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The random forest algorithm under the MapReduce framework has too many redundant and irrelevant features, low training
feature information, and low parallelization efficiency when dealing with multihoming big data network problems, so
parallelism is based on information theory, and norms is proposed for random forest algorithm (PRFITN). In this paper, the
technique used first builds a hybrid dimensional reduction approach (DRIGFN) focused on information gain and the
Frobenius norm, successfully reducing the number of redundant and irrelevant features; then, an information theory feature is
offered. This results in the dimensionality-reduced dataset. Finally, a technique is suggested in the Reduce stage. The features
are grouped in the FGSIT strategy, and the stratified sampling approach is employed to assure the information quantity of the
training features in the building of the decision tree in the random forest. When datasets are provided as key/value pairs, it is
common to want to aggregate statistics across all objects with the same key. To acquire global classification results and achieve
a rapid and equal distribution of key-value pairs, a key-value pair redistribution method (RSKP) is used, which improves the
cluster’s parallel efficiency. The approach provides a superior classification impact in multihoming large data networks,
particularly for datasets with numerous characteristics, according to the experimental findings. We can utilize feature selection
and feature extraction together. In addition to minimizing overfitting and redundancy, lowering dimensionality contributes to
improved human interpretation and cheaper computing costs through model simplicity.

1. Introduction

A classification algorithm is a supervised learning algo-
rithm, which can discover classification rules and construct
classification models based on labeled information, to
predict the attributes of unlabeled data [1]. Among the clas-
sification algorithms, random forest (RF) has been used in
text classification [2] and environmental prediction in
recent years because of its strong stability and good toler-
ance to noise and outliers [3, 4]. Credit evaluation [5],

bioinformatics [6], medical diagnosis [7], and other fields
have received extensive attention. Random forest, as the
name indicates, is a classifier that employs a decision tree
based on diverse subsets of the supplied dataset and com-
bines them to improve the dataset’s forecasting accuracy.
Instead, then relying on a single decision tree, the random
forest takes forecasts from each tree and predicts the out-
come based on the bulk of predictions’ choices. The
increasing number of trees in the forest prevents maximum
reliability and generalization.
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Big data systems nowadays are backed by a variety of
processing, analytical, and dynamic visualization capabili-
ties. These platforms make it possible to retrieve knowledge
and information from dynamic environments that are com-
plicated. Through suggestions and automatic identification
of abnormalities, deviant behavior, or new trends, they also
assist in decision-making [8]. Big data has become a research
hotspot as information technology and network technolo-
gies have advanced. Big data has 4V characteristics com-
pared to traditional data—volume (large quantity), variety
(variety), velocity (fast speed), and value (low density)
[8]—which requires a longer running time and more mem-
ory capacity when processing big data, and it is especially
important to improve computer hardware to meet people’s
needs for big data analysis and processing difficulties. By
refining the classic random forest technique and merging it
with the distributed computing model, the notion of paralle-
lized computing becomes highly relevant at this time, and it
has become the major focus of current research.

In recent years, researchers and businesses have
embraced Google’s MapReduce parallel programming meth-
odology in the area of large data processing owing to its ease
of use, automated fault tolerance, and high scalability. Writ-
ing programs that can process big data in parallel on several
nodes is possible using the MapReduce programming style.
Large amounts of complicated data may be analyzed using
analytical tools like MapReduce. The MapReduce concept
is aimed at making the translation and analysis of huge data-
sets more straightforward while allowing programmers to
concentrate on algorithms rather than data management.
The paradigm makes data-parallel algorithms easy to build.
This paradigm has been utilized in a number of ways, nota-
bly Google’s (C++) technique and Apache’s Hadoop imple-
mentation (written in Java). Both programs run in a peer-to-
peer environment on massive hardware platforms. At the
same time, Hadoop and Spark, which represent distributed
computing systems, have gotten a lot of attention [9]. Many
random forest techniques based on the MapReduce comput-
ing architecture have been effectively deployed to large data
analysis and processing at this time. Among these, the
MapReduce-based parallelized random forest method MR_
RF [10] uses the divide-and-conquer approach, using the
MapReduce paradigm to split the input and transfer it to
several computing nodes to create a base classifier, then
aggregating the output of each computing node. Create a
model of a random forest.

MapReduce is extremely scalable and runs on a big
cluster of common computers. Many terabytes of informa-
tion are often processed on thousands of computers during
a typical MapReduce calculation [11]. The MapReduce
model is then called again, and the created random forest
is utilized to forecast the test set in order to acquire classifi-
cation accuracy, completing the random forest algorithm’s
parallelization. The parallelization framework is called twice
before and after the algorithm, and the intermediate results
are read out several times. It takes a lot of time to research
and write. Literature developed a revised MR_RF method
[12] to lower the temporal complexity of the MR_RF tech-
nique, which employs out-of-bag data to directly compute

the classification model’s generalization error in order to esti-
mate the random forest’s classification accuracy. The number
of calls to parallel frameworks has been reduced. However, in
a big data environment, a significant number of redundant
and irrelevant characteristics in the dataset diminish the
quality of the features picked by the decision tree while build-
ing the random forest model, which has an impact on the
random forest model’s overall classification accuracy.

The author devised a parallel random forest (PRF)
approach to lessen the effect of redundant and irrelevant fea-
tures in big datasets on the model [13]. A hybrid strategy
integrating data-parallel and task-parallel optimization is
used to optimize the PRF algorithm [14]. The out-of-bag
data is utilized as the training set to determine the classifica-
tion accuracy corresponding to each decision tree as the
weight, which is then employed in the model prediction step.
Although the PRF method increases the random forest’s
classification performance by optimizing the training fea-
tures, it does not minimize the amount of redundant and
irrelevant features in the dataset; therefore, the resulting
training feature set includes greater redundancy and irrele-
vance. In light of this, the authors presented PRFMIC [15],
a parallel random forest method based on the maximum
information coefficient. The characteristics are separated
into three intervals using the maximum information coeffi-
cient, the low correlation interval is eliminated, and the high
correlation interval is chosen. Compared to a single decision
tree method, the random forest approach is more accurate
[16]. The random forest model is built in parallel as the fea-
tures in the interval and the midcorrelation interval create
feature subsets. Even though the method considers the
impact of irrelevant characteristics on the random forest
model, redundant data features cannot be given during the
random forest modeling step.

The importance of creating big data applications has
increased over the past several years. The information
derived from enormous amounts of data is increasingly
relied upon by several companies from various industries.
Traditional data platforms and methodologies, on the other
hand, perform poorly in the context of big data. They lack
scalability, efficiency, and accuracy and have a slow reaction
time. Much effort has been expended in addressing the
tough big data issues. As a result, several distributions and
technical advancements have occurred. It offers comparisons
based on several system levels, including data storage layer,
data processing layer, data querying layer, data access layer,
and data management layer, in addition to providing a
global overview of the primary big data technologies. It
classifies and examines the primary technological aspects,
benefits, and limitations.

The aforementioned approach does not consider the
amount of information in the training features while pro-
ducing the training feature set, but it does raise the correla-
tion between decision trees and decision trees, which
impacts the overall accuracy of the random forest model.
The random forest’s overall accuracy is influenced by the
decision tree trained by the training feature set; however,
owing to the load imbalance, the method takes too long in
the prediction and classification stages, reducing the random
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forest’s overall parallelization efficiency [17]. There are still
pressing concerns to be addressed, such as how to minimize
duplicate and unnecessary features in huge datasets, how to
enhance the quantity of training feature information, and
how to improve the parallel efficiency of algorithms. This
work presents a parallel random forest method based on
information theory and norms to address these issues
(PRFITN). First, the method creates a dimensionality-
reduced dataset using a hybrid dimensionality reduction
approach called DRIGFN (dimension reduction based on
information gain and Frobenius norm) based on informa-
tion gain and Frobenius norm, successfully minimizing
redundancy and irrelevance. Furthermore, the algorithm
presents a feature grouping strategy based on information
theory (FGSIT), which groups the features according to the
FGSIT strategy and uses the stratified sampling approach
to guarantee that the decision tree in the random forest is
formed. The quantity of data in the feature subset enhances
the classification results’ accuracy. Finally, in the Reduce
phase, a key-value pair redistribution strategy (RSKP) is pro-
posed to obtain the global classification results, realize the fast
and even distribution of key-value pairs, and thus improve the
parallel efficiency of the cluster, taking into account the
impact of the cluster load on the efficiency of the parallel algo-
rithm. The experimental findings suggest that the algorithm
performs better in a big data context, particularly when deal-
ing with datasets with a high number of characteristics.

The next section describes the related concepts followed
by PRFITN algorithms that are analyzed in this research.
Then, the results of the algorithms are analyzed, and finally,
conclusions are drawn.

2. Related Concepts

2.1. Introduction to Related Concepts

Definition 1 (information gain). Given discrete variable X
and their corresponding category Z, the information gain
IGðZ ; XÞ is calculated by the following formula:

IG Z ; Xð Þ =H Zð Þ −H Z Xjð Þ, ð1Þ

where HðZÞ is the information entropy about category Z
and HðZ ∣ XÞ is the conditional entropy about variable X
and category Z.

Definition 2 (mutual information). Given discrete variables
X and Y , the mutual information IðX ; YÞ is calculated by
the following formula:

I X ; Yð Þ = 〠
l

i=1
〠
m

j=1
p xi, yj
� �

lb
p xi, yj
� �

p xið Þp yj
� � : ð2Þ

Definition 3 (conditional mutual information). Given dis-
crete variables X and Y and their corresponding category
Z, the conditional mutual information IðX ; Y ∣ ZÞ is calcu-
lated by the following formula:

I X ; Y Zjð Þ =H X Zjð Þ −H X Y , Zjð Þ, ð3Þ

where HðX ∣ ZÞ is the conditional entropy about variable X
and category Z and HðX ∣ Y , ZÞ is the conditional entropy
about variables X, Y and category Z.

Definition 4 (Frobenius norm). Given that A = ðaijÞm×n ∈
ℝm×n is an m × n-dimensional matrix and aij is an element
in the matrix, then the Frobenius norm kXkF can be
calculated by

Xk kF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
m

i=1
〠
n

j=1
aij

2

vuut : ð4Þ

2.2. Principal Component Analysis Algorithm. Principal
component analysis (PCA) [18] is a multivariate statistical
method for dimensionality reduction. Its main purpose is to
find a transformation matrix W and reduce the dimension
of the dataset under the condition of maintaining the maxi-
mum variation. Principal components analysis (PCA) is the
most widely used unsupervised dimensionality reduction
technique for producing relevant characteristics by integrat-
ing the data points in linear (linear PCA) or nonlinear (kernel
PCA) arrangements (features). Significant features are cre-
ated by linearly lowering correlated data to a lower fraction
of set of variables. This is accomplished by projecting (dot
producing) the actual information into the simplified PCA
space using the covariance/correlation matrix eigenvectors,
also known as the principal components (PCs). PCA is a lin-
ear transformation of data into a sequence of uncorrelated
variables existing in the simplified PCA space, where the first
element explains the most variation and each successive
component explains less. The PCA algorithm is mainly
divided into four steps: (1) establish a data matrix and stan-
dardize the original dataset; (2) establish a correlation coeffi-
cient matrix and calculate the eigenvalue λ of each principal
component and the corresponding number of eigenvectors;
(3) according to the eigenvalues and the cumulative contri-
bution rate, determine the number of principal components
required; and (4) combine the eigenvectors corresponding
to the principal components to obtain the transformation
matrix W to reduce the dimension of the original dataset.

2.3. Support Vector Machine Algorithm. The support vector
machine (SVM) algorithm [19] is a data mining algorithm
based on statistical theory. It mainly selects an optimal
classification hyperplane that meets the classification
requirements, so that the hyperplane can guarantee the clas-
sification accuracy. At the same time, the blank areas on
both sides of the hyperplane can be maximized [20]. SVMs
are utilized in web pages, intrusion detection, face identifica-
tion, email categorization, genre classification, and hand-
writing recognition, among other applications. We utilize
SVMs in machine learning for several reasons, including
this. Simultaneous categorization and extrapolation of linear
and nonlinear data are supported by SVM. The SVM algo-
rithm is mainly divided into three steps: (1) construct the
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classification hyperplane f ðxÞ = vTX, where υ is the weight
of the hyperplane and X is the data vector matrix; (2) use
the kernel function to solve the classification hyperplane
and obtain the hyperplane weight υ; and (3) use the hyper-
plane weight υ to predict the data classification. Large data-
sets are not a good fit for the SVM algorithm. When the
targeted classes are overlapping and the dataset includes
more noise, SVM does not really perform very well. The
SVM will perform poorly when there are more training data
samples than characteristics for each data point.

3. PRFITN Algorithm

The PRFITN algorithm mainly includes three stages: data
dimensionality reduction, feature grouping, and parallel con-
struction of random forests. (1) In the data dimension reduc-
tion stage, the DRIGFN strategy is proposed to accurately
identify and delete redundant and irrelevant features in the
dataset, and the dimensionality-reduced dataset DB∗is
obtained. (2) In the feature grouping stage, the FGSIT strat-
egy is proposed to be used in order to measure the impor-
tance of features, and then, distribute features cyclically on
this basis, to obtain two sets of feature subsets Q and S. (3)
In the stage of parallel construction of random forests, the
RSKP strategy is proposed to optimize the MapReduce com-
puting model and improve its performance [21]. Paralleliza-
tion efficiency and use the optimized MapReduce model to
build random forests helps to predict and classify datasets,
that obtain the accuracy of random forests.

3.1. Data Dimensionality Reduction. At present, dimension-
ality reduction algorithms mainly include feature selection
and feature extraction. However, in the big data environ-
ment, due to the existence of a large number of redundant
and irrelevant features in the dataset, the feature selection
or feature extraction methods alone cannot achieve better
results. Feature set for paper proposes a DRIGFN strategy
to identify and filter redundant and irrelevant data in a big
data environment [22]. First, combined with the MapRe-
duce model, the feature information gain value is calcu-
lated in parallel to remove irrelevant features; then, the
Frobenius norm is used to evaluate the amount of infor-
mation loss, classification error, and control overfitting of
the classifier, and on this basis, a global algorithm is pro-
posed. The optimization function is used to iteratively
optimize the dimensionality reduction parameters. Sup-
pose X = ½x1, x2⋯,xd� ∈ℝn×d represents n samples in the
d-dimensional feature space of the original dataset DB,
the dataset DB contains υ different categories, and Y ∈
ℝn×1 represents the feature matrix X. In the corresponding
label, the DRIGFN policy is as follows.

3.2. Feature Selection. For dataset DB, the main purpose of
feature selection is to reduce the number of irrelevant
features. The specific process is as follows: first, use the
default file block strategy in Hadoop to divide the feature
space of the original dataset into file blocks of the same size;
then, the file blocks are used as input data [23]. According to
Definition 1, the Mapper node calls Map. The function

calculates the information gain of each feature in the form
of key-value pair <key, value > (key is the feature name,
and value is the information gain of the corresponding fea-
ture) and combines each key-value pair to obtain the feature
information gain set A = f<key1, value1>,<key2, value2>,⋯,
<keyd , valued > g. Finally, according to the information gain
value corresponding to the feature, the elements in the set A
are sorted in descending order, the features that are ranked
later in the set A are removed, and the new feature matrix
X ′ = ½x1, x2⋯,xd� ∈ℝn×mð1 ≤m ≤ dÞ is obtained by recom-
bining and the dataset DB′ obtained by merging the feature
matrix X ′ and label vector Y obtained after processing in
columns is passed to the next stage. Feature selection is
performed as follows.

3.3. Feature Extraction. In the feature extraction stage, to
further optimize the dataset DB′ after feature selection,
firstly, use principal component analysis and support vector
machine algorithm to obtain the initial parameters, and use
the received parameters to reconstruct the feature matrix;
secondly, use the Frobenius norm loss of information [20].
The classification error and the degree of overfitting of the
classifier are estimated; finally, to minimize the sum of infor-
mation loss, classification error, and the degree of overfit-
ting, a global optimization function is proposed to
optimize the transformation matrix and the classification
matrix. The specific process of feature extraction is described
as follows:

(1) Initialization of parameters and reconstruction of
feature matrix knowing the feature matrix X ′ and
the dataset DB′

First, adopt the principal component analysis (PCA)
to obtain the initial transformation matrix W ∈ℝo×mð1
≤ o ≤mÞ, that is,

X ′′ = X ′WT ∈ℝn×o, ð5Þ

where X″ is the feature matrix obtained after dimension-
ality reduction by PCA, which is merged with the label Y
in columns to obtain the transformed dataset DB″.

Secondly, the support vector machine (SVM) algo-
rithm is used to obtain the classification matrix υ ∈ℝo×1

about X″ with all the samples in the dataset DB″ as the
training set, according to which the predicted label of X″
can be calculated as

f X ′′
� �

= X ′′v = X ′WTv
i
∈ℝn×1: ð6Þ

Next, in order to evaluate the loss of information in
the feature extraction process, the transformation matrix
is used to reconstruct the feature matrix X″, and the
reconstruction matrix Xc of X″ can be expressed as
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Xc = X ′′W = X ′WTW ∈ℝn×m ð7Þ

(2) Estimation of the amount of information loss, classi-
fication error, and the degree of overfitting of the
classifier

According to the transformation matrixW, classification
matrix υ, and reconstruction matrix Xc obtained in the
previous step, this part will use the Frobenius norm to esti-
mate the amount of information loss, classification error,
and classifier degree overfitting.

Since the reconstruction matrix, Xc, is obtained by trans-
forming the feature matrix X ′ through the matrix W, there
will be more or fewer differences with the elements of X ′,
so the Frobenius norm is used to process the differences
between the elements in the two matrices and sum them
up; the obtained result can reflect the matrix X″ and the
moment after dimensionality reduction. The amount of
information loss compared to the matrix X ′ is specifically
defined as follows.

Definition 5 (information loss Xerror). Given the known fea-
ture matrix X ′ and reconstruction matrix Xc, then according
to Definition 4, the information lossXerror can be expressed as

Xerror = X ′ − Xc



 

2
F
: ð8Þ

Similarly, the difference between the predicted label f ðX″Þ
and the label Y can also be measured by the Frobenius norm,
which is defined as follows.

Definition 6 (classification error Yerror). It is known that Y is
the label corresponding to the feature matrix X and f ðX″Þ is
the predicted label predicted by the support vector machine;
then according to Definition 4, the classification error Yerror
can be expressed as

Yerror = Y − f X ′′
� �


 


2

F
: ð9Þ

Finally according to the Frobenius norm, verror is
designed, and the degree of overfitting of the classification
is controlled by the υ value, which is specifically defined
as follows.

Definition 7 (overfitting degree verror). Knowing that υ is the
classification matrix of the feature matrix X″, then accord-
ing to Definition 4, the overfitting degree verror can be
expressed as

verror = vk k2F : ð10Þ

According to the definition of the Frobenius norm, it
can be inferred that the more uniform the distribution of
elements of υ, the smaller the value of υerror; on the con-
trary, the larger the value of individual elements in υ,
the larger the value of verror.

(3) Global optimization function

To obtain the global optimal transformation function
W ∗, it is necessary to satisfy the overall depreciation of
Xerror, Yerror, and verror at the same time, so combined with
the three Equations (8)~(10), the global optimization func-
tion EðW, υÞ is defined as follows.

Input: original dataset DB.
Output: feature matrix X′, dataset DB′.

1. Block ⟵ split the feature space of the original dataset
2. Key: feature name
3. Value: combine the feature space of the key with label Y
4. For each feature xk in each block, do
5. keyk⟵ feature name
6. IGðY ; xkÞ⟵ −∑v

i=1pilbpi − ð−∑α
j=1jnjj/jnj∑v

i=1ðjnijj/jnjjÞlbðjnijj/jnjjÞÞ//according to Definition 1, calculate the information
gain value of feature xk; pi represents the proportion of category i in the data set; α represents the tuple divided according to the value
of feature xk; |n|, jnjj, and jnijj, respectively, correspond to the total number of data samples, the number of elements in tuple j
divided by the value of feature xk, and the number of aspects of category i in tuple j

7. valuek ⟵ IG (Y; xk)//the information gain value of xk is assigned to value k
8. A⟵<keyk, valuek>//put the key-value pair <keyk, valuek> corresponding to the feature xk into the set A
9. End for
10. Sorted(A)//sort A in descending order of value
11. Delete the later features in set A//delete the elements arranged later in A
12. Return X ′//the remaining features in X are the feature matrix X ′
13. DB′⟵ combine X ′ and Y by column
14. Return DB′

Algorithm 1: Feature selection.
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Definition 8 (global optimization function EðW, υÞ. Know-
ing the feature matrix X ′ and Y labels, the corresponding
transformation matrix and classification matrix are W and
υ, respectively, from which the information loss amount
and classification error about X ′ can be obtained. If the
degree of overfitting is Xerror, Yerror, and verror, then the
global optimization function EðW, υÞ can be expressed as

E W, vð Þ = Xerror + C1Yerror + C2verror, ð11Þ

where C1 and C2 are the weight parameters of Yerror and
verror, respectively.

Considering that the classification matrix υ in the global
optimization function EðW, υÞ is affected by the transforma-
tion matrix W, it is divided into two steps when using the
gradient to solve the minimum value of the function: (1)
treat the classification matrix υ as a constant to solve the
transformation matrix W; (2) substitute the transformation
matrix W into the solution classification matrix υ. Then,
according to the relevant definitions of Xerror, Yerror, and
verror, the gradient of the function EðW, υÞ to W is ∇E
ðW, vÞW , and ∇EðW, vÞW = 0, the transformation matrix
can be solved W ′, and for ∀θ ∈ T 1ðT 1 = fXjX ∈ℝo×m, X
≠W ′gÞ, all have Eðθ, υÞ ≥ EðW ′, υÞ, so W ′ is such that
EðW, υÞ is a minor local optimal transformation matrix;
in the same way, substituting W ′ into EðW, υÞ, the gradient
of EðW ′, υÞ to υ is∇EðW ′, υÞυ. Let∇EðW ′, vÞv = 0; the classi-
fication matrix υ′ can be obtained, and for ∀ϖ ∈ T2ðT2 = fXj
X ∈ℝo×m, v′gÞ, all have EðW ′, ϖÞ ≥ EðW ′, υ′Þ, so υ′ is the
local optimal classification matrix that minimizes EðW ′, υÞ.

According to Definition 8 and its solution process, the
local optimal transformation matrix W ′ and the classifica-
tion matrix υ′ can be obtained. To obtain the global optimal
transformation matrix W ∗, the obtained local optimal
transformation matrix W ′ and classification matrix υ′ are

substituted into the function EðW, υÞ to transform the
matrix and classification matrix in turn. The class matrix
is solved iteratively until it converges, and the returned
transformation matrix is the global optimal transformation
matrix W ∗. Finally, substituting the global optimal trans-
formation matrix W ∗ into Equation (5) can obtain the
feature matrix X ∗ = ½x1, x2⋯,xo� ∈ℝn×o after feature
extraction, which is merged with the label Y by column;
namely, the dimensionality reduction dataset DB ∗ can
be obtained. The execution process of feature extraction
is as follows.

3.4. Feature Grouping. In the current parallel random forest
algorithm in the big data environment, training features are
formed by randomly selecting the features of the dataset.
Although the DRIGFN strategy reduces the redundant and
irrelevant features in the dataset through data dimensional-
ity reduction [24], there are still many low-informative fea-
tures, and due to their existence, the resulting training
features are low-informative. Therefore, a feature grouping
strategy FGSIT based on information theory is proposed to
solve the above problems. This strategy first uses the relevant
knowledge of information theory to measure the influence
degree of feature-label and feature-feature; secondly, based
on obtaining the influence degree of feature-label and fea-
ture-feature, the feature evaluation function is proposed
above; finally, the features are divided into two groups in
an iterative manner. The specific process of feature grouping
is described as follows:

(1) The degree of influence between feature-label and
feature-feature

It is known that feature x is any feature in feature
matrix X ∗ and Y is the label corresponding to the feature
matrix X ∗; according to Definition 1, the information
gain IGðxi ; YÞ of the feature x is obtained as follows:

Input: dataset DB′, weight parameters C1, C2.
Output: feature matrix X ∗, dataset DB ∗.
1. W⟵ the conversion matrix of X ′ calculated according to PCA
2. X″ = X ′WT
3. DB″⟵ combine X″ and Y by column
4. υ⟵ the classification matrix of DB″ according to SVM

5. EðW, vÞ = kX ′ − X ′WTWk2F + C1kY − X ′′vk2F + C2kvk2F
6. Do//iteratively solve the global optimal transformation matrix W ∗
. W ′⟵ conversion matrix solved by ∇EðW, vÞW = 0
8. υ′⟵ classification matrix solved by ∇EðW ′, vÞv = 0
9. End do until convergence
10. Get ðW∗,υ ∗Þ
11. X ∗⟵X ′WT
12. Return X ∗
13. DB ∗⟵ combine X ∗ and Y by column
14. Return DB ∗

Algorithm 2: Feature extraction.
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IG xi ; Yð Þ =H Yð Þ −H Y xijð Þ  1 ≤ i ≤ 0ð Þ: ð12Þ

However, the information gain only measures the influ-
ence between features and labels, ignoring the impact between
components and parts. Considering the effect of candidate fea-
tures on selected elements in feature grouping, a calculation
feature-feature relationship is proposed. The function WRðiÞ
of the degree of influence is defined as follows:

Definition 9 (feature-feature influence function WRðiÞ). Y is
the label, Q is the selected feature set, and xj is the element in
Q. According to Definition 2 and Definition 3, the candidate
features xi is the feature in Q. Therefore, the influence degree
WRðiÞ can be expressed as

WR ið Þ = 〠
xj∈Q

I xj ; Y xj
��À Á

− I xj ; Y
À ÁÂ Ã

1 ≤ i ≤ 0ð Þ: ð13Þ

According to Definition 2 and Definition 3, the mutual
information Iðxj ; YÞ represents the correlation between the
selected feature xj and the label Y , and the conditional
mutual information Iðxj ; Y ∣ xiÞ represents the feature under
the condition of the feature xi. There is a correlation between
xj and label Y , so the difference between conditional mutual
information Iðxj ; Y ∣ xiÞ and mutual information Iðxj ; YÞ
can represent the influence of feature xi on feature xi and
label Y , so in WRðiÞ in the function, the sum of the impact
of feature xi on all features in Q can be used to express the
overall influence degree of feature xj on Q.

(2) Feature evaluation function

To take into account the degree of influence between
feature-label and feature-feature in the process of feature
grouping, combined with the above two points, a feature
evaluation function FEðiÞ is proposed, and its definition is
as follows.

Definition 10 (feature evaluation function FEðiÞ). Given can-
didate features xi, label vector Y , and selected feature set Q,
the evaluation function FEðiÞ about feature xi can be
expressed as

FE ið Þ =WR ið Þ + C∙IG xi ; Yð Þ, ð14Þ

where C is the weight parameter of the function IGðxi ; YÞ.

Because the information gain can be used to measure the
influence between features and labels and the functionWRðiÞ
can measure the impact between components and parts, the
feature evaluation function FEðiÞ is obtained by combining
Equations (12) and (13) simultaneously. Measure the degree
of influence between feature-label and feature-feature.

(3) Feature grouping

The feature evaluation function FEðiÞ proposed by Defini-
tion 10 can divide the feature grouping process into three steps:

Ⓒ Put the feature with the most significant information
gain value in X ∗ into Q

Ⓒ Calculate the FEðiÞ value of the candidate features in
turn, and put the feature corresponding to the maximum
value of FEðiÞ into Q

Ⓒ Execute the step Ⓒ iteratively until the number of
features in Q reaches the threshold Thr, and the remaining
elements form a part set S by themselves

According to the nature of the random forest, it can be
inferred that the classification effect of a random forest is
related to the correlation between decision trees in the forest
and the classification ability of each decision tree. The stron-
ger the correlation, the worse the classification effect of the
random forest: decision tree classification. The stronger the
command, the better the random forest classification effect.
However, the choice of the threshold Thr affects the group-
ing of features, which involves the correlation of the decision
tree and the classification ability of the decision tree. There-
fore, the selection of the threshold Thr is essential, so the
threshold function ThrðIÞ is proposed to determine the
threshold, and its definition is as follows.

Definition 11 (threshold function ThrðIÞ). Assuming that
there are T decision trees in the random forest, Q contains
I features, and S has U features and randomly extracts fea-
tures from Q as high-information features in proportion,
randomly removing b features from S to combine with an
as a construction decision the training feature of the tree,
the threshold function ThrðIÞ can be expressed as

Thr Ið Þ = acc − cor =
a

a + b

� �T
− 1 −

Ca
I C

b
UC

a
I−aC

b
U−b

Ca+b
I+UC

a+b
I+U

 !T/2

,

ð15Þ

where acc is to use the proportion of features in Q to reflect
the overall classification ability of the decision tree in the
random forest and cor is to use the similarity of the selected
components of the two decision trees to reflect the correla-
tion of the decision trees in the random forest.

According to Definition 11, acc can be used to measure
the overall classification ability of decision trees in a random
forest, and cor can be used to measure the correlation
between decision trees in a random forest. Therefore, accord-
ing to the nature of the random forest, the classification effect
of random forest can be measured by acc‐cor. By observing
the formula, it can be found that when all the features belong
to Q, a/ða + bÞ = 1, then acc = 1 and cor ≈ 0, and the maxi-
mum value can be taken, but the meaning of grouping is lost
at this time, so it is discarded; when a/ða + bÞ < 1, since T
≫ T/2 in the big data environment, so acc ≈ 0. When I =U
and a = b, that is, Thr = ðU + IÞ/2, the value of cor is the
smallest. Acc‐cor can reach the maximum value.

The execution of the FGSIT policy is as follows.

3.5. Building Random Forests in Parallel. After data dimen-
sionality reduction and feature grouping, the classifier
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needs to be parallelized and trained according to the
reduced dimensionality dataset DB ∗ and feature sets Q
and S. At present, the parallel random forest algorithm
in the big data environment mainly builds multiple deci-
sion trees based on the training data and training features
as the output results.

And on this basis, the samples are predicted to obtain the
model accuracy. However, in the prediction stage of this
method, due to the different decision trees in each comput-
ing node, the predicted key-value pairs obtained for the
dataset are also other, so after merging, the number of key-
value teams on each Mapper node will be different. If there
is a difference, it usually leads to an unbalanced load on
the Reducer nodes in the next stage, which affects the paral-
lelization efficiency of the algorithm. To deal with the above
problems, this section first proposes the RSKP strategy to
optimize the MapReduce computing model and balance
the load of the Reducer nodes; then, it uses the optimized
MapReduce model to build a random forest in parallel, pre-
dict the classification of the dataset, and obtain the accuracy
of the random forest. Build random forests in parallel.

The specific process is described as follows:

(1) RSKP strategy

Given the set of key-value pairs P1, P2,..., Pq obtained
after merging in each Mapper node, the process description
of the RSKP strategy is shown in Figure 1.

(a) Aggregate all key-value pairs P1, P2,…, Pq into the
intermediate file and sort them according to the keys
in the key-value pairs

(b) According to the number of key-value pairs and the
number of Reducer nodes, distribute the key-value
teams in the intermediate folder to each node

(2) Parallel construction of random forest and predic-
tion of dataset classification. The optimized MapRe-
duce model is obtained through the RSKP strategy.
Combined with this model, the parallel structure of
the random forest is divided into four steps, as
shown in Figure 2

(a) Call Hadoop’s default data block strategy, divide the
dataset DB ∗ into blocks of the same size, and trans-
mit them to the Mapper node as input data

(b) According to the task assigned to each Mapper node
by the primary node, call the Map function to extract
the training set of the decision tree through boot-
strap autonomous sampling and randomly remove
features from the feature subsets Q and S as training
features in proportion; based on the training set and
the training feature, construct a decision tree in the
form of a key-value pair <keyT , valueT > (keyT is
the decison tree model number; valueT is the deci-
sion tree model), all Mapper nodes are executed,
and all decision trees are parsed and merged to
obtain a random forest model

(c) Use the decision tree in the Mapper node to predict
the dataset DB ∗ and form a new key-value pair <ke
y′, value′ > (key′ is the combination array of the
sample ID and the corresponding category; value′ =
1 means the critical value number of occurrences of
the pair); merge key-value teams with the same key′
value (such as there are three key-value pairs <k : 1
> , <k : 1 > , and <k : 1 > with all key′k locally; then,
they will be merged into one key-value pair <k : 3 > )

Input: dataset DB ∗, weight parameter C.
Output: feature subset Q, S.
1. For each feature xi in X ∗ do//1 ≤ i ≤ o
2. Calculate the IGðxi ; YÞ by Equation (1)
3. B⟵ IGðxi ; YÞ//put the calculated information gained into set B
4. End for
5. Q⟵ the feature xIG corresponding to the maximum value in B//put the feature with the largest information gain into the set Q
6. Remove xIG from X ∗
7. While the length of X ∗ >o/2 do
8. For each feature xj in X ∗ do//1 ≤ j ≤ o − 1
9. Calculate the FEðxjÞ by Equation (14)
10. C⟵ FEðxjÞ//put the calculated FEðxjÞ into the set C
11. End for
12. Q⟵ the feature xFE corresponding to the maximum mum value in C
13. Remove xIG from X ∗
14. End while
15. S⟵ the remaining features in X ∗
16. Return Q, S

Algorithm 3: FGSIT strategy.
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(d) The key-value pairs predicted in the Mapper node
are distributed by the master node and then trans-
ferred to the corresponding Reducer nodes to merge
again to obtain the global classification result and
compare it with the label Y to get the model’s accu-
racy. So far, the execution process of building a
random forest in parallel is as follows

3.6. PRFITN Algorithm Steps. The specific implementation
steps of the PRFITN algorithm are as follows.

Step 1. Divide the original dataset into file blocks of the same
size through the default file block strategy of Hadoop, call a
MapReduce task to calculate the information gain of the

original data features in parallel, and select the features on
this basis.

Step 2. Invoke the FEKFN strategy to extract new features
from the feature-selected dataset in an iterative manner.

Step 3. Call the FGSIT strategy to group the features of the
reduced dimensionality dataset.

Step 4. Start a new MapReduce task, call the Map function,
use bootstrap and stratified sampling to extract training
samples and features used for modeling, build a decision
tree, and aggregate all decision trees to obtain a random for-
est; use the RSKP strategy to distribute Reducer node tasks

Mapper
node

Mapper
node

Mapper
node

Intermediate
folder

Sort

Reducer
node

Reducer
node

Key-value pair

Figure 1: RSKP strategy to optimize the MapReduce computing model.

Parse key value
pairs to get

classification result
with known labels

to get model
accuracy

Dataset DB⁎

Data block policy

Data block

Map

Reduce

Build a decision
tree

Random
forest

Final result

... ...

...

<key′11, value′11>

<key′12, value′12>

<key′1, value′1>

<key′2, value′2>

<key′3, value′3>

<key′4, value′4>

<key′z, value′z>

<key′z–1, value′z–1>

<key′1a, value′1a>
...

<key′21, value′21>

<key′22, value′22>

<key′2b, value′2b>

... ...

...

<key′m1, value′m1>

<key′m2, value′m2>

<key′mc, value′mc>

Figure 2: Random forests in parallel.
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evenly, call the Reduce function to get the global classifica-
tion results, and evaluate the model classification accuracy.

3.7. Analysis of Algorithm Time Complexity. The PRFITN
algorithm mainly includes three stages: data dimensionality
reduction, feature grouping, and parallel construction of
random forests. Therefore, the algorithm’s time complexity
is primarily composed of three parts, denoted as T1, T2,
and T3, respectively.

In the feature selection stage of data dimensionality
reduction, the time complexity mainly depends on calculat-
ing the information gain value of each feature, which needs
to traverse each data under the sample corresponding to each
element in the dataset. Given that the number of samples in
the known dataset is n, the number of features is d, and the
number of Mapper nodes corresponding to executing
MapReduce tasks is m. The time complexity of this stage is

Ts =O
n × d
m

� �
: ð16Þ

In the feature extraction stage of data dimensionality
reduction, the time complexity mainly depends on the pro-
cess of iteratively optimizing the transformation matrix W
and the classification matrix υ. It is known thatW is a matrix
of order n × o, and υ is a matrix of order n × 1. Therefore, it is
assumed that this stage requires iteration. Calculate k times,
and then, the time complexity is

TE =O k × n × o + nð Þð Þ ≈O k × n × oð Þ: ð17Þ

Therefore, the time complexity of data preprocessing is

T1 =O k × n × o +
n × d
m

� �
: ð18Þ

The FGSIT strategy is mainly used in the feature
grouping stage to divide the features. The feature evalua-
tion function FEðiÞ between each candidate feature and
the selected feature needs to be calculated each time the
quality is screened. Knowing that the number of processed
features is o and the number of samples is n, the time
complexity of this stage is

T2 =O o × n2
À Á

: ð19Þ

In the parallel construction of the random forest, the
MapReduce task is mainly called to build the random for-
est model in parallel and predict all data classification to
evaluate the accuracy. Assuming that the random forest
model contains F decision trees, the number of Mapper
nodes corresponding to the MapReduce task is M, and
the number of Reduce nodes is R, the time complexity
of this stage is

T3 =O
F × n × o × lbn

M
+
F × n × o × lbn

R

� �

≈O
F × n × o × lbn

M × R

� �
,

ð20Þ

TPRFITN =O T1 + T2 + T3ð Þ: ð21Þ

Input: dataset DB ∗, feature subset Q, S.
Output: random forest model and its accuracy.
Map stage
1. For each block corresponding to each Mapper node, do
2. T⟵ select training set randomly
3. F⟵ select training features randomly keyT ⟵ number the decision tree trained by T and FvalueT ⟵ train decision tree based
on T and F
6. End for
7. Model ⟵ collection of all decision trees
8. Return model//output random forest, model
9. For each decision tree in each Mapper node, do
10. Predict the category of each sample from the DB ∗
11. Key′⟵ combine sample ID with sample category
12. Value′⟵ number of key-value pairs
13. Output <key′, value′ >
14. End for
15. Combine key-value pairs with the same key′ in each Mapper
16. AK⟵ collection of all key-value pairs reduce stage
1. Sorted (AK)//sort all key-value pairs
2. RSKP(AK)//evenly distribute key-value pairs
3. Obtain the global classification results by combining key-value pairs with the same key′
4. Accuracy ⟵ compare label Y with global classification results//get classification accuracy
5. Return accuracy

Algorithm 4: Build random forest in parallel.
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4. Experimental Results and Comparison

4.1. Experimental Environment. To verify the performance
of the PRFITN algorithm, related experiments are designed
in this paper. The experimentation includes four computing
nodes in terms of hardware, including 1 Master node and 3
Slaver nodes. The CPUs of all nodes are AMD Ryzen 7, each
with eight processing units and 16GB of memory. The four
nodes in the experimental environment are in the same local
area network and connected by 200Mbit/s Ethernet. In
terms of software, the Hadoop version installed on each
node is 2.7.4, the Java version is 1.8.0, and the operating sys-
tem is Ubuntu 16.04. The specific configuration of each node
is shown in Table 1.

4.2. Experimental Data. The experimental data used by the
PRFITN algorithm are three real datasets from the UCI
public database (https://archive.ics.uci.edu/ml/index.php),
namely, Farm Ads, Susy, and APS Failure at Scania Trucks.
The Farm Ads dataset is various farm animal-related data
collected from text ads on 12 websites.

The dataset contains 4143 samples and 54877 attributes,
which have a small sample size and many features. Susy is a
dataset that records the detection of particles using particle
accelerator dataset containing 5000000 records. There are
18 attributes in total, which have the characteristics of a large
sample size and a small number of features: APS Failure at
Scania Trucks dataset. It is a dataset that records Scania
truck APS faults and operations. The dataset contains
60,000 samples and a total of 171 attributes. It has the char-
acteristics of moderate sample size and a moderate number
of features. The specific information of the dataset is shown
in Table 2.

4.3. Performance Analysis of PRFITN Algorithm. To verify
the feasibility of the PRFITN algorithm in the big data envi-
ronment, this paper selects 50, 100, and 150 decision trees in
the random forest. It applies the PRFITN algorithm to the
three datasets of Farm Ads, Susy, and APS Failure at Scania
Trucks, runs ten times independently, takes the average of
the ten running results, and compares the running time
and accuracy of the algorithm to achieve an overall evalua-

tion of the performance of the PRFITN algorithm. Figure 3
shows the execution results of the PRFITN algorithm under
three datasets.

As can be seen from Figure 3 and Table 3, when the
number of decision trees changed from 50 to 100 to 150,
the running time of the algorithm on the Farm Ads dataset
increased by 8700 s and 9000 s, and the accuracy increased
by 3.8 percentage points and 3.8 percentage points, respec-
tively, 1.5 percentage points; running time on the Susy data-
set increased by 4250 s and 6000 s, and accuracy increased by
2.5 percentage points and decreased by 0.7 percentage
points; runtime on the APS Failure at Scania Trucks dataset
increased by, respectively, 750 s and 4500 s, and the accuracy
increases by 3.0 and 1.1 percentage points, respectively. It
can be seen from the data reflected in the picture that the
time complexity and accuracy of the PRFITN algorithm on
the three datasets gradually increase, and the increase of
time complexity gradually increases, but the increase of
accuracy decreases slowly. The former is mainly due to
the increase in the number of tasks assigned to the comput-
ing nodes in the modeling stage as the number of decision
trees increases, and the number of key-value pairs also
increases exponentially, so it takes more time to process
them. The main reason is that with the increase of the
number of decision trees, the difference between trees will
decrease, and then, the impact on the classification results
of the random forest will become smaller and smaller, so
the increase in accuracy will increase with decrease as the
decision tree increases.

4.3.1. Time Complexity Comparison of PRFITN Algorithm.
This study conducts tests based on the three datasets of
Farm Ads, Susy, and APS Failure at Scania Trucks to con-
firm the temporal complexity of the PRFITN method. The
PRFMIC algorithm carries out a thorough comparison.
The PRFITN algorithm without the RSKP strategy—referred
to as PRFITN-ER—is also run in order to investigate the
effects of load balancing on the PRFITN algorithm. The spe-
cific time complexity is shown in Figure 4 and Table 4.

As can be seen from Figure 5, on the Farm Ads dataset,
the running time of the PRFITN algorithm is 2300 s,

Table 2: PRFITN algorithm of the experimental datasets.

Dataset Number of samples/bars Number of attributes/species Size (MB)

Farm Ads 1692088 5267660 1482

Susy 990005 41280 33

APS Failure at Scania Trucks 5000000 195 325

Table 1: Configuration of nodes in experiment.

CPU name IP address Role

Master 192.168.1.108 Master/JobTracker/NameNode

Slaver_1 192.168.1.109 Slaver/TaskTracker/DateNode

Slaver_2 192.168.1.110 Slaver/TaskTracker/DateNode

Slaver_3 192.168.1.111 Slaver/TaskTracker/DateNode
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3833.3 s, and 8666.7 s higher than that of the PRFMIC algo-
rithm, the PRF algorithm, and the improved MR_RF algo-
rithm, respectively. On the APS Failure at Scania Trucks
dataset, the running time of the PRFITN algorithm is on
average 200 s, 416.7 s, and 733.3 s higher than that of the
PRFMIC algorithm, the PRF algorithm, and the improved

MR_RF algorithm, respectively. The above two situations
occur because the PRF algorithm uses data dimensionality
reduction processing for training features when building
the random forest model. On the other hand, the PRFMIC
algorithm assumes hierarchical processing for parts, and
the PRFITN algorithm adopts dimensionality reduction

Table 3: Execution results of the PRFITN algorithm under three datasets.

Running time/103
Number of decision tree

Farm Ads Susy APS Failure

0 0 0 0

5 40 20 10

10 50 30 25

15 75 55 45

20 80 60 55

25 90 75 65

30 96 85 74

35 100 90 85
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Figure 3: Number of DT build up by PRFITN algorithm.
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Figure 4: Graph for accuracy of PRFITN algorithm.
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and feature layering for details. In addition, the dimension-
ality reduction and layering strategy of the PRFITN algo-
rithm focus on directly evaluating the elements themselves.
Therefore, when dealing with the Farm Ads and APS Failure
at Scania Trucks datasets with relatively many features, the
PRFITN algorithm is significantly better than PRFMIC,
PRF, and the improved MR_RF. However, the algorithm
takes a lot of time.

On the contrary, when dealing with the Susy dataset with
large sample size and a small number of features, the run-
ning time of the PRFITN algorithm is 6783.4 s and 3750
slower than that of the PRFMIC algorithm and the PRF
algorithm, respectively. When the number of features is
small, the PRFITN algorithm takes less time in the data
dimensionality reduction and feature layering stages. The
PRFMIC algorithm uses the RSKP strategy to balance the
load of each node and reduce the time complexity. In addi-
tion, to more intuitively judge the impact of load balancing
on the model, that is, the optimization effect of the RSKP

strategy on the model, comparing the running time of the
PRFITN algorithm and the PRFITN-ER algorithm on the
three datasets, it can be seen that in the Farm Ads data
On the dataset, Susy dataset, and APS Failure at Scania
Trucks dataset, the running time of the PRFITN algorithm
is 1733.33 s, 1583.33 s, and 295 s more minor than that of
the PRFITN-ER algorithm on average, so the adoption of
the RSKP strategy will save to a particular extent model
learning time.

5. Conclusion

To solve the shortcomings of the parallel random forest
algorithm in the big data environment, this paper proposes
a parallel random forest algorithm PRFITN based on infor-
mation theory and norms. Parallel Random Forest (PRF)
method using Spark to boost the effectiveness of the RF tech-
nique and alleviate the data connection cost and workload
imbalances concerns of massive data in a distributed and

Table 4: Accuracy of PRFITN algorithm.

Accuracy %
Number of decision tree

Farm Ads Susy APS Failure

87 88 95.04 96.8

89 89 96.12 97.9

91 90 97.2 99

93 94 101.52 103.4

95 100 108 110

97 105 113.4 115.5

98 110 118.8 121

99 115 124.2 126.5
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Figure 5: Running time of five algorithms on different scenarios.
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parallel environment. The PRF method is optimized using a
hybrid parallel technique that combines data and job paral-
lelization. A vertical data-partitioning approach and a data-
multiplexing method are used for data-parallel optimization.
These strategies lower the amounts of data and the fre-
quency of data transfer operations in a distributed setting
while maintaining algorithm correctness. These strategies
lower the amounts of data and the frequency of data transfer
operations in a distributed setting while maintaining algo-
rithm correctness. First, the algorithm fully considers the
problem of redundant and irrelevant features in large data-
sets and proposes a hybrid dimensionality reduction strat-
egy, DRIGFN. This strategy can effectively reduce the
dimension of the dataset and significantly reduce the
amount of information lost during data dimension reduc-
tion. Secondly, to improve knowledge of the features used
for training decision trees in random forests, a feature
grouping strategy FGSIT is proposed, which fully considers
the relationship between feature-feature and feature-label.
The weighted vote technique and dimension reduction are
used to optimize the PRF algorithm’s accuracy. Then, using
Apache Spark, a hybrid parallel PRF technique incorporat-
ing data-parallel and task-parallel optimization is carried
out. The training dataset is reused, and the amount of data
is greatly decreased, thanks to the data-parallel optimization.
The task-parallel optimization has the advantage of signifi-
cantly lowering the cost of data transmission and enhancing
algorithm performance. According to experimental findings,
PRF is superior to other algorithms and has distinguishing
advantages over them in terms of accuracy, efficiency, and
scalability. On this basis, the features are divided into two
groups; the training features are extracted proportionally,
ensuring the information amount of the selected features
when constructing the decision tree. Finally, considering
the impact of cluster load on the efficiency of parallel algo-
rithms, a key-value pair redistribution strategy RSKP is
designed to evenly group the intermediate results obtained
by the similar algorithm, balancing a load of reducer nodes
in the cluster and reducing the time complexity of the algo-
rithm Spend. At the same time, to verify the classification
performance of the PRFITN algorithm, this paper compares
and analyzes the three algorithms of the improved MR_RF
algorithm, the PRF algorithm, and the PRFMIC algorithm
on the three datasets of Farm Ads, Susy, and APS Failure
at Scania Trucks. The experimental results show that the
PRFITN algorithm has high accuracy in the big data envi-
ronment, especially for classifying datasets with a large num-
ber of features.

6. Future Scope

The authors explain the topics that warrant additional inves-
tigation and expect that these issues may contain the poten-
tial to contribute to future research studies, building on the
solid foundation of the research findings reported and the
general knowledge attained in this work. Due to the majority
of the studied publications adopting an analytical methodol-
ogy, it is possible to enhance empirical research based on an
extensive case study using a qualitative and quantitative

approach based on surveys. As a cross-cutting theme, busi-
ness and management big data have numerous ties to well-
established subjects in the fields of computing, engineering,
mathematics, business, and social sciences, among others.
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