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With the commercialization of the fifth-generation mobile communication network (5G), the scale of the unmanned aerial vehicle
(UAV) industry has continued to expand. However, the unregistered UAV has caused frequent harassment incidents at
international airports, and the problem of UAV crimes is increasing. Radio technology supports long-distance detection of
unregistered UAV and can be used as an efficient early warning method for unregistered UAV, which has attracted extensive
attention from academia and industry. The classic UAV detection based on remote control signal method faces technical
bottlenecks such as being easily affected by environmental noise, high complexity, and low detection accuracy. In the paper, an
UAV remote control signal detection method is proposed based on cyclic spectrum features. More specifically, a dataset of
UAV remote control signal UAV-CYCset is firstly constructed in the frequency domain. Based on UAV-CYCset dataset, a
network architecture is proposed based on improved AlexNet, and the average detection accuracy of the improved model

reaches 85% (from -10dB to 10 dB) according to the simulation experiments.

1. Introduction

In recent years, unmanned aerial vehicle (UAV) has devel-
oped rapidly in civilian and has been widely used in aerial
photography, agriculture, plant protection, disaster relief,
transportation, surveying and mapping, remote sensing,
and communications. With the continuous development of
UAYV, the scale of the industry is also increasing gradually,
the fields of application have also been greatly expanded,
and the market coverage is increasing year by year. At the
same time, with the application of the fifth-generation
mobile communication network (5G) in business [1], the
data transmission range is wider, the stability is higher,
and the delay is smaller. It contributes to the continuous
expansion of the application scenarios of UAV and the rapid
development of UAV under the impetus [2-4]. With the
rapid rise of the UAV industry, many problems have also
arisen. Reports of UAV endangering the lives of the public,
violating the privacy of others, delaying flights, etc. are not

uncommon. As a result, UAV detection has attracted more
and more attention in industry and academia.

UAV is widely applied to different fields and is used by
the public as one of the means of daily entertainment. It also
affects people’s normal life to a certain extent and even
threatens national security. Most countries have begun to
formulate policies to restrict the flight of UAV, the research
on related technical means of UAV detection and interfer-
ence is increased, and the control measures for UAV safety
incidents are strengthened.

The main way to monitor and counter UAV is signal
detection. The existing detection technologies mainly
include (1) radar technology: the radar used in the anti-
UAV solution uses one of the following three technologies:
pulse (with source), CW (active), and CW (passive) modes.
Each method has different characteristics and advantages
and disadvantages [5, 6]. (2) Photoelectric technology: use
optical cameras to capture scene images, and use infrared
imaging or visible light technology to identify targets, to
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achieve the purpose of tracking and positioning UAV [7,
8]. (3) Sound wave recognition: this technology will store
the sound sample data of the UAV in the system in
advance, collect the sound data in the environment during
the monitoring process, and compare it with the sample
data, finally determining the present state of the UAV. In
the process of research on UAV flight, some researchers
select the feature vector of sound spectrum, including
voiceprint energy, MFC.C feature vector, and use support
vector machine (SVM) to detect whether the UAV signal
exists. In the actual application process, especially for envi-
ronments with many residents or relatively noisy environ-
ments such as games, the method of sound wave
identification will be seriously affected, and the detection
distance will also be limited. (4) Radio technology: deter-
mine whether there is an UAV by detecting whether there
is an UAV remote control signal or image transmission sig-
nal in the target area [9].

At present, UAV is becoming smaller and lighter, so the
radar detection technology is getting more and more difficult
to detect civilian UAV. Similarly, optoelectronic technology
has high hardware requirements, and an UAV that is tens
of meters away may only have a few pixels on the image,
making identification difficult. At the same time, the harsh
weather environment also causes many difficulties for opto-
electronic technology. At present, with the development of
technology, the wireless domain signal detection technology
has become mature. Based on the electromagnetic signal
detection technology combined with the wireless signal
detection technology, the research on the technology suit-
able for detecting the remote-control signal of the UAV is
also the current solution to the detection of the cooperation
and noncooperation UAV in the complex environment,
which is also the core of this paper.

1.1. Related Work. The current UAV detection and identifi-
cation technology are still based on radar, optoelectronic
technology, and wireless signals to detect UAV.

The research and development team of the University of
California, San Diego, has built a 5G communication
Frequency Modulated Continuous Wave (FMCW) long-
distance high-resolution radar system based on 28 GHz
phased array in terms of radar detection of UAV signals
and detected targets up to 250 meters away with a resolution
of 0.15 meters at distance. Ezuma et al. [10] of North
Carolina State University in the United States detected and
identified UAV through the RF fingerprint of the signal sent
by the controller to the micro-UAV and used the energy
transient signal to classify the UAV, using the k-nearest
neighbor method. For UAV target detection, the average
detection accuracy rate is 96.3%. The team from Nanyang
Technological University in Singapore [11] designed a low,
slow, and small radar target recognition method such as
UAYV and proposed a two-dimensional regularized complex
logarithmic Fourier transform, which better solves the exist-
ing signal representation problem. At the same time, the lit-
erature proposes a subspace reliability analysis method to
optimize the unreliable feature dimension of the conditional
covariance matrix. In [12], Yang et al. used spectrum accu-
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mulation (SA) and statistical fingerprint analysis (SFA)
techniques to estimate the frequency of UAV RF signals
and then determine whether there is an UAV in the detec-
tion environment. The recognition rate of this method is
close to 100% in the range of 2.4km, and the recognition
rate is greater than 90% in the range of 3km. [13] pro-
posed a radar-assisted positioning method based on 5G
millimeter wave, deployed 5G millimeter wave radar,
obtained additional features with the help of micro-
Doppler characteristics, and then judged and identified
the UAV rotor. On this basis, the sine frequency modula-
tion (SFM) parameter optimization method is used to sep-
arate multiple UAV and realize the simultaneous detection
of multiple UAV under the same conditions. Zhao and Su
[14] from the National University of Defense Technology
proposed a weak Doppler (m-D) signal evaluation method
for UAV based on cyclostationary phase analysis (CPA)
and realized the effective detection of small UAV based
on radar.

From the mid-to-late 1980s, some related scholars began
to explore the cyclostationary characteristics of signals. At
first, the first-order statistics and second-order statistics of
signals were used to extract signal characteristics [15, 16].
With the continuous evolution of wireless communication
technology, Gardner et al. mentioned spectral redundancy
and related concepts for the first time, which greatly pro-
moted the research progress related to second-order cyclic
statistics. At the end of the 20th century, related scholars
successfully applied high-order cycle statistics to practical
engineering. For example, the detection and analysis of
high-order cycle statistics helped to monitor the failure state
of mechanical devices [17]. At present, signal detection
methods based on cyclostationary features have attracted
extensive attention. Wang et al. proposed a blind detection
algorithm for frequency hopping signals based on cyclosta-
tionary characteristics, extended the asymptotically optimal
x* test method to the detection problem of frequency hop-
ping signals, designed the relevant detection statistics, and
completed the Gaussian white noise environment frequency
hopping signal detection. The algorithm performs well
above -2 dB, the detection probability is 100%, the detection
performance drops sharply from -2dB to -8dB, and the
detection probability is 0% when the signal-to-noise ratio
is less than -8dB [18]. Zhang et al. proposed a neural
network spectrum sensing algorithm based on the cyclosta-
tionary feature of the signal. By calculating the cyclic auto-
correlation function of the signal, perform plane slicing to
generate images and label them to generate datasets [19].
The dataset is fed into an artificial neural network with eight
hidden layers for training. The experimental results show
that the model has good detection performance for the exis-
tence of BPSK signal and OFDM signal and still has a detec-
tion probability of more than 90% in the case of -20 dB. The
algorithm mainly recognizes two kinds of fixed-frequency
signals, BPSK and OFDM. Lu et al. proposed an UAV signal
identification method based on the contour map of the fre-
quency hopping signal. By performing a short-time Fourier
transform on the signal, the contour features of the signal
are extracted to construct a three-dimensional matrix and
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then processed to generate data. The constructed dataset is
fed into a convolutional neural network for training [20].
The final model has better recognition accuracy on the data-
set, with a detection probability of up to 100% above -10dB
and a detection probability of about 75% at -15dB. The
image acquisition and processing process of the algorithm
are relatively complicated, and it is necessary to calculate
the maximum value at each time point and then adjust the
threshold to obtain the signal contour. After that, the image
is processed with contrast and grayscale, so that the entire
model consumes a long time.

In practical applications, UAV remote control signals
are not only affected by environmental noise but also inter-
fered with by other fixed-frequency communication signals.
Therefore, the performance of the proposed UAV signal
recognition model based on time-domain image perception
is limited by the fixed frequency signal interference prob-
lem. The cyclostationary characteristics of wireless signals
have the advantage of being insensitive to environmental
interference.

1.2. Motivation and Main Contribution. Motivated by men-
tioned above, to reduce the complexity of the model as much
as possible, ensure the recognition performance of the algo-
rithm at low signal-to-noise ratio, and improve the anti-
interference ability of the algorithm for fixed-frequency sig-
nals during frequency hopping signal detection, this paper
proposes a cyclic spectrum-based method. The main contri-
butions are concluded as follows:

(1) A novel UAV-CYCset cyclic spectrum dataset with a
signal-to-noise ratio ranging from -10dB to 10dB is
constructed

(2) A network architecture is proposed based on improved
AlexNet

(3) An UAV remote control signal detection method is
proposed based on cyclic spectrum features, and
the constructed dataset is trained and tested through
improved AlexNet

2. System Model

2.1. Cyclostationary Signal. According to the definition, a
cyclostationary signal is a nonstationary signal, but it has
its own cycle. Usually, there is a lot of information in the
cycle when the relevant statistics of the cyclostationary signal
change. This paper focuses on its second-order cyclostation-
ary characteristics to illustrate.

Assuming that x(¢) is a nonstationary signal and has
zero mean, it becomes x(¢)x* (¢ — 1) after secondary trans-
formation. The following is the time-varying correlation
function expression for x(t):

R,(t,7) = E{x(t)x"(t ~7)}. W
Assuming that the period of x(t)x*(t—17) is T, then

taking the relevant theory of Fourier series as a reference,
the sample collection of x(t)x* (¢t — ) with the period of T,

is performed, so the following can be obtained. Statement
expression:

R (t,7) = E{x(t)x" (t ~ 1)}

N . (2)
NI Z x(t+nTy)x"(t+nTy—1).
n=-N

=lim

Since R, (t,7) takes T as the period, the relevant func-

tion can be expanded through the Fourier series, and the
function expansion is as follows:

0
RY= Y RX(t7)e ™. (3)

m=—00
In the above formula, & = m/T,, and its Fourier series is

1 Ty/2 5
R®(7) = T_J R, (t57)e ™ dr. (4)
0J-1,2

Bring equation (2) into equation (4) to get:
T2 A
RY(1)= lim —J x(t)x*(t - T)e M dt. (5)

The above formula expresses the time average of the cor-
relation function. The coefficient R (7) represents the
degree of cyclic autocorrelation of the signal at frequency a,
also known as the cyclic autocorrelation function. The value
that obtains a nonzero value of R®(7) is called the cyclic fre-
quency of the signal. This parameter mainly reflects the
cyclostationary characteristics of the signal. Usually, there
may be different cyclic frequencies in the corresponding spe-
cific signal.

If « =0, we have

RY(7) =x<t+ %)x* (t— %)t (6)

At this time, after R(7) is degraded, it becomes the
autocorrelation function of the stationary signal. If the signal
satisfles R°(7) =0,V o< #0, it can be regarded as a station-
ary signal; and if it satisfies R (7) #0, 3 oc 0, it belongs
to a cyclostationary signal.

Cyclostationary signal itself does not have statistical
characteristics. After a series of calculations, it can be found
that some of its mathematical characteristics are periodic.
The mathematical expectation in the first-order statistics of
the cyclostationary signal and the signal autocorrelation
function in the second-order statistics have been verified to
be periodic. Therefore, it is possible to find and select an
appropriate way to process the signal and convert the signal
characteristics, which is beneficial to find the characteristics
of the signal in essence. And whether it is first-order or
second-order cyclostationary, its characteristics are related
to the frequency shift signal, which mainly depends on the
way of operation.



Because the cyclostationary signal processes the signal
features in a corresponding way and completes the feature
extraction, the processing of such signals is obviously differ-
ent from the traditional signal processing methods. First of
all, when processing cyclostationary signals, the signal char-
acteristics obtained by transformation are the main compo-
nents. Compared with directly processing the original signal,
the processing of the cyclostationary signal will extract the
simplified signal characteristics of the original signal, which
will obviously reduce the complexity. Second, when analyz-
ing the cyclostationary signal, the target is statistical infor-
mation, which can reduce the interference caused by the
noise with stationary characteristics and improve the anti-
noise ability. Third, when dealing with actual signals, choos-
ing cyclostationary signals for processing is more in line with
reality, which not only ensures the rationality of the results
but also makes the processing process easier. It is also
because of the characteristics of the cyclostationary signal
itself that the use of cyclostationary detection to receive sig-
nals has become the most widely used method. Cyclostation-
ary detection is mainly used in the signal processing process
to judge whether the signal has cyclostationary characteris-
tics; second, if it is known that the signal has cyclostationary
characteristics, even on the premise that the signal has
cyclostationary frequency characteristics, this method is usu-
ally used to judge whether there is a known signal in the sig-
nal. The above applications make the cyclostationarity
detection method more and more common in the current
signal processing process.

2.2. Cycle Spectrum. The realization of the cyclic spectrum is
mainly based on the digital fast Fourier transform. Common
cyclic spectrum implementation algorithms mainly include
three categories. The first is the time domain smooth estima-
tion algorithm, and the formula is as follows:

KM-1
[24

. 1 u
(6 f) = M Z AfXI/Af<t_ W’f”L 2>X1/Af
u=0 7

(77D

In the above formula, X;,,¢(t, f) represents the smooth

DFT transform output; Af = 1/(N — 1) T represents the spec-
tral resolution. 1/Af represents the length of the segment.

The second is the frequency domain smoothing estima-
tion method, and the formula is as follows:

1 M-1/2 1

o< _ ¢4 *
SN = 37 2 g¥au(t+ 5+ vFs) X

o
'(t>f_§+VFs)>

(®)

where X ,,(t, f) represents the output after sliding DFT oper-
ation. T’y represents the time sampling increment; Af = M F
represents the spectral smoothing gap width; the total num-
ber of samples in the data segment of the time interval At is
N = (At/Tg) +1.
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To sum up, the process that the output obtained after
demodulation is processed by conjugate multiplication is
the operation process of the FFT accumulation algorithm,
so the computing power of the computer is relatively high
when performing the two-dimensional fast Fourier trans-
form operation, which usually requires more memory and
takes more time to complete. The instantaneous correlation
function algorithm first requires the calculation of the
autocorrelation function of the nonstationary signal, then
completes the transformation in the time domain and fre-
quency domain, and then estimates the cyclic spectrum.

2.3. The Generation of Dataset. The frequency hopping sig-
nal used in this experiment is also generated by the modeling
tool in MATLAB. The center frequency of the frequency
hopping signal is 2.4 GHz, the signal rate is 50Kb/s, the
number of bits per hop is 50, and the bandwidth of the fre-
quency hopping signal is 9.8 MHz. After the frequency hop-
ping signal is generated, it also needs to go through the
Rayleigh channel model containing Gaussian white noise.
In this experiment, after obtaining the noisy signal noise, it
is necessary to calculate the cyclic autocorrelation function
of the signal and then perform the FFT operation on the
function to obtain the spectral correlation function of the
signal. Based on the theoretical knowledge described in
the previous chapter, the spectral correlation function
obtained using correlation operation has noise, signal
spectral correlation function, and cross-spectral correlation
function. The cyclic spectrum is to expand the spectral
correlation function of the obtained noisy signal on the
a-axis and the f-axis, so that the cyclic spectrum can be
obtained, where « is an integer multiple of the fundamen-
tal frequency of the signal, and f represents the frequency
of the signal. The cyclic spectrum is a three-dimensional
image, and the height of its vertical axis is normalized to
determine whether there is a main signal. Since the image
we put into the convolutional neural network is two-
dimensional, the experiment needs to map the three-
dimensional image on the two-dimensional plane to ensure
that the characteristics of the cyclic spectrum can be preserved
to the greatest extent in the two-dimensional plane. In this
experiment, the « — f plane is used as the benchmark to map
the vertical axis of the plane. The experiment uses color to rep-
resent the amplitude of the spectral function at this point, as
shown in Figure 1 below. The darker the color, the higher
the amplitude value. Shallower values represent lower ampli-
tude values.

The computational complexity of the cyclic spectrum is
high. In this experiment, 2048 sample points are intercepted
from the received signal to calculate the total to obtain the
cyclic spectrum of the signal. Since the convolutional neural
network needs control samples, this experiment uses the
same algorithm to generate the cyclic spectrum of noise
when generating the cyclic spectrum of the noisy signal, as
shown in Figure 2. The signal-to-noise ratio range of the fre-
quency hopping signal collected in this experiment is also
-10~10dB, with 1dB as an interval. 100 signal time domain
images and noise time-domain images were collected under
different signal-to-noise ratio conditions.
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FiGURre 1: Frequency hopping signal cycle spectrum.
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FIGURE 2: Noise cyclic spectrum.

After the acquisition of the image is completed, the
pixels where the irrelevant information such as the horizon-
tal and vertical coordinates in the input image are located
are deleted, and only the cyclic spectrum image is retained.
Then resize the image to 227*227*3, where 227 is the length
and width of the image, and 3 is the number of channels of
the image. After the image size processing is completed, the
signal image and the noise image are labeled, respectively,
and stored as record files. Each file includes the correspond-
ing image and its corresponding label. The signal time
domain image label is 1, and the noise image label is 0.
Finally, generate the UAV-CYCset cyclic spectral dataset
of UAV signals. In the experiment, 4200 time-domain
images were obtained through MATLAB simulation, of
which there were 100 signal and noise images under each
signal-to-noise ratio. In this experiment, 70 signal images
and 70 noise images under each signal-to-noise ratio are
taken from UAV-CYCset, a total of 2960 images are used
as the training set, and the remaining 1240 images are used
as the test set.

3. Proposed Schemes

In the pretraining stage, this experiment considers a tradi-
tional convolutional neural network (CNN) for training.
After the model converges, the expected effect is not
achieved, and the recognition rate of the training set is lower
than 85%. Considering that the cyclic spectrum of the signal
has more feature points than the time domain image, and
the size of the generated image is larger, the CNN network
may not meet the experimental requirements of this experi-
ment. After investigation and multiple pretraining experi-
ments, the AlexNet model was selected as the basic
experimental model in this experiment.

3.1. Model Architecture and Improvements. Under the pre-
mise of ensuring the recognition performance of the model,
AlexNet [21] has fewer convolution layers, which reduces
the complexity and time consumption of the model, and
the input is 228228, which reduces the impact on the recog-
nition performance caused by the clipping and scaling of the
circular spectrum image. The model has a total of eight hid-
den layers, of which the first five are convolutional layers,
and the rest are fully connected layers. Among all convolu-
tional layers, only layers 1, 2, and 5 use pooling operations.
The improved AlexNet architecture is shown in Figure 3,
and the parameters of AlexNet network are listed in Table 1.

The input data of the first layer is the image with the orig-
inal size of 227%227*3, where 227 represents the image size, 3
represents the number of channels of the image, the convolu-
tion kernel size of this layer is 11711, and the number of chan-
nels is the same as the number of image channels. The pixel
layer output by the first layer is used as the input data of the
second layer, the size of the pixel layer is 27*27*48, the pixel
layer output by the second layer is used as the input data of
the third layer, and the size of the pixel layer is 13*13*128.
The pixel layer output by the third layer is used as the input
data of the fourth layer. The size of the pixel layer is 13*13*192.

The fifth layer is the same as the fourth layer, and the out-
put after the convolution operation is still 13*13*192. The
sixth layer is a fully connected layer, which inputs data with
a size of 6*6*256 and convolves the input data through filters
of the same size. The 4096 data output in the seventh layer is
fully connected to the 4096 neurons in this layer, and then
the 4096 data formed by the activation function ReLU and
Dropout operation are processed. The 4096 data input in the
8th layer is fully connected to the 1000 neurons in this layer,
and the trained values are outputted externally after training.

This experiment has been optimized based on AlexNet.
The ReLU function is used as the activation function in the
AlexNet network model. The ReLU function can accelerate
the convergence and solve the problem of gradient disap-
pearance. However, because the negative semiaxis of the
ReLU function is 0, the weight may not be updated because
the derivative is 0. Therefore, in this experiment, the Swish
activation function is used to replace the ReLU function.
The Swish function formula is as follows:

1
1+e>’

flx)=x )
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Ficure 3: The architecture of the proposed improved AlexNet [21].

TaBLE 1: The parameters of AlexNet network.

Model structure Model parameter

Convolution layer1l 48 (11 x 11)
MaxPool layerl 3x3
Convolution layer2 128 (5% 5)
MaxPool layer2 3x3
Convolution layer3 192 (3% 3)
Convolution layer4 192 (3% 3)
Convolution layer5 256 (3 x 3)
MaxPool layer3 3x3
Fully connected layerl 4096
Fully connected layer2 4096
Fully connected layer3 1000
Fully connected layer4 2

Compared with the ReLU function, the Swish function
does not have a derivative of 0. After pretraining and the
comparison and verification of the ReLU function, the Swish
function can better solve the problem that the weights
caused by the ReLU function cannot be updated during the
training process. At the same time, the Swish function also
has a certain improvement in model overfitting. Since Adam
requires fewer computing resources than RMSProp, this
experiment chooses to use the Adam algorithm as the opti-
mizer in model training.

3.2. Model Training. In the process of model training in this
experiment, the signal sample images and noise sample
images in the training set are scrambled, respectively, to gen-
erate sample queues. In each training, 50 samples are drawn
from the team leaders in the two queues to form a small
training set with a size of 100, and the small training set is
sent to the neural network for training. After each training,
the signal samples and noise samples in the small training
set are put into the tail of their corresponding sample

queues, respectively, and the previous operations are repeated
to train the convolutional neural network.

In this experiment, a 10-fold crossover method is also
used to test the accuracy of the algorithm. At the same time,
7 copies are selected as training data, and the rest are used as
test data. The experiments are completed in turn, and the
corresponding accuracy rate is obtained in each round. Take
the average after 10 training runs, and the result is an esti-
mate of the accuracy of the algorithm.

4. Simulation and Discussion

Since this experiment uses the self-built data set UAV-
CYCset for training and testing, and there is no publicly
related data set in the network, this experiment mainly com-
pares the recognition performance of traditional algorithms.
The comparison algorithm selected in this experiment is the
blind detection algorithm of frequency hopping signal based
on cyclic autocorrelation proposed by Fan Haining. The
basic principle of the algorithm is to assume that the
received signal is x(n), the received signal contains the fre-
quency hopping signal and noise, and the cyclic autocorrela-
tion function is calculated for the received signal x(n). The
formula is as follows:

Z x(n+m)x*(n) exp (—j2man). (10)

In the formula, L is the length of the received signal.
After that, calculate the average power P, of the received sig-
nal with the following formula:

P .=

io|x<n>|2- (1)

=~ =

After that, a Gaussian white noise sequence v(n) with the
same length as the received signal is generated, the power of
the Gaussian white noise is required to be equal to the



Wireless Communications and Mobile Computing

Accuracy
j=]
w
—L.

-10 -5

—#— Main experiment accuracy

0 5 10
SNR

—o— Traditional algorithm accuracy

FIGURE 4: The comparison of accuracy between AlexNet and benchmark.
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FIGURE 5: The comparison of false alarm rate between AlexNet and benchmark.

average power of the received signal, and then the cyclic
autocorrelation function of v(n) is calculated to estimate

R (m). Select the maximum value of R (m) of maxR;, (m)

as the decision threshold th, artificially add a correction
weight, set it as w, and then whether the frequency hopping
signal exists, the judging method is that if there is at least one
a such that |R; (m)| > th * w, it is judged that there is a fre-
quency hopping signal; otherwise, it is judged that there is
only noise. The data length of the signal in this experiment
is L =2048, and the correction weight is 1.35.

In this experiment, the signal sample is a positive exam-
ple. After the correlation operation, the recall rate of the
convolutional neural network model can reach 85.05%, and
the accuracy rate can reach 99.112%. It can be seen from
the data that the convolutional neural network has a good
recognition performance for the cyclic spectrogram of the
UAV frequency hopping signal. The recall rate obtained by
the comparison algorithm through experiments is 69.69%,
and the precision rate is 100%. Since the sample contains
signal and noise samples with different signal-to-noise ratios
from -10dB to 10dB, the corresponding experiment results
are exhibited as it is shown in Figures 4 and 5.

It can be seen from Figure 4 that the accuracy of the con-
volutional neural network in identifying signal samples has
an upward trend. Although the recall rate of the convolu-
tional neural network in the entire test set can reach
85.05%, the recognition rate of signal samples with low
signal-to-noise ratio is poor. When the signal-to-noise ratio

is lower than -5 dB, the probability of identifying the signal is
less than 80%. If when the signal-to-noise ratio is -10 dB, the
probability of identifying the signal is only 41%. Although
the convolutional neural network model shows a downward
trend as the signal-to-noise ratio decreases, this does not
affect the excellent recognition performance of the neural
network model in the case of high signal-to-noise ratio. If
the signal-to-noise ratio exceeds 1dB, the probability of
identifying the signal can reach 100%. The counterexample
sample in the experiment is the cyclic spectrogram of noise.
As shown in Figure 5, the green line in the figure represents
the false alarm rate of the main experiment, that is, the rec-
ognition rate of identifying the noise sample as a signal. The
neural network performs well in the entire range of signal-
to-noise ratio, the overall false alarm rate is only about
0.77%, and the signal-to-noise ratio change has no effect.
The traditional algorithm has good recognition performance
when the signal-to-noise ratio is greater than 0 dB, the signal
recognition probability drops sharply between -2dB and
-7dB, and the recognition rate is basically 0 when the
signal-to-noise ratio is less than -7 dB.

Compared with the traditional algorithm, the model
generated in this experiment has little difference in the case
of high signal-to-noise ratio and performs well in the false
alarm rate. As the signal-to-noise ratio decreases, the recog-
nition rate of the network model will not drop drastically
like traditional algorithms. At the same time, when the
UAV is receiving the frequency hopping signal, it is possible
to receive not only environmental noise but also signals



emitted by other transmitters. However, since most signals
do not have cyclic characteristics, the cyclic spectrum is used
as a convolutional neural network. The input of the model
ensures the anti-interference performance of the neural net-
work under the condition of other fixed-frequency signals to
a certain extent and has great application value.

5. Conclusion

In this paper, a detection method of UAV remote control
signal based on cyclic spectrum feature is proposed. First,
the basic theory of the current cyclostationary theory is
introduced, and the basic characteristics of the cyclostation-
ary signal and the cyclic spectrum can be used as the theoret-
ical basis for the detection of the frequency hopping signal.
After that, the establishment of the cyclic spectral sample
dataset is conducted. Based on the UAV-CYCset dataset of
UAV remote control signal frequency domain, a network
architecture is proposed based on improved AlexNet, and
the average detection accuracy of the improved model
reaches 85% (-10dB-10dB), which demonstrates the feasi-
bility of using cyclic spectrogram as input to detect UAV fre-
quency hopping signal using convolutional neural network.

Data Availability

The dataset is available. If need, contact the corresponding
author.
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