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The new-generation of Internet of Things (NG-IoT) brings a wide range of challenging problems. At the same time, cloud
computing technology is an important foundation for the development of the IoT. In this article, we focus on the task
scheduling problem in IoT systems in cloud computing environment. Our goal is to minimize the task runtime. It is well
known that the problem of the task scheduling has been a challenging problem. In the last decade, despite being theoretically
hard problem, researchers design lots of state-of-the-art algorithms for solving this problem. In our work, we propose a novel
efficient reinforcement learning (RL) algorithm to solve the task scheduling problem in IoT systems (EATS), which combines
combinatorial optimization to make our proposed algorithm have stable lower bounds. We process a batch of tasks at a time,
make decisions on task selection through reinforcement learning, and solve them further through combinatorial optimization
methods. The results of the experiments show that our proposed algorithm has outstanding performance in different
environments.

1. Introduction

The application of NG-IoT in many fields is becoming more
and more popular. However, enormous number of Internet
of Things (IoT) systems generates a large capacity of data,
and how to efficiently process these data is becoming more
and more important. The task scheduling problem in IoT
systems refers to allocating tasks generated in IoT systems
to virtual machines, so that the total time required is the
least. As we all know, the problem of task scheduling has
always been an NP problem. How to deal with this problem
more efficiently has always been a challenging work. Artifi-
cial intelligence (AI) algorithm plays an important role in
various IoT problems. Recently, Zhou et al. [1] proposed
an accelerating artificial intelligence method for IoT
(AAIoT) for the first time. Christou et al. [2] introduce an
industrial IoT model based on machine learning (ML) and
discuss its explainable.

We know that some problems in IoT are often difficult.
Of course, there are many researchers who treat these prob-
lems as optimization problems and solve them well. Fu et al.

[3] proposes an optimization method for resource manage-
ment in terrestrial satellite systems. Liu and Zhang [4] pro-
posed a joint optimization algorithm based on the
Lagrange dual optimization with the aim of maximizing
the transmission rate of the IoT. With the development of
the IoT and cloud computing, these issues are becoming
increasingly important.

IoT resources are very limited, and how to efficiently use
IoT resources has always been an important problem. We
study the task scheduling problem in IoT systems, which is
a classical NP problem. For this class of problems, many
heuristic algorithms and traditional algorithms are widely
used. Most of the time, they can only solve small-scale prob-
lems. However, for large-scale problems, these algorithms do
not perform well, and there are many researchers who solve
this class of problems by using deep reinforcement learning.
The task scheduling problem is naturally in line with the
Markov decision-making process, and Li et al. [5] solve the
task division and scheduling problem through deep rein-
forcement learning technology, and the proposed method
has excellent performance. Chen et al. [6] proposed a deep
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reinforcement learning- (DRL-) based approach for
dynamic task unloading on MEC. They both point out the
flaws of traditional algorithms and solve the problem effi-
ciently by reinforcement learning algorithms.

Zhang and Zhou [7] summarize the divided scheduling
algorithms in different environments and then divide them
two types: static task scheduling and dynamic task schedul-
ing. Uniform scheduling after accumulating a batch number
of tasks is known as a static scheduling algorithm, while
scheduling arrangements that change as new tasks come in
are called dynamic scheduling algorithms. In this article,
we concentrate on the problem of scheduling tasks in
large-scale static IoT systems. To better solve this problem,
we propose an efficient reinforcement learning algorithm
for solving this task scheduling problem (EATS) in IoT sys-
tems. We use reinforcement learning to guide which tasks
are computed each time and solve the optimal solution for
each selected task by a combinatorial optimization algo-
rithm. Our proposed algorithm has a stable lower bound
and can excel in solving task scheduling problems in large-
scale IoT systems.

The algorithm proposed in this article is based on rein-
forcement learning and combines a combinatorial optimiza-
tion algorithm to solve task scheduling in large-scale IoT
systems. This strategy of combining reinforcement learning
with other algorithms often has outstanding results. The
use of some algorithm-assisted reinforcement learning algo-
rithms is also currently a popular approach to ensure stable
solution lower bounds on difficult problems [8]. With the
rapid increases in the quantity of IoT systems, the scale of
the task scheduling problem will be enormous. Therefore,
it is crucial to design an efficient scheduling algorithm to
solve this problem.

This article’s remaining sections are organized as fol-
lows. In Section 2, we model the problem of task scheduling
in IoT systems and show problem formula. In Section 3, we
propose a novel reinforcement learning algorithm, EATS,
which combines a combinatorial optimization algorithm to
excel in solving task scheduling problems in large-scale IoT
systems, and we give a proof of a lower bound on the algo-
rithm. In Section 4, we compare EATS with other algorithms
in different settings. Section 5 reviews related work. Section 6
summarizes our work and describes our future work.

2. System Model and Problem Formulation

In this article, we study the problem of task scheduling in
IoT systems in a cloud computing environment. Table 1
shows our notions and definitions. To better solve this prob-
lem, the following will describe this problem in more detail
and show our system model.

2.1. Task Model. IoT system generates tasks every second,
there will be N tasks arriving in T seconds, and these tasks
will be handled by the virtual machine. When the amount
of tasks is large, we will select n tasks from the currently
unprocessed task set S, for priority processing. The size of
the set S is denoted as Sn. The task we choose to process each
time in S is denoted by An

S . Each task is either processed as

soon as it is generated or queued waiting to be processed.
In our model, all tasks in the system are processed and no
tasks are discarded.

Each task i has its time ti when it is generated in IoT sys-
tem. The type of the i-th task is pi, its maximum response
time is mi, and its time to be processed by the virtual
machine is wi. The time-out amount τi of task ki is formu-
lated as

τi =max wi − ti −mi, 0f g: ð1Þ

In this article, our goal is to minimize the sum of time-
outs for all tasks in the systems. The sum of the time-outs
of all tasks generated in the IoT system is R. The smaller
the R, the more efficient the designed algorithm. R is defined
as

R = 〠
N

i=1
τi: ð2Þ

Tasks have multiple attributes. In this paper, we concen-
trate on the static task scheduling algorithms in IoT systems
where we know in advance when a task is generated.

2.2. Virtual Machine Model. In our system model, all tasks
are processed by virtual machines. We have M virtual
machines in total. Each virtual machine j has hj threads.
At the same time, each thread in the virtual machine can
only process one task. f j is the number of idle threads on vir-
tual machine j. Since there are many types of task, the time
required of each virtual machine j to calculate the p-th task
is ujp. If the e-th idle thread in the virtual machine j starts
to calculate the p-th type of task at moment t, it will be idle
at the next time; Pje is formulated as

Pje n + 1ð Þ = Pje nð Þ + ujp: ð3Þ

For ease of calculation, all virtual machines in this paper
have the same number of threads and the same efficiency,
but different virtual machines handle different kinds of
problems with different efficiency. Tasks cannot be assigned
to working threads in the virtual machine; only currently
idle threads can process tasks.

2.3. Problem Formulation. An efficient scheduling algorithm
will result in less total time-out R. We process a batch of
tasks at a time, rather than focusing on one task at a time.
We process n tasks at a time, and the remaining tasks are
put into the queue Q. The set S is the tasks that have not
been processed at present, and these tasks will be put into
the queue Q at the first time. L is the length of the queue.
nmaxðtÞ is the maximum amount of tasks we can handle at
time t. ε represents that amount of tasks generated in IoT
systems at time t. At this moment, nmaxðtÞ is the maximum
amount of tasks we can handle, and it should satisfy the
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following constraints:

nmax tð Þ =min L tð Þ + ε, 〠
M

j=1
f j

( )
: ð4Þ

We will select n tasks An
S to process at this moment; n

should satisfy the following constraint:

0 ≤ n ≤ nmax tð Þ: ð5Þ

There will be ε tasks generated at each moment, and we
will process n tasks; the queue length and the set S will
change. Thus, the queue length changes as the following
equality:

L t + 1ð Þ = L tð Þ + ε − n: ð6Þ

In our system model, all types of tasks are placed in a
queue, which simplifies the model without affecting the cal-
culation results.

If we need to process a large number of tasks, one queue
may not be able to hold enough. In this case, we will create a
new queue and process the tasks in the new queue after all
the tasks in the previous queue have been processed.

The new task generated by the IoT system at each
moment first enters the waiting queue Q and updates it to
the set S at the same time.

Since nmaxðtÞ is sometimes very large, we can choose
nmaxðtÞ + 1 number as the size of n each time, and there
are 2An

S possibilities for An
S . So how to choose n and An

S is
worth considering.

In our preliminary experiments, we found that the
choice of which batch of tasks to compute each time had a
huge impact on the results. Of course, choosing which batch
of tasks to compute each time is also a challenging problem,
and in the next section, we will propose a novel reinforce-
ment learning algorithm that learns from failure to better
guide task selection.

3. Algorithm Design

The task scheduling problem in IoT systems is a challenging
problem. As an NP problem, traditional algorithms cannot
solve it in polynomial time. Reinforcement learning is a
good way to solve this kind of problems, but it takes a long
time to train to give a perfect solution. We propose a rein-
forcement learning algorithm with a lower bound, which
can also give an excellent solution after less training.

We define a subproblem as scheduling a batch of tasks.
We design a novel reinforcement learning algorithm that
combines combinatorial optimization algorithms. Reinforce-
ment learning selects the subproblems we process each time,
and combinatorial optimization algorithms can obtain opti-
mal solutions to the subproblems.

Table 1: Notions and definitions.

Notation Definition

N The set of tasks.

M The set of virtual machines.

S The set of tasks that have not been processed.

n The number of tasks each time we choose to handle.

An
S The set of tasks selected from set S each time we choose to handle.

ti The moment when the i-th task was generated in IoT system.

mi The i-th task’s maximum response time.

pi The type of the i-th task.

wi The moment when the i-th task started to be calculate.

τi The i-th task’s time-out amount.

R The total time-out for all task.

hj The number of threads that virtual machine j has equipped.

f j The number of idle threads of the j-th virtual machine.

ujp The time that the j-th virtual machine needs to process the p-th type of task.

Pje The next idle time of the e-th thread in the j-th virtual machine.

Q The queue of pending tasks.

L The length of the Q.

L tð Þ The length of the Q at time t.

nmax tð Þ The maximum number of task that can be calculate at time t.
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3.1. Problem Transformation. We match the task i generated
in the IoT system with the thread h in the virtual machine,
indicating that the task i is processed by the thread h. Since
we do not need to match working threads with tasks, we
only consider idle threads f in thread h. Algorithm 1 shows
our matching process.

In order to better show the relationship of tasks and idle
threads, we model it as a bipartite graph [9], as shown in
Figure 1.

In a bipartite graph with weights G = ðV , EÞ, the set on
left is the set of currently selected batch of tasks, and the
set on the right is the set of currently idle thread in virtual
machine. An edge fv1, v2g in G refers to the assignment of
task v1 to thread v2 for processing, and the weight of this
edge is the completion moment after task v1 is assigned to
thread v2 for processing [10].

The weighted bipartite graph can not only clearly repre-
sent the relationship between tasks and idle threads but also
can be calculated more conveniently.

In Algorithm 1, we decide the set An
S one at a time by the

reinforcement learning algorithm (Algorithm 2), and we
connect the tasks in it to all currently idle threads in the vir-
tual machine (line 3 and line 4) with an edge whose weight is
the moment when the task is completed (line5). Finally, we
need to modify the corresponding set (line9-line11). Each
time the above process is executed, a batch of tasks is proc-
essed. As tasks arrive, we keep repeating this process until all
tasks have been processed.

3.2. Novel Reinforcement Learning Algorithm. There are
many possibilities for the choice of An

S , and we cannot try
all of them in polynomial time. We guide the selection of
An
S through a reinforcement learning algorithm.
Q-learning [11] is an algorithm of the value-based in

reinforcement learning algorithms. Among them, Q is Qðs,
aÞ, which is the expectation that in the state of sðs ∈ SÞ at a
certain moment, taking action aða ∈ AÞ can obtain the
expectation of income. The method of this algorithm is to
construct a Q-table that combines states and actions, and
the stored Q value represents the maximum benefit that we
can obtain by selecting this action in this state. The environ-
ment will receive the corresponding reward r according to
the action of the agent, and this algorithm will choose the
optimal decision according to the Q value.

Agent, environment (E), reward (R), and action (A) can
abstract the problem into an MDP process, and each com-
pleted task sequence is regarded as a state St ; πða, sÞ is to
take action a policy in state s. Pa

ss′ is the probability of select-

ing action a in state s to transition to the next state s′. Rðs′
js, aÞ represents the reward of taking action a and transfer-
ring to s′ in state s. Our goal is to find a strategy that can
process all tasks and obtain the maximum reward. Discount
factor is recorded as γ. Horizon is recorded as H. Our goal is
the following formula:

Goal : maxπE 〠
H

t=0
γtR St , At , St+1ð Þjπ

" #
: ð7Þ

The Q-learning algorithm has advantages in offline
learning; it uses the bellman equation to deal with the deci-
sion problem of the MDP process. The state value function
V is used to evaluate whether the current state is excellent.
The value of each state is not only determined by the current
state but also related of the subsequent state. This makes
actions in the current state more forward-looking. The Q
-learning algorithm is used to deal with discrete problems;
it is naturally suitable for dealing with scheduling problems.
For scheduling problems, the action space corresponding to
each state is very large, and we will discuss how to solve this
problem later.

We briefly introduced the Q-learning algorithm, which
we combined with the combinatorial optimization algo-
rithm. When an An

S to be calculated is given, we model it
and the idle threads in the virtual machine as a bipartite
graph G = ðV , EÞ, where V denotes the number of vertices
and E denotes the number of edges. The network flow algo-
rithm Hopcroft-Karp [12] can calculate the cost of An

S , in
which the time complexity is OðE ffiffiffiffi

V
p Þ. The cost is the fol-

lowing formula:

cost = min 〠
n

e=1
weighte

( )
: ð8Þ

We can determine An
S through reinforcement learning

and find a set of solutions that minimize the total cost of
An
S through the Hopcroft-Karp (HK) algorithm. In our solu-

tion, we model the task and idle virtual machine as a bipar-
tite graph with weights and further transform the problem
into a minimum cost maximum flow, which is solved by a
combinatorial optimization algorithm.

However, the optimization goal of HK algorithm is for-
mula (8), which is not completely equivalent to the optimi-
zation goal of minimizing the time-out amount. We need
to further guide this process by reinforcement learning.
More specifically, our reward function will be related to the
average time-out amount solved by HK algorithm each time.
By combining with combinatorial optimization algorithms,
our algorithm can have a stable lower bound. In more detail,
our algorithm outperforms a simple greedy algorithm

Input: The task set An
S selected each time

Output: Bipartite graph of tasks and idle threads
1: forAll tasks i ∈ An

Sdo
2: forallj ∈Mdo
3: iff j > 0then
4: add edge f j ⟶ i
5: weight = Pjf + ujp

6: end if
7: end for
8: end for
9: erase An

S in Q:
10: erase An

S in S
11: The length of L also modifies accordingly

Algorithm 1: Match tasks with idle threads.
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regardless of the tasks chosen by reinforcement learning.
Because we always solve for the minimum cost of a batch
of tasks, greedy algorithms always only consider a single task
that is currently coming.

Proof. Let weightk be the cost of selecting An
S for the k-th

time; all tasks are completed when the K-th time is com-
pleted, and letgibe the cost of processing of thei-th task by
the greedy algorithm with the shortest task first.

N = 〠
K

k=1
nk, ð9Þ

〠
nk

i=1
gi ≥ weightk, ð10Þ

cos t1 = 〠
N

i=1
gi ≥ 〠

K

k=1
weightk = cos t2: ð11Þ

In the above formula, cos t1 represents the cost of the
greedy algorithm that does the shortest task first to complete
all tasks, and cos t2 represents the cost of each time the rein-
forcement learning algorithm selects an An

S to complete all
tasks.

We next discuss how to guide each chosen task through
reinforcement learning. Algorithm 2 demonstrates this
process.

We use the Q-table to judge the quality of each action
and guide the choice of the next action An

S . We set the
parameter greedy, which represents how much probability
we have to choose the best action in the past (line 4 and line
5). We set it to 0.2; the higher the value, the more likely it is
to fall into a local optimum. γ and rate are our learning
parameters, which represent how much we also receive
rewards (line 11 and line 12). It is worth noting that we want
the total time-out for the task to be smaller, so when making
the reward, we set each reward to a constant tt minus the
average time-out cost, so that reinforcement learning can
guide us to options with less time-out.

We combine the combinatorial optimization algorithm
in lines 9 and 10 of Algorithm 2, which gives us a stable
lower bound. In the past, reinforcement learning algorithms
were more inclined to choose which virtual machine to
assign taski, but we choose which batch of tasks to calculate
each time through reinforcement learning and then use the
combinatorial optimization algorithm to calculate the mini-
mum cost.

In reinforcement learning, the choice of which batch of
tasks to perform each time is considered as an action, and
if the average time-out per task is smaller, the better the
action is proved to be. However, our earlier actions affect
the later decisions, because each decision directly affects
the state of the threads in each virtual machine. We view
the decision process as a tree, each path in the tree represents
a different choice for us. The tree is shown in Figure 2.

The root node is the moment when no tasks have been
processed yet, and each time we process a batch of tasks, it
represents the selection of the next level of nodes in a tree.
When we have reached the leaf node, it proves that all the
tasks have been processed. All of our previous processes
can be seen as a path starting from the root node in the tree
all the way to the leaf nodes, and we are guided by reinforce-
ment learning to choose one path at a time, and the path we
choose is our one action.

Each of our episode refinds a path from the root node in
the tree to a leaf nodes, at which point the state of the virtual
machines in any path taken is consistent; because we choose
a path that has been taken before, it means that we choose
the same task each time as before. This step can greatly
reduce the range explored by our agent. This is necessary
in scheduling problems where we sacrifice a small amount
of space for exploration and can be extremely efficient. In

Task 5

Task 4

Task 3

Task 2

Task 1

Tread 1

Tread 2

Tread 3

Weight = Scheduled fnish time

Figure 1: The relationship between idle threads and tasks.

Input: All tasks
Output: Final solution and timeout
1: Episode = 0;
2: while Episode <bounddo
3: foralltasksdo
4: if random:rand ðÞ < greedythen
5: next − action =max fQ − table½state�g
6: else
7: next − action = random:select ∈ S
8: end if
9: expectedmax = max fQ − table½statejnext − action�g
10: Build a bipartite graph of next − action;
11: Calculate cost by HK algorithm;
12: reward = ðtt − costÞ + γ ∗ expectedmax
13: Q − table½statejnext − action�Ereward ∗ rate
14: if∑K

k=1nk =Nthen
15: break;
16: end if
17: end for
18: Episode = Episode + 1;
19: end while
20: Return final solution and cost

Algorithm 2: RL guides task selection.

5Wireless Communications and Mobile Computing



the next subsection, we will show the outstanding perfor-
mance of EATS in the dataset.

4. Experimental

In this section, we conduct experiments to evaluate EATS in
IoT system of various performance metrics and analyze the
results.

4.1. Experiment Setup. All the algorithms are run on Ubuntu
16.04.5 Linux Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40GHz, 256GB RAM. To verify the effectiveness of EATS,
experiments were set up to test it in different environments.
In the system, we have 6000 tasks that arrive in 1000 sec-
onds. We vary the difficulty of the scheduling problem by
dynamically adjusting the number of threads per virtual
machine and the efficiency of each virtual machine, with
more threads and higher efficiency representing a less diffi-
cult scheduling problem.

To test the effectiveness of the proposed algorithm EATS
in IoT systems, we constructed different scenarios and chose
two baseline algorithms for this article:

(1) The MIN-MIN algorithm [13], which is a classical
algorithm used in scheduling problems. This algo-
rithm focuses on the best solution of the current task
in each moment, and when the new task arrives, it
assigns it to the thread in the virtual machine that
can complete it first. There is also an algorithm sim-
ilar to it, MAX-MIN [14], which prioritises the tasks
that take the most time to complete. In our dataset,
the MIN-MIN algorithm completely dominates the
MAX-MIN algorithm, so we will not show it here

(2) The random algorithm (RDA); although RDA does
not have amazing ideas, it can still give good solu-
tions in some cases. In most cases, RDA is not com-
petitive with state-of-the-art algorithms, but it is a
good baseline that accurately reflects the difficulty
of the dataset. In our work, the amount of time-out
generated by the random strategy and the propor-
tion of time-out tasks are obtained by averaging the
results of three times

4.2. Experiment Results. For the problem of the task schedul-
ing in IoT systems, we evaluate the results of the different
algorithm from two perspectives: (1) time-out (the lower
the time-out, the better the performance of the algorithm)
and (2) the proportion of time-out tasks (the lower the value,
the better the performance of the algorithm, where the pro-
portion of time-out tasks is the number of tasks that are cur-
rently time-out divided by the number of tasks that have
been processed so far).

We compare the experimental results of our proposed
EATS with those of the baseline algorithm in different sce-
narios. With Figures 3 and 4, we can see how the amount
of time-out tasks and the proportion of time-out tasks
change as the task number increases for EATS and its com-
petitors. In our experiments, the amount of time-outs is in
seconds. Observed from the results of Figure 3, the perfor-
mance of our proposed algorithm and MIN-MIN totally
dominates RDA. Although RDA is not competitive with
the other algorithms, it gives a clear picture of the difficulty
of the set of tasks. By looking at the above graph, we see that
both the EATS and MIN-MIN algorithms have outstanding
performance when the number of tasks is small. However,
the performance of the MIN-MIN algorithm degrades as
the number of tasks in IoT systems continues to increase.
When 500 tasks were generated, EATS started to experience
a time-out amount.

As can be seen in Figures 3 and 4, the performance gap
between the different algorithms becomes more pronounced
when the number of tasks increases. The poor performance
of RDA in this set of environments also indicates that the
set of tasks which need be scheduled is difficult to handle.
The harder cases tend to be closer to the real world, while
also showing performance differences between algorithms.

When processing the full task, we can see through Figure 3
that the MIN-MIN algorithm has almost twice as many time-
outs as our algorithm, but in Figure 4, we can see that the per-
centage of task time-outs for the MIN-MIN algorithm does
not reach twice that of our algorithm, indicating that our algo-
rithm is forward-looking enough that it may choose to let the
current task time-out but ensures that the total time-out is as
small as possible. This foresight is important in large-scale task
scheduling problems. When tasks become larger, it is a poor
performance to focus more on the task at hand.

In order to show the effect of proposed EATS in different
environments, we test 2000 tasks generated in IoT systems
under the condition that the virtual machine efficiency is
1/2 of normal. We adjusted the number of different threads
in the virtual machine. As shown in Figures 5 and 6, when
the number of threads in virtual machine increases, this
problem becomes simpler. As the RDA algorithm has a
much higher amount of time-outs in this scenario, we do
not show its time-outs in Figure 5. Even though this set of
scenarios only handles 2000 tasks, it is extremely difficult.
We can see that the lower the number of threads in the vir-
tual machine, the more difficult the problem becomes. When
the problem becomes difficult, the efficiency gap between us
and other algorithms also becomes larger, which shows that
our proposed algorithm has outstanding performance in dif-
ferent scenarios.

Figure 2: The decision-making process for task selection.
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Not only do changes in the number of threads affect the
difficulty of the scheduling problem but also changes in the
efficiency of the virtual machine can make the problem dif-
ficult. In order to better demonstrate the practicability of
our proposed algorithm, we tested the relationship between
the virtual machine efficiency and the amount and propor-
tion of task time-out, as shown in Figures 7 and 8.

As we can see, the problem becomes more difficult when
the virtual machine becomes inefficient. When the virtual
machine efficiency becomes 1/5 of the original, the propor-
tion of time-out tasks has exceeded half. But that does not
seem to be as big an impact as the reduction in threads. This
is because when there are fewer threads, scheduling is not
only more difficult but also affects the number of tasks that
can be processed simultaneously. However, when the effi-
ciency of the virtual machine becomes low, it will not affect
the effective decision of the algorithm directly.
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Figure 3: The amount of time-out changes as the number of tasks increases.
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The experimental findings show that, in various environ-
ments, our proposed algorithm EATS performs better than
the comparison algorithm. Additionally, the relationship
between time-out amount and the proportion of time-out
tasks demonstrates that EATS is adequately forward-
looking. It does a good job of dropping the optimal case of
the current task but guarantees the least total time-out for
all tasks.

Different from other algorithms, we focus on the sched-
uling scheme of a batch of tasks at a time, and it will select
some tasks to time out among a batch of tasks, but the over-
all impact is positive. Second, reinforcement learning guides
the process to make this advantage even more obvious.

Although the RDA algorithm is not competitive with the
state-of-the-art algorithms, we demonstrate the difficulty of
the dataset through the performance of RDA. Our proposed
EATS also has outstanding results in difficult scenarios,
which shows that our proposed algorithm is efficient and
practical.

5. Related Work

With the rapid development of IoT systems, IoT systems are
widely used in different scenarios. Recently, Chen et al. [15]
proposed a game theory approach in QOS aware computing
offloading of IoT in LEO satellite edge computing, which can
better deal with complex scenarios. Moreover, Boursianis
et al. [16] assisted precision agriculture intelligent irrigation
system through the Internet of Things platform. This article
also focuses on issues in IoT systems, which are often used in
cloud computing environments. With the development of
the Internet of Things technology, many problems in the
Internet of Vehicles can be better solved [17, 18].

There are many areas that deal with scheduling and
resource allocation. In the virtual machine resource alloca-
tion problem, Li et al. [19] used reinforcement learning
method to approximate the optimal allocation strategy based
on the feedback state and reward. Li et al. [20] decomposed
the transformed problem into subproblems in the resource
allocation problem of IoT devices in smart buildings and
solved them by stochastic optimization techniques. In addi-
tion to this, many improved methods for task scheduling
have been proposed in recent years [21].

Cloud computing is an important platform to support
IoT applications. Cloud computing is an important plat-
form for supporting IoT applications, where edge comput-
ing is no less important than task scheduling in the cloud.
In our previous work, there were a lot of research on edge
computing. Chen et al. [22] studied in the edge caching of
IoT services. They proposed non-orthogonal multiple
access (NOMA) technology to improve the efficiency of
resource transmission and reformulated the optimization
problem as non-cooperative game model. Wu et al. [23]
are driven by edge computing for target detection and
image enhancement. Chen et al. [24] have focused on
the unloading problem in edge cloud systems and pro-
posed the idea of game-based decentralized task offloading
(GDTO) to obtain offloading strategy and analyze the
upper bound for the convergence time.

In cloud computing and IoT problems, many of them
are difficult and it is crucial that we need to dynamically
adapt the decisions we make. An approach for data security
in the IoT is proposed by Cai et al. and Cai and Zheng [25,
26]. In this article, we also dynamically select the task to be
computed each time by means of a reinforcement learning.

Recently, Wan et al. [27] have proposed edge
computing-based preprocessing methods that can effectively
reduce the demand on the cloud. You et al. [28] focus on
joint task scheduling problem in mobile edge computing,
which divides the problem into multiple subproblems, and
the authors define an optimization problem in order to min-
imize the overall energy consumption of all UAVs. The con-
tinuous convex approximation technique and the branch-
and-bound method are used to solve the high-quality solu-
tions of the subproblem. Similarly, EATS also focus on the
optimal solution of the subproblem, select the subproblem
for each computation by means of a reinforcement learning
algorithm, and process the subproblem by means of a com-
bined optimization algorithm. We devise an efficient algo-
rithm for knowing the arrival of a task in advance.

Finally, we need to model the problem, which we do by
modelling the tasks and idle virtual machines in the IoT sys-
tem as a bipartite graph. There are many ways of modelling
different problems [29]. Chen et al. [30] proposed a flood
prediction model of BiGRU with attention mechanism based
on IoT system. In the industrial Internet of Things (IIoT),
Huang et al. [31] built a Markov queuing model that cap-
tures the dynamics of IoT devices and edge servers and
designed intelligent computing methods. A differential-
private framework to predicting traffic flow was proposed
by Cai et al. [32]. In the future, we will consider additional
modelling approaches to better deal with problems in IoT
systems.

6. Conclusions

In this article, we focus on the problem of task scheduling in
large-scale IoT systems. We propose a novel reinforcement
learning algorithm EATS that incorporates a combinatorial
optimization algorithm and prove its lower bound. The
experimental results show that EATS proposed in this paper
has outstanding performance in different environments. In
our future work, we will further focus on the performance
of reinforcement learning algorithms in other IoT
applications.
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