the remaining part of this paper is as
follows. The proposed method is illustrated in Section 2. The
problem formulations and algorithm are presented in Sec-
tion 3. The simulation results are presented and discussed
in Section 4. Lastly, the conclusion of this paper is presented
in Section 5.

2. Proposed Method

2.1. System Model. Consider a centralized CRAN setting in
which baseband units (BBUs) and transmitters are con-
nected by a common public radio interface (CPRI); the con-
figuration is shown in Figure 1. Each BBU, located in the
BBU pool, is assigned to each RRH. The BBU functions as
a virtual base station to process baseband signals and opti-
mize resource allocation of the network. In downlink, the
RRHs transmit the radio frequency (RF) signals to user
equipment (UE) while in uplink; they forward the baseband
signals from UE to the BBU pool for further processing. A
set M = {m,, m,, ms, ---,m,,} of M transmitters is assumed
to serve n users. Each transmitter is assumed to have its
own capacity of channels. Suppose the total number of users
assigned to be served by all transmitters is represented by the
set U= {uy, u,, uy, -, u,}. The configuration is shown in
Figure 1. The users are uniformly distributed within the cov-
erage area of each transmitter. All transmitters are expected
to provide coverage to users that are located within their
coverage area.

Consider that a cloud computing unit stores location
information of free spectrum bands. The cloud is used to
analyze the sensed information and store the locations of
the free spectrum bands. Each spectrum sensor reports its
sensing information to the cloud server. A location database
is maintained in the server located in the cloud. The location
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database is used to store position information of free bands
and SUs and update the information in real time.

Let us consider transmitters m1 and m2 in Figure 1 for
simplicity. Suppose a set of SUs located within the coverage
area of a transmitter, with demands greater than the avail-
able bandwidth, want to gain access to the transmitter.
Due to the limited bandwidth, some SUs are deprived of
gaining access to the spectrum on the transmitter. Therefore,
they will monitor the spectrum on other neighboring trans-
mitters to opportunistically gain access to those transmitters.
Assume that some SUs at the edge of their transmitters act as
adversary SUs by imitating the PUs. Hence, the PUEAs
should be detected with accuracy and proper number of iter-
ations. The links between the transmitter and the PUs, SUs,
and PUEAs are shown in blue, green, and red colors, respec-
tively, as illustrated in Figure 1.

Let us assume that the current state of a channel x,
changes from the previous state x(,_;) based on the channel
impulse response k. (1)- Based on the current channel state,
a user objective is obtained and denoted by y(,) at time epi-
sode t. The function that links the state x,) to the user objec-

tive is denoted by y ;. Therefore, the system model is given
by

Xy = h;n(t)x(t—l) + Ve (1)

Yoy =YX + %o (2)

where v,_; and z, are additive white Gaussian noises with
zero mean and unit variance.

Assuming that the SUs are uniformly distributed within
the coverage area of the transmitters, the received power of
the PUs and SUs depends on the pathloss, the shadow fad-
ing, and the transmit power of the transmitters. Therefore,
the received power of user u is calculated by

P, =P, +SE" - PL", (3)

where P, is the remote radio head (RRH) transmit power,
SF" is the shadow fading, and PL!" is the pathloss. The path-
loss depends on the environment of the user. The fading
channel between transmitter m and user u at time episode
t is modeled by the p™ order autoregression process
(AR(p)) [39]. Therefore, the channel impulse response at
time episode t is given by

P
hT(z) = ;‘xihzq(t_l) + ﬂV;n(t)’ (4)

where h)) (i-1) 18 the channel fading impulse for transmitter

t-1)
m and user u at time episode ¢ — 1. oc; and f3 are the autore-
gression (AR) parameters, which assume that oc; = J,(27i
faT4)-Jo is a zero order the Bessel function of the first kind,
f 4 is the Doppler frequency, and T, is the coherence time of
the channel. Suppose other users try to cause interference to
user u as they attempt to connect to the same channel with u
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"~ = Transmitter PU link
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= Transmitter PUEA link
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FIGURE 1: A system model for a cognitive CRAN configuration with PUEAs. Due to the limited bandwidth, some SUs at the edge of their
transmitters will monitor the spectrum on other neighboring transmitters to opportunistically gain access to those transmitters. However,

some SUs will imitate PUs causing PUEA.

, the signal to noise plus interference ratio (SINR) is
expressed by

2

Pu hzq(t)

m

Yu (t)

- m |2 o (5)
5 a,’ka’hk o]+ NoB

k#u

where k is an interferer, P, is the power that the interfering
user exchanges with other users communicating over chan-
nel m, aj is a binary index that indicates whether channel
m is chosen by k or not, and B" is the bandwidth of channel
m. Each user is permitted to choose one channel only. The
power spectral density of noise, denoted by N, is assumed
equal for the entire spectrum. Thus, the total user rate over
channel m at time ¢ is given by

n
™= Z a'B"log, (1 + yffm). (6)

u=1

2.2. Channel State Prediction. This section discusses RPF
algorithm, which is used to predict the channel state and
the rate [40]. Suppose a channel state changes from x, ;)

to x at time episode f, the channel impulse response
h (1) in equation (4) governs the channel’s state change.

However, every user desires higher throughput. Therefore,
the function that links the state x(,) to the objective is

expressed in equation (5). In order to obtain the current
channel state, likelihood equation is utilized. Consider a set
of sample H{y ={h" ), hy' ), h5 > -+ hy )}, drawn from
a random distribution whose probability density function
is parameterized by 6 [40]. 0 is assumed to be the population
that contains all possible values of H E’Z), where 7 is the num-

ber of subcarriers. The likelihood equation is expressed by

m 1 < m 2
o) =maxexp =550 (W =00) |
(7)

where ¢ is the variance. Further, the posterior probability
uses the predicted channel state to predict the rate. Let us
assume that each channel state is associated with its weight
w™;); the weights are normalized such that an/[:lwm(t) =1.
Using Bayesian assumption and given the importance den-
sity (x4 X110 ¥() =P(X(1)|x™;-1))> the optimal channel
weights can eventually be expressed by [40, 41].

wm(t) S wm(t—l)P (x(t) xm(t—l))- (8)

Moreover, a kernel function &, is needed to smoothen
the posterior density. Thus, the posterior density estimation
is given by



6
P()’(z) x(t)) = mZT_Zl w” )8, (x(z) —xm<z)>> )
where
8,(h) = %5(2) (10)

8(.) is the rescaled kernel density, b is the kernel band-
width, and n, is the dimension of the channel state x;).
The kernel density and bandwidth are chosen to minimize
the mean integrated square error between the actual poste-
rior density and the corresponding regularized observation
in equation (9). In a uniformly weighted sample, the optimal
choice of the kernel is the Epanechnikov kernel [40-43].

n,+2 .
TS (- P), i <1,

aopt: Ny (11)
0, Otherwise,

where C, is the volume of the unit hyper sphere in R™.

Moreover, for a Gaussian with a unit covariance, the optimal
kernel bandwidth is expressed by

0] U(n+4
bop = AN with A = 18C, ! (n, +4)(2/7) } et

(12)

Let us assume that y is uniformly distributed and A is the
acceptance probability. The current channel state x™ ;) is

moved to a new state x™* based on the Metropolis-

Hastings algorithm [40, 41]. The acceptance probability to
move to the new state is given by

xm+<r))P(xm+(r> xm<t—1>)
xm(r))P("mm xm(r—l))

P()’W(r)

(ym

Therefore, the next channel state is given by

(13)

A=min < 1,

m+

X <l) = xm(t) + bOth(t) €m, (14)

where Qy is the empirical covariance of the channel and €”
is the channel impulse response drawn from the Epanechni-
kov kernel [41]. Therefore, the channel state hm(t) is moved
to the next state if g <A according to (13); otherwise, the
move is rejected.

3. Problem Formulations and Algorithm

Suppose the locations of the connected transmitters are rep-
resented in matrix D; in order to attain a sparse coefficient D,
the L1 minimization is used to obtain the number of non-
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zero components. The sparse coefficient is expressed by
[44, 45]

D=min D, st.||® - ¢D|[, <v. (15)

Many methods for solving the minimization problem in
equation (15) are available. However, in this paper, the least
square method is used to solve it.

Some of the SUs at the edges of the transmitters are
assumed to imitate the signal characteristics of PUs of the
neighboring transmitters with stronger signal power. Even-
tually, this causes PUEAs on those particular neighboring
transmitters. The nonzero elements in D apparently indicate
the PUEASs that exist in the network, since the rest of the ele-
ments with values equal to zero represent the sites of the
PUs.

3.1. Localization. Although the number of users as well as
their demands varies, it is crucial to know the positions of
active users and RRHs they are connected to. Thus, let
Dy, denote user sites, which is represented by

D:[SI’SZ’.“’Sm’”.’SM}’ (16)

where each s, is an N x 1 vector with an element s, (1) =1
for a particular user u connected to transmitter m, while
the rest of the elements are equal to zero. Therefore, D is
M-sparse.

Consider a Rayleigh energy decay model expressed by
(2]

hm
RT:POd_rZe’ (17)
u

where P, is the power density of transmitter m and e €(2, 5)
is the pathloss exponent determined by the environment.
The energy decay for the M transmitters is represented by

(2]

dy’ dy"

Y=Py| : : (18)
hy, i
S

Therefore, the energy fading in (17) can also be
expressed by

X=¥D. (19)
Consider an arrangement of G measurement entities for

each BBU. Therefore, a measurement matrix of size G x M is
represented by
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Each element ®(g) (1 < g < G) of matrix @ is of the size
1 x M. Let us suppose that (1 < m < M) represents the index
of the transmitter to which the g measurement entity is
connected. Moreover, assume that element @(g, m) of the
1 x M vector O(g) is connected to transmitter m. Let us
assume for transmitter m, that “@” (“g,m”)=1, while the
rest of the elements equal to zero. The value of ®(g, m) =1
for transmitter m, while the rest of the elements equal to
zero. Suppose the measurement entities receive new user
demands as

= OX. (21)

The measurement matrix @ is used as a recovery matrix.
We can see that X is common in (19) and (21). Thus,
substituting (19) in (21) gives us

@ =QYD. (22)

A particular number of transmitters are used to localize
equation (15) accurately for G number of measurements as
represented in equation (22). Let ¢ = @Y¥; therefore, the
compressive measurement can be expressed by

@ =¢D. (23)

Thus, the noisy measurement of matrix @ can be added
in order to improve robustness, which eventually is
expressed by [2]

®=¢D+v, (24)

where vy, is an additive white Gaussian noise.

3.2. Performance Evaluation. In order to evaluate equation
(23), the RIP is utilized. The goal is to reconstruct the
@,y Matrix in order to obtain a guaranteed unique solu-
tion provided that it obeys the RIP as expressed in [30, 31,
40]

(25)

) 1-9, .
H®ﬂb<;ﬁf§ﬂ®m)

where &, € (0,1) is the RIP constant. The noisy measure-
ment is categorized based on the minimum residual error.

3.3. The MAOMP Algorithm. Suppose the reference for the
sparsity estimation is denoted by S and the initial sparsity
by S;- The MAOMP requires the usage of the theoretical
sparsity S. However, MAOMP examines a match in order
to estimate S;. A projection set Y containing the residual
error and the corresponding sets that represent the transmit-
ters and the respective user is computed. The L™ largest
value in Y is selected, and the index of the selected transmit-
ter and the corresponding set are obtained. The correspond-
ing set is the support set of the selected transmitter. The
support set is denoted by D, at time (), and its length is
obtained from the estimated value, which satisfies the condi-

tion of the match. The indices of D, are kept in index set A,,.
The L™ largest value is chosen among the elements in the
projection set Y =|(g,,D))|l=1,2,---, T, where ¢, denotes
the residual error. The corresponding index values of the
L™ largest values are kept in F,. Subsequently, the values
in D; and A, are updated as D =D, ,UD;(l€F,) and
A, =A, UF,, respectively. Then, the residuals are
updated as [29]

(26)

The stage and the variable step size are used to adjust
the filtered values, in order to achieve a better sparse rep-
resentation of D. The MAOMP is a scheme that utilizes
step size coefficient 3, € (0,1) in order to obtain variable
step size. Initially, a larger step size is adopted in order
to lower the number of measurements and then slowly
decrease the step size, and therefore, accuracy is increased.
The step size denoted by step; can be expressed by [29]

step;,; = [ﬁo X stepj}, (27)

where j is the number of iterations and f3, is the step size
coefficient. In every iteration, the estimated sparsity Ljis
computed by

Li,y =L;+step,,. (28)

According to (27), the step size is greater at the begin-
ning of the iteration, but it reduces gradually to 1. This
implies that if the theoretical sparsity and initial sparsity
are not close to one another, the convergence of the esti-
mated value to the theoretical sparsity is slow. Therefore,
since the initial step size is greater, the sparsity estimation
would converge to the theoretical sparsity quickly. Never-
theless, in order to have accurate sparsity estimation, a
smaller step size is used, such that the estimated sparsity
may not be deficient or overestimated. The OMP method
is utilized to solve equation (15). The L greatest value
in the projection set y in step 8 of Algorithm 1 is selected
based on the correlation between the sensing matrix and
the residual error [29]. The MAOMP steps are shown in
Algorithm 1.

Algorithm 2 shows the proposed method for detecting
PUEAs that exist in the network. This method predicts the
next state of a channel then detects the malicious users that
illegally use spectrum. Eventually, the PUEAs will not be
granted access to the spectrum, leaving more available
spectrum.

3.4. Spectral and Energy Efficiencies. Let us assume a set K
={uy, uy, us, -+, u, } of k malicious users, where ;. denotes
a PUEA. Suppose the total bandwidth used by all active
users including the PUEAs is denoted by B and the
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- Input: Dyypr, Pyas d,.

. Output: D and A.

. Initialization: step = step size, S, &, A,, D,.

. Compute projective set Y.

. Test RIP, If true then S, =S, + 1.

. Compute g, Set stage and count to 1, L =,

.If gy <v,goto 2.

— \O O N NV W -

. Calculate Y, choose L' highest value in Y, update A, and D,.
. Compute D = r%inH(f) — @D||,, choose L greatest value, update A, and D,, update &, .

0.1f & > previous &, step;,; = [B, x stepﬂ, L=L+step;,, go to step 6. Else update A, go to step 6.

ALGoriTHM 1: MAOMP.

. Drop detected PUEAs in 4.

N NG AW

. Establish network topology (RRHs and their respective users).

. Obtain channel values and calculate the rate per RRH.

. Predict the next channel state of RRH users using RPF algorithm.
. Apply MAOMP (in Algorithm 1).

. Calculate the rate based on legitimate users.
. Evaluate SE and EE based on equations (29) and (30).

ArgoriTHM 2: RPF MAOMP.

bandwidth occupied by the PUEAs is B"; the spectral effi-
ciency (SE) in b/s/Hz with M active RRHs and G BBUs is
expressed by

S (1)
SE=_=m= /| 29
Gx (B-B") (29)
where r"(t) is the rate at transmitter m at time stamp (t).
Consequently, energy efficiency (EE) in bxs/Joule can be
obtained by

SE
EE= - . (30)
ZalleuPu

4. Results and Discussion

This paper proposes an RPF MAOMP method to detect
PUEAs existing in a network. The PUEAs are detected based
on the predicted channel state. Given the previous state of
channel x(,_;), the current state x,) is predicted based on
the current impulse response h;”m in equation (4). In order
to get user objective y(,), the function y, in equation (5)
links X(y) t0 Yy as shown in equations (1) and (2).

In order to enhance spectral and energy efficiencies, the
main idea is to accurately detect PUEAs present on the net-
work. Therefore, a sparse representation of the detected
transmitter is required. For a system of linear equations rep-
resented by D, the problem is formulated as || D||; subject to
||®@ - ¢D]||,. The L1 minimization looks for a sparse solution
for a problem; hence, it is used to obtain the sparse represen-
tation D. However, L2 produces a unique solution with
smooth fitting. Therefore, based on the channel state x

and user objective y,), the MAOMP is used to detect the

PUEAs present in the network using the L1 minimization.
The RIP is used to characterize matrices which are linearly
orthogonal [46]. Therefore, the RIP is used to evaluate the
performance in order to obtain a guaranteed unique solution
to the sparse matrix D.

4.1. Simulation Setup. This paper considers a CRAN with 9
RRHs operating at 5.25 GHz frequency with 20 MHz band
and 23 dBm transmit power for each RRH. Small-scale fad-
ing and large-scale fading are considered as the radio prop-
agation channel models. Assume user u is located at a
distance of d] meters away from transmitter m, and a line
of sight (LOS) connection is considered between RRH m
communicating with user u in an urban environment. The
pathloss model is obtained by [40]

PL" = 9log,,(d") +35.77 + 30.2log,, (f) +v.  (31)

However, the pathloss model for outdoor users is given
by the nonline of sight (NLOS) model:

PLY =48.1log,,(d}}) + 3.67 + 39.1log,, (f) + v, (32)

where f denotes the frequency in GHz and v is the large-
scale variability of signal against the distance in a straight
path.

A user rate of 1 Mbps and a predefined stopping error of
1x107® are considered in the simulation environment. In
order to calculate the optimal kernel bandwidth, the dimen-
sion n, of channel x is one (1), and the volume of a unit
sphere C, is 7. The RIP constant and step size coefficient

obviously affect the number of measurements and sparsity
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F1GURE 2: Number of operations for the OMP, AOMP, SAMP, and MAOMP algorithms.

estimation. Therefore, in order to reduce the number of iter-
ations and avoid over estimation, the RIP constant is set to
§,=0.2, and the step size coefficient is B,=0.4 [29]. The
number of steps for both SAMP and MAOMP algorithms
is equal to O(n/log(M)). However, the number of operations
for OMP and AOMP algorithms is equal to O(n log (M))
and O(n log (n/M)), respectively [2, 29].

The simulation is run 10 times, each at various user
capacities of up to 50 users per RRH, using MATLAB
software. Up to ten PUEAs are set randomly for each
RRH. However, at most three randomly selected PUEAs
are successful in emulating PUs of a particular transmitter.
For simplicity, the transmitter whose PUEA has the high-
est RSS is chosen and used for performance evaluation.
Thus, the SE and EE values are based on the throughput

of the selected transmitter in the support set. Figures 2-7
show results for the performance comparison between
OMP, AOMP, SAMP, and MAOMP without and with
RPF-based channel state prediction [40]. The RPF has
been proven to be fast and useful for real-time tracking
of channels [39]. Therefore, in this study, MAOMP is sim-
ulated with and without applying RPF algorithm in order
to evaluate its performance. The computational complexity
and the spectral and energy efliciencies are used to evalu-
ate the performance of MAOMP.

4.2. Simulation Results

4.2.1. Number of Operations. Figure 2 shows the number of
operations for OMP, AOMP, SAMP, and MAOMP
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F1GURE 3: Number of measurements for the OMP, AOMP, SAMP, and MAOMP algorithms.

algorithms, respectively, based on the number of users and
the number of transmitters that have been considered in this
paper. Figure 2(a) considers a small number of users per
transmitter, while Figure 2(b) includes larger number of
users for each transmitter. Thus, Figure 2(a) is the zooming
of Figure 2(b) for small number of users. It has been shown
in Figure 2(a) that the number of operations is 50, 100-200,
400-500, and 600-1350 for OMP, MAOMP, AOMP, and
SAMP, respectively. According to Figure 2(a), OMP con-
verges faster than the other three algorithms, while SAMP
is slow to converge. However, Figure 2(b) shows that the
convergence of both MAOMP and SAMP improves when
the number of users in a transmitter is high. Thus, AOMP

is the slowest, while MAOMTP is the fastest to converge when
the number of users in a transmitter is high.

4.2.2. Average Number of Measurements. In order for
AOMP, SAMP, and MAOMP algorithms to stop running,
the residual error has to meet a predefined stopping crite-
rion. In case of AOMP algorithm, the average mean square
error has to be nearest to the predefined stopping criterion
for the iteration to stop. However, MAOMP algorithm
adopts sparsity estimation along with adjustable step size.
Since the step size is adjustable, the number of iterations that
MAOMP algorithm can run is reduced compared to AOMP.
Figure 3 shows the number of measurements for OMP,
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AOMP, SAMP, and MAOMP, respectively. It can be seen in
Figure 3 that for all scenarios, the number of iterations is 52-
60 for OMP, 14 for AOMP, and 3 for both SAMP and
MAOMP, respectively. Since the number of measurements
for both SAMP and MAOMP is the same, Figure 3(b) is
for clarification. It is clear that the number of measurements
for OMP is the highest; thus, it is the slowest. Moreover,
Figure 3 shows that both SAMP and MAOMP are the fast-
est. However, since the number of operations of MAOMP
is smaller than the number of operations of SAMP, accord-
ing to Figure 2, MAOMP is the fastest.

4.2.3. Spectral Efficiency. Figure 4 shows the SE performance
of MAOMP compared to OMP, AOMP, and SAMP without
RPF channel state prediction. Noticeably, the SE values for
OMP and AOMP are the same in all scenarios. The SE
values range between 0.03 and 0.10b/s/Hz, 0.03-0.12b/s/
Hz, 0.34-1.2b/s/Hz, and 0.35-1.15b/s/Hz for OMP, AOMP,
SAMP, and MAOMP, respectively, when RPF is not applied
as shown in Figure 4.

The SE performance of the proposed method is pre-
sented in Figure 5, when RPF prediction is utilized. The SE
values for OMP and AOMP are the same in all scenarios.
Figures 5(a) and 5(b) are shown in order to clarify that both
AOMP and SAMP methods give similar SE values. It can be
seen in Figures 5(a) and 5(b) that the SE values range
between 0.15 and 0.22b/s/Hz for OMP, AOMP, and SAMP
and between 1.45 and 2.25b/s/Hz for MAOMP algorithms,
respectively, when RPF is applied. The SE for the proposed
method is higher than that of the OMP, AOMP, and SAMP
methods. It can clearly be seen in all scenarios that the SE of
MAOMP is higher than that of the OMP, AOMP, and
SAMP.

4.2.4. Energy Efficiency. Figure 6 shows the EE performance
of MAOMP compared to OMP, AOMP, and SAMP without

RPF channel state prediction. The EE values for OMP and
AOMP are similar in all scenarios. Since both OMP and
AOMP produce the same graph, Figures 6(a) and 6(b) are
presented for clarification. Figure 6 shows that the values
of EE range between 0.03 x 10™* and 0.06 x 10~ bxs/Joule
for both OMP and AOMP, 0.33x10™* and 0.92x107™*
bxs/Joule for SAMP, and 0.28 x 10~ and 0.65 x 10~* bxs/
Joule for MAOMP, respectively, when RPF method is not
applied. It is evident from Figure 6 that the EE for MAOMP
is higher than that of the OMP and AOMP. However,
MAOMP is less energy efficient than SAMP when RPF is
not applied.

The EE values for the proposed method are presented in
Figure 7. It can be observed from Figure 7 that the range of
the EE values for OMP, AOMP, and SAMP is very similar
for all scenarios. The EE values range between 0.09 x 10~*
and 0.03 x 10~ bxs/Joule for OMP, AOMP, and SAMP
and between 0.6x10™* and 2.4 x107*bxs/Joule for
MAOMP, respectively, when the RPF is used. It can be seen
that, for all methods, the EE curve is higher with smaller
number of users, and it drops gradually as the number of
users increases.

4.3. Discussions. This section provides the discussion for the
simulation results obtained in Section 4.2. The purpose of
the study is to assess the performance of MAOMP algorithm
in real-time conditions. Since RPF has been proved to be fast
and useful for real-time tracking of channels [40], in this
study, MAOMP is simulated with and without applying
RPF in order to evaluate its performance. The spectral and
energy efficiencies are used to evaluate the performance of
MAOMP.

The number of measurements of OMP is the highest as
illustrated in Figure 3. However, in order to improve accu-
racy, MAOMP algorithm has to run a number of times until
a predefined stopping criterion is met, before the execution
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is passed on to the next iteration. Likewise, AOMP algo-
rithm has to run until the average mean square error meets
the predefined stopping criterion, leading to a higher num-
ber of iterations. Unlike MAOMP, which adopts adjustable
step size in order to reduce the number of iterations, AOMP
algorithm can run for a number of iterations before it out-
puts the detected PUEAs. The number of measurements in
Figure 3 shows the number of times AOMP, SAMP, and
MAOMP algorithms can run before moving on to the next
iteration, respectively. When the number of users is small,
OMP is the fastest because it runs once and does not have
the subiteration for accuracy test that AOMP, MAOMP,
and SAMP algorithms have. However, the convergence of

both MAOMP and SAMP improves when the number of
users in a transmitter is high. AOMP is the slowest to con-
verge, while MAOMP is the fastest to converge when the
number of users in a transmitter is high. It is clear in
Figure 2 that MAOMP outperforms OMP, AOMP, and
SAMP. This is because the sparsity estimation for MAOMP
is adopted along with an adjustable step size in order to
reduce the number of measurements to some extent and
improve accuracy [28, 47].

In Figures 4 and 5, the SE performance of the proposed
method is the best compared to that of OMP, AOMP, and
SAMP methods due to the improved accuracy for MAOMP
[29]. Moreover, the number of operations of MAOMP is
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small and thus can detect more PUEAs leading to more
available spectrum. Additionally, MAOMP can be faster
and thus can give excellent performance in real-time system
conditions for dense networks. It is worth noting that, due to
RPPF’s real-time high capability of tracking and high perfor-
mance even when the number of users is high and also when
small dynamical noise is expected, RPF predicts the next
state of a channel and allocates users to the best channels
[29, 40]. Therefore, it can be seen in Figure 5 that the SE
for all of the algorithms increases greatly compared to
Figure 4.

The simulation results for the EE are shown in Figure 7.
According to equation (30), as SE increases, the EE should
increase as well. However, the EE will decrease with increase
in power of active users. Therefore, it can be seen in Figure 7
that the EE increases generally for all of the algorithms when
RPF is applied.

It has been shown in the simulation results that the SE
of MAOMP is 91.2-91.6% and 90-91.2% greater than the
SE of OMP and AOMP, respectively, when RPF is not
applied. However, the SE for MAOMP is less than that
of the SAMP method by 2.9% when the number of users
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is small then increases up to -2.9-4.2% as the number of
users increases. Although the performance of all OMP,
AOMP, SAMP, and MAOMP methods increases when
RPF algorithm is applied, the proposed method outper-
forms the other methods by 89.6-90.2% and 85-87.5% in
SE and EE, respectively. The SE and EE of MAOMP are
increased by 46.6-76.5% and 83-88.3%, respectively, when
RPF is applied.

5. Conclusions

It has been shown in the simulation results that the perfor-
mance of OMP, AOMP, SAMP, and MAOMP algorithms
is generally improved when RPF is used. MAOMP is faster
than the other three methods as its number of operations
is low. Due to the inability of OMP, AOMP, and SAMP to
detect some PUEAs as a result of their lower speed when
the RPF is utilized, outstanding spectral and energy efficient
results have been shown for MAOMP method. The SE and
EE of the proposed method are 89.6-90.2% and 85-87%
higher than that of the OMP, AOMP, and SAMP methods,
respectively, when RPF algorithm is applied. Moreover, the
SE and EE of MAOMP method are increased by 46.6-
76.5% and 83-88.3%, respectively, when RPF is applied.
The EE is very small, that is, in mbxs/Joule. Therefore, in
the future, more study is needed to improve EE.
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