
Research Article
Data Exchange Mechanism for Real-Time Object Detection in
Cloud-Edge IoT System

Weiwei Miao,1 Zeng Zeng ,1 Jin Huang,1 Shihao Li,1 Yuanyi Xia,1 Sibo Bi,1

and Xilong Wang 2

1Ltd. Information & Telecommunication Branch, State Grid Jiangsu Electric Power Co., 210000, China
2College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106, China

Correspondence should be addressed to Zeng Zeng; zengking913@126.com and Xilong Wang; cloudwxl@nuaa.edu.cn

Received 28 June 2022; Revised 26 September 2022; Accepted 25 April 2023; Published 25 July 2023

Academic Editor: Xu Zheng

Copyright © 2023 Weiwei Miao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Real-time target detection based on massive surveillance video data plays a key role in the smart grid, especially in power vision
applications. With the indepth construction of power Internet of Things, centralized cloud applications pose challenges to real-time
applications due to high bandwidth costs, resulting in delays and loads. Edge computing attempts to perform all the tasks on the
edge. However, limited resources on the edge generally cannot guarantee real-time tasks, while complex intelligence algorithms are
difficult to fully deploy. Given that both cloud computing solution and edge-only computing solution cannot achieve a good effect,
this paper proposes a data exchange mechanism for real-time object detection in a cloud-edge IoT system, which achieves a balance
of object detection task executing between delay and accuracy by utilizing the designed intelligent task scheduler. Experimental
results performed in real environments using real surveillance video datasets show that by using our cloud-edge collaboration
mechanism, the task response time of the system is only about 12% of cloud computing solution while ensuring query accuracy
within the practical scope. The system also improves the query accuracy by about 59% compared to edge computing solutions, while
the task response time was reduced to its 72%.

1. Introduction

With the rapid development of Internet of Things (IoT)
technology, more and more sensor devices are being
installed and utilized. It also brings a large wave of smart
applications, such as smart grid [1]. Computer vision with
the development of artificial intelligence (AI) technology is
also to a new height and most of the smart applications are
based on computing vision. Take the power vision applica-
tions in the power IoTs as examples: the monitoring of per-
sonnel trespass in the substation (with the help of an
electronic fence and local image recognition, it is found that
the personnel in the station have entered the area that does
not belong to the scope of this operation) and the violation
of personnel dress (the personnel do not wear safety helmet,
no work clothes). However, these computer vision applica-
tions face the biggest challenge that how to use the IoT tech-
nology to collect data for real-time processing, namely, real-

time visual application. With the extensive deployment of
surveillance cameras, the number of monitoring video data
has exploded. Information Handling Services’ (IHS) report
in 2019 predicted that there would be over 180 million
surveillance cameras worldwide in the next few years. Auto-
matic and intelligent video analysis has attracted much aca-
demic attention due to the high cost and low effect of
extracting information from continuous surveillance video
in a traditional manual manner. An important application
of video analysis is to conduct real-time statistical analysis
of objects in monitoring video streams, which is crucial in
intelligent visual application, such as object detection, target
tracking, and image classification [2–4].

The traditional solution to upload computing tasks to
the cloud becomes no longer applicable with high real-time
requirements, strong privacy protection requirements, and
huge data transmission. Edge computing [1] is proposed to
solve such problems. Edge computing places a partial

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 3842738, 9 pages
https://doi.org/10.1155/2023/3842738

https://orcid.org/0009-0002-9980-6081
https://orcid.org/0000-0002-7264-9621
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3842738


computational task on the edge side to relieve the load on
the core network. However, edge computing still faces sev-
eral technical difficulties in solving the requirements of
real-time object detection tasks. The first point, the edge
computing power is insufficient. Most of the methods of
object detection are combined with deep learning technol-
ogy, which requires a large number of computations through
a complex structural neural network, which requires pretty
high performance of graphics card and CPU of edge devices,
so that the program of object detection cannot be run nor-
mally on the edge side and needs to use a lightweight net-
work or be offloaded to the cloud for computing. Second,
these application tasks require extremely high real-time per-
formance. For the application scenarios of object detection,
the data sources are mostly the video streams of the camera.
The general camera acquisition frame rate is about 25 frames
per second. In general, an edge device needs to process more
than 3 video streams. It requires some delay for handing by
the edge devices with limited resources, which could lead to
application errors and cause immeasurable losses in some
fields. Third, the detection result’s accuracy in Edge is often
too low to use. In the case of insufficient edge computing
power, to achieve the goal of rapid response task, the most
current edge computing approaches are to run lightweight
neural network model to complete the application task with
low resource. While lightweight neural network models (e.g.,
MobileNet [5]) reduce recognition accuracy by 20%-30%
compared to structurally complex neural network models
(e.g., ResNet152 [6]), which is sometimes intolerable.

In the existing research for the application of edge video
analysis, some scholars carry out a reasonable allocation of
resources starting from the dynamic scheduling of resources.
Chameleon [7] dynamically selects the optimal resource
allocation for the existing deep neural network based video
analysis pipeline. The paper found that the optimal parame-
ter combination of the video analysis pipeline tends to stabi-
lize over time and that similar camera video streams can
often share the same optimal parameter combination. By
making full use of the spatiotemporal correlation of these
two video contents, the authors propose to periodically
change the configuration, the joint search of similar shooting
scenes, and the accuracy of combining the known configura-
tion to solve the problem of dynamic selection resource allo-
cation. This system targets the analysis of offline video and
does not handle the online situation, so the dynamic situa-
tion of video uploading can be considered. Similarly,
VideoStorm [8] was proposed to process thousands of live
video streams. The VideoStorm system also only considers
offline queries and analyzes and tests for offline video data,
which has a big gap between real application scenarios.
Another part of scholars started from the video query system
[3], mainly developed a large-scale video data query system
with low latency and low cost and divided the query into
two stages, coarse classification and fine classification,
respectively.

In summary, both Chameleon and VideoStorm consider
the trade-offs of resource quality and attempt to find the
optimal configuration for delay-sensitive video analysis
applications. However, they both simply considered regular

video analysis without focusing on real-time query optimiza-
tion of surveillance videos. Current video query systems,
including Noscope [2], Focus, and Blazeit [9], specifically
optimize large video queries and use neural networks to sig-
nificantly improve query performance [10–12]. The above
studies mainly focus on the rational allocation of resources,
the optimization of video stream query, and so on. Part of
the problem is solved while also providing some directions
for subsequent research work. For example, in real scenes,
most of the video streams collected at the edge end have spa-
tiotemporal characteristics, such as the similar proportion of
objects in similar scenes and the query results are periodic.
Analysis can be performed for spatiotemporal features with
different strategies to reduce the workload of video analysis.

The above video analysis system is the most mainstream
video analysis system based on edge computing. And most
of them conduct optimal resource allocation for offline video
set, query acceleration for offline video flow, and do not
optimize the query for real-time video flow. Security and pri-
vacy are also key concerns for visual applications. In recent
years, there have been many priorities related to privacy
and security in mobile crowdsourcing [13–15]. However, it
is still rare to use cloud-edge cooperation to solve IoT envi-
ronment, especially power vision application. At the same
time, the core of cloud-edge collaboration is the data
exchange mechanism. Therefore, this paper proposes a data
exchange mechanism for real-time object detection in cloud-
edge IoT system to improve the delay of image target detec-
tion task response in the application process and realize a
balance between detection delay and detection accuracy.
The main contributions of this paper are as follows:

(i) A scheduling algorithm for data exchange for mecha-
nism is designed. The algorithm targets the network
situation between cloud and edges, the load situation
of edge nodes, and the accuracy of the AI models to
determine whether the task is performed at the edge
devices or at the cloud, aiming to improve the accu-
racy and delay of target detection. In this paper,
through a large-scale stochastic data experiment and
small-scale real experiment, the proposed cloud edge
collaboration algorithm improves the detection accu-
racy compared with the edge computing resolution
and reduces the detection time compared with the
cloud computing resolution

(ii) Based on practical application, considering the
complex edge network situation, we select a suitable
scheme for cloud-edge communication, reduce the
time of cloud-edge message transmission, and real-
ize a practical application system by using edge
devices and cloud resources

(iii) This paper performs systematic experiments based
on our own implementation prototype system and
a real surveillance video data. The experimental
results show that the proposed method significantly
outperforms traditional cloud computing and edge
computing solutions in terms of accuracy and delay

2 Wireless Communications and Mobile Computing



2. Materials and Methods

2.1. Cloud-Edge Collaborative System for Object Detection.
This subsection mainly describes the cloud-edge collabora-
tion image object detection system studied in this paper,
including the introduction of the cloud-edge collaboration
system and the overall layout description of the cloud-edge
collaboration mechanism.

2.1.1. The Cloud-Edge Collaborative System. Cloud-edge col-
laboration, that is, collaborative utilization of resources at
the cloud center and edge side, accomplish more complex
tasks. As an abstract cloud-edge collaboration system is
shown in Figure 1, what the cloud-edge collaboration does
is to complete the task request generated by the edge device
using the resources of the cloud and edge. In this paper,
image target detection and analysis of the video flow are
performed.

For the application of edge image object detection in the
proposed system, the cloud servers deploy neural network
models with complex structure, large computation volume
and high result accuracy, while edge nodes deploy neural
network models with simple structure, small computation
volume, but low result accuracy. In order to give full play
to the respective advantages of the cloud-edge collaboration
and achieve the accuracy-delay balance of the image object
detection task processing, it is necessary to select the cloud
center or the edge node as the final position of the response
task according to the current network delay and the load of
the edge node. Briefly, this paper determines the location of
the task response based on the cloud-edge network situation,
the edge nodes’ load and the cloud’s and edge’s neural net-
work model accuracy.

In the video object query application proposed in this
paper, the user sends the query instruction to the system,
and the system detects and analyzes the real-time video flow.
The query task of a video stream requires a real-time
response to a video frame that contains a user-defined query
object, which requires processing of each video frame imme-
diately after receiving it, which is different from traditional
video processing. Therefore, this paper simplifies the query
task of the video flow to the image object detection task on
the edge nodes, which performs the analysis and detection
of every frame of the camera-uploaded video in real time.
After the user initiates the query, the task result is returned
to the user by the response node. Both the cloud center
and the edge nodes store their respective task results for sub-
sequent inference model optimization.

2.1.2. Practice System Architecture. The entire system con-
sists of a cloud center server, a number of edge nodes, and
multiple cameras. Referring to the structure of Figure 1,
the edge device is embodied as a camera. The cloud server
serves all the edge nodes, and one edge node can serve mul-
tiple cameras. The edge node is responsible for receiving the
camera data and communicating with the cloud center in
response to user requests. Each edge node has a local edge
task scheduler, and the user needs to specify an edge node
when initiating a query task. After the edge node receives

the user task request, it starts the corresponding task, and
the edge task scheduler schedules the execution process spe-
cifically. Finally, the edge node returns the result to the user.
After receiving the results, the user needs to feedback on the
accuracy of the task, and the edge node receives and saves
the feedback information, thus promoting the edge task
scheduler to perform more reasonable decisions. If the user
does not return any feedback, the edge node default that
the query task’s result is correct.

The specific object detection application system architec-
ture is shown in Figure 2. The gate in the figure indicates
that the results of the final task execution will be from the
neural network model in the cloud or the neural network
model at the edge. Specific decision results are determined
by the scheduling algorithm. The whole system is divided
into training stages and image recognition stages. The neural
network model at the edge adopts the core of MobileNet,
which is a deep, separable convolution. This technology
can not only reduce the computational complexity of the
neural network model but also greatly reduce the running
memory size required by the neural network model itself,
but the accuracy of image recognition is relatively low. In
the cloud, ResNet152, with more complex neural network
structure, requires more computational power and larger
running memory than MobileNet, but the identification
results are more accurate to make full use of the resources
of the cloud server. ResNet and MobileNet are used as exper-
imental models because, in the current production environ-
ment, most visual DNN applications use neural-network
architectures based on them to fine-tune according to the
application scenarios. The effect of our scheduling mecha-
nism applied to the two models would have a general appli-
cability. In order to make full use of the advantages of cloud
and edge and make the image identification results more
accurate and faster, this paper designs a task scheduling
algorithm to make decisions according to the current net-
work status and the accuracy of edge nodes’ neural network
model and choose the optimal scheme to realize the load
balance of the whole system and the accuracy-delay trade-
off of the query task.

2.2. Design of Data Exchange Mechanism. This subsection
details the edge real-time task scheduler designed in this
paper and the data exchange mechanisms and tools to use
for cloud-edge collaboration practical systems.

A data exchange mechanism for cloud-edge collabora-
tion needs to consider two aspects. The first aspect is the task
scheduler. In the cloud-edge collaboration mechanism, it
needs to play to their respective advantages through the
cloud and the edge so as to complete the task together.
And how to split the task and find the optimal terminal that
completes the task is determined by the task scheduler. This
paper is aimed at the task of image object detection. The
usual practice is to preprocess images on the edge and run
the first few layers of the neural network. However, the
amount of data transmitted between the layers of the neural
network is too large which caused a heavy bandwidth cost.
Therefore, our system adopts the complete picture transmis-
sion, regardless of the problem of task splitting, simplifying

3Wireless Communications and Mobile Computing



the problem while reducing the network transmission pres-
sure. Therefore, the task scheduler only needs to simply
determine the running location of the image target detection
task. The scene faced by this paper is the video flow detec-
tion in the edge environment, while large edge side with high
load and low detection delay are easy to appear as task time-
out. And the detection speed of the cloud is fast with an
uncertain transmission time, fully offloading the task to the
cloud is not suitable for time-insensitive query tasks. Then,
the task scheduler in this paper comprehensively considers
the cloud-edge network status, neural network model accu-
racy, and edge-side load status. The second aspect is the con-
sideration of the cloud-edge transmission mechanism. In the
edge environment, the network is unstable, and situations of
offline and low response delay often occur. So, the system
explores the cloud-edge transmission mechanism of the

actual architecture. For high frequency picture transmission,
this paper adopts TCP long connections and changes the
image format to ensure the picture quality and compress
the picture size. Meanwhile, the acknowledgment confirma-
tion mechanism is adopted to ensure that all kinds of mes-
sages on the edge can be transmitted to the cloud center.

Finally, based on the above technique, we propose a data
exchange mechanism to balance task accuracy and delay.
First, when a task reaches the edge node, the scheduler adds
it to two queues at the same time: a transmission queue and
a local execution queue. So the task is transmitted to the
cloud center and executed locally at the same time. Then
our scheduler determines which results as a response
according to an algorithm; the specific algorithm is given
in the next chapter. In this way, if the network is good, the
cloud execution result is adopted with high accuracy. In

Cloud center

Edge nodes

Edge devices

Figure 1: Cloud-Edge collaborative system architecture.

CNN model training in cloud center

MobileNet in edge
Online image object detection

Edge task scheduler
ResNet in cloud

Figure 2: Image object detection system architecture.

4 Wireless Communications and Mobile Computing



the case of a poor network, the edge execution result with
unstable accuracy is adopted, but it can compensate for the
delay problem. In this way, the average accuracy and time
delay of the tasks are well balanced.

2.2.1. The Edge Real-Time Task Scheduler. The whole image
target detection process is shown in Figure 3, mainly divided
into four stages, and the specific practice of each step are
detailed as follows.

The first step is the image data transmission, where the
edge camera divides the collected video stream and sends
each frame of the segmented image to the edge node.
Assuming there are n edge nodes, edge node i is represented
by Ei, and i values range from 1 to n. Each edge node main-
tains a task queue with Ni images waiting for detection and
identification. Using ti, it represents the average time that
edge node Ei recognizes an image. The final location of the
task response is determined by real-time task scheduler deci-
sions. The real-time task scheduler calculates the optimal
edge node with the smallest expected waiting time for pro-
cessing the pictures. The calculation formula is

d = argmin
1≤i≤n

Ni ∗ ti, ð1Þ

where d represents the final task execution location.
In the actual system of this paper, each edge node Ei

stores the task queue Nx and tx values of the other edge
nodes Ex near it in a local database, SQLite, while calculating
the task scheduling location d in real time based on all the
Nx and tx value changes.

Optimization scheduling is the core work of this paper.
Its decision logic is detailed below:

(1) For each task request receives by each Ei, the request
is placed in a send queue Qsend waiting for sending
and a local recognition queue Qwork waiting for
recognition

(2) For each task request taken from Qwork , the same
task in Qsend is sent to the cloud for processing at
the same time. If the cloud’s reply is received before
the local processing is completed, the cloud detection
results are adopted directly, and the current local
task is completed to handle the next task

(3) If the cloud fails to calculate the results in advance,
the local task ends with a result confidence f . Here,
a minimum tolerance value is set up for m. When
the confidence f is less than or equal m, the recogni-
tion result of the edge node is not credible; that is,
the task result is no corresponding object to be
detected in this image. When f is greater than m,
the recognition result is trusted.m has the formula of

m = argmax
1≤i≤n

xi
Ni

, ð2Þ

where Ni is the number of images of Ei to be
detected in the test set and xi is the number correctly

identified; that is, m is the maximal number of
images correctly recognized by each edge node,
ensuring a better overall recognition result.

(4) When the task processing result f of the edge node is
greater than m, the scheduler further balances the
task execution time and result accuracy. The sched-
uler comprehensively determines through the cloud
task processing duration and the accuracy of its
improved results to obtain a reference score s. The
specific calculation formula is

s = p ∗ α − 1 − pð Þ ∗ tcloud
ti

, ð3Þ

where p is a weight parameter customized by the
user, namely, the trade-off between accuracy and
task execution time, and it takes values between 0
and 1. α represents the improved accuracy values
obtained by subtracting the accuracy values of the
cloud neural network modelfrom the accuracy values
of the edge nodes. tcloud indicates the time elapsed
from sending to the cloud to receiving the result,
which is determined by the last ten communication
delays between the cloud center and the edge node
through least squares fitting to obtain the curve
and calculate the estimated delay.

(5) Due to the unstable network situation, it may occur
that the edge node still does not receive the result
returned by the cloud after waiting for a long time
when f is less than m, and then the detection result
of the edge node is directly returned

In the object detection step, the real-time task scheduler
gives the scheduling results, and the scheduled node begins
to perform the task. In the actual system of this paper, the
node first uses the Yolov3 network to detect the common
objects in the video stream, followed by ResNet152 or Mobi-
leNet to classify the detected objects and obtain the identifi-
cation results.

Finally, the whole task is completed, and the identifica-
tion results are returned to the user and deposited in the
cloud database to optimize training the neural network
model.

2.2.2. Data Exchange Mechanism Analysis and Tool
Selection. To ensure the reliability of picture transmission,
this paper adopts the TCP transmission control protocol.
Then, during task requests peak hours, dozens of query
requests are initiated per second. In this situation, establish-
ing a complete connection for each query request causes a
huge communication overhead. Under the same number of
communication conditions, TCP-long connections can save
a fraction of the time compared to the regular TCP connec-
tion mode. Therefore, this paper chooses to establish a TCP
long connection in the actual system, reducing the time cost
of each handshake. Secondly, the WebP data transfer format
is adapted to our system. The advantages of WebP can be
reflected in its more excellent image compression algorithm,

5Wireless Communications and Mobile Computing



so that the picture has a smaller volume and does not change
the picture quality. WebP transmission can greatly reduce
the transmission time without affecting the picture quality.
Through these two transmission mechanisms, the system
greatly reduces the time of cloud-edge data transmission.

In the construction of a practical system, we finally real-
ized the picture transmission with the NetCat tool through
analysis and exploration. Compared with several main-
stream file transfer tools such as Rsync and Scp under the
Linux operating system, the main advantages of NetCat are
reflected in fast transmission speed and strong adaptive
ability. The transmission tools, such as Rsync and Scp, more
or less encrypt the transmission content itself, block, and
other operation to ensure the security of the transmission
or facilitate break-point retransmission, and NetCat directly
connects with the TCP/UDP protocol of the next layer,
enabling completely transparent transmission.

As shown in Table 1, this paper compares the three tools
of transmission, with five transfers of a total of 61MB of
fragmented data on two nodes with the same configuration
of A and B. Test results yield the fastest and least time trans-
fer, followed by Rsync and Scp. Strong self-adaptation is
reflected in the NetCat tool can choose the optimal trans-
mission mode according to the network quality, and the spe-
cific details are no longer redescribed.

2.3. Experimental Settings. In terms of hardware, we select
some edge nodes with chip with AI-computing acceleration
capability in the design of the actual system. The cloud cen-
ter uses multiple servers with graphic cards, which ensure
absolutely sufficient computing resources.

In the software configuration, the entire system is
deployed above the KubeEdge [16] architecture and imple-
mented with Python. Also, we use the Docker container to
simplify the application environment deployment migration.
For communication between edge nodes and the cloud cen-
ter, we use the lightweight communication protocol MQTT.
Finally, each edge node deploys a small database in SQLite to
store the required historical data.

On the configuration of the transmission mechanism, we
change the TCP configuration parameter for all machines in
the operating system, which are ipv4.tcp_keepalive_intvl,
net.ipv4.tcp_keepalive_probes, and net.ipv4.tcp_keepalive_
time. For instance, the three parameters were, respectively,
configured as 75, 9, and 7200. The first parameter indicates
how long the probe packet is sent after the keepalive packet
starts. The second represents the number of keepalive packet
sent before deciding the connection is disconnected and
notifying the application layer. The third represents the last

sent data interval and the first keepalive packet after the
connection is marked as requiring keepalive. Then, if a client
sends a package labeled keepalive and disconnects, the server
needs 7200 s + 9∗ 75 s = 7875 s before the connection is
released, achieving the effect of the TCP long connection.

2.4. Experimental Data Set. To better simulate the real situ-
ation, we select the open source data set of YouTube-8M
[17], which has the following features:

(i) Videos are publicly available, downloadable, and
have at least 1,000 frames each

(ii) The length of the videos’ time is all between 120 s
and 500 s

(iii) Videos are all associated with at least one knowledge
graph entity

We analyze each video, ultimately extracting tens of
thousands of images from 25 videos with a resolution of
1080 p and 30 fps. These videos cover representative loca-
tions at intersections, streets, schools, parks, and more. In
our experiment, 80% of the images were selected for train-
ing, and the rest of the data were used to validate the accu-
racy of the model.

Since the accuracy of query systems based on object
detection is highly dependent on the training data, an intui-
tive approach is to use images captured by a video camera to
train a model. However, this leads to excessive training costs
and waiting times. It is feasible to jointly train neural models
at the edge to simultaneously serve a set of similar cameras.
Clearly, cooperation between similar scene cameras also
increases the amount of training data for each edge model,
effectively preventing overfitting due to the small training
volume. Therefore, this paper generates a configuration file
by calculating the proportion of the item appearing for each
camera based on the video frames generated by each camera
and uploaded to the cloud. The camera profile can roughly
represent the scene where the camera is deployed. On the
one hand, if the number of cars in the two surveillance
videos is large but the proportion of people is low, both cam-
eras tend to approach the main road. On the other hand, if
there are more people and fewer cars, they tend to be close
to crowded squares or walking trails. So, in our system, the
profiles for each camera are calculated and clustered (based
on their profiles) using the K-Means algorithm [18]. Cam-
eras within the same cluster were considered as in the same
context, thus sharing the same context-specific training data
set to optimize training quality.

Image data
transmission

Waiting for next period

Object
detection Result output

Yes
No

Task
scheduling Interrupt? OverStart

Figure 3: Image object detection flow chart.

6 Wireless Communications and Mobile Computing



3. Results and Discussion

This section provides a concise and precise description of
the experimental results.

To evaluate the effect of the real-time task scheduling
mechanism designed in this paper, we analyze the experi-
mental results with different task scheduling mechanisms
under different solutions, namely, traditional cloud and edge
computing solutions. The comparative different task sched-
uling mechanisms are as follows:

(i) Edge only: all images are identified at the edge, with
no help from the scheduling system and cloud

(ii) Cloud only: all pictures are sent to the cloud for rec-
ognition, and the edge only collects data

(iii) Thin system: a cloud edge system without task
scheduling, the minimum tolerance value m is set
to 0.5, and the default cloud processing time tcloud
is 0.6 s

We evaluate the performance of the above three schemes
and the task scheduling mechanism we design in terms of
accuracy and average delay, respectively.

We use the F -score to measure the accuracy of the query
results. The F-score considers both the precision p of the
query and the recall rate r, as

Fλ = 1 + λ2
� �

∗
p ∗ r

λ2 + r
: ð4Þ

Since the recall rate calculation wastes a significant
amount of time in the detection on the edge, the value of λ
is set to 2 to ensure a low recall rate.

3.1. Results in the Case of Cloud-Edge Isomorphism. Consider
scenarios with isomorphic devices first. In this experiment,
simulation was constructed on multiple identical devices.

Results in single edge node and cloud situations are
shown in Table 2. Compared with the cloud-only query
method, the average task delay of the task scheduling mech-
anism proposed in this paper is only about 12% of the orig-
inal, and the query accuracy is also within the scope of
application tolerance. The mechanism proposed in this
paper improves the accuracy by about 59% compared to
the edge-only method, while only the task delay is only
72% of the time delay.

3.2. Results in the Case of Cloud-Edge Heterogeneity. Then,
we consider scenarios with heterogeneous devices. In this
experiment, simulation was constructed on multiple hetero-
geneous devices. As the results shown in Table 3, the average

delay decreases by nearly 3.3 times compared with all trans-
fers to the cloud center. The mechanism in this paper, com-
pared to mechanisms of edge only and thin system,
improves the accuracy by 55% and 7%, respectively, with
the average delay of only 73% and 42% of the two methods.

4. Discussion

As for the results in the case of cloud-edge isomorphism, the
cloud-edge collaborative mechanism proposed in this paper
performs a good trade-off between accuracy and task
response delay, with real-time task scheduling for time
delays in edge nodes and reducing a large amount of waiting
time. At the same time, the appropriate task processing of
edge nodes also greatly improves the accuracy of object
detection. And for the results in the case of cloud-edge het-
erogeneity, in terms of overall execution delay, each deploy-
ment scheme is greatly increased, but the overall system
performance ranking is not much different. This is because
heterogeneous devices produce some intermediate overhead
when processing the same computing task, so the increase in
execution delay is expected. Our system achieves the best
results in both homogeneous and heterogeneous hardware
environments, which shows that the implementation effect
of the cloud-edge collaborative mechanism proposed in this
paper is not affected by the physical devices.

In addition, we calculate the waiting time for each frame
of the input video, with the probability density function
shown in Figure 4. Figure 4 reflects the probability distribu-
tion of the image recognition delay under different schedul-
ing mechanisms. As can be seen from Figure 4, the average
time of image recognition using the cloud-only mechanism

Table 1: Time cost comparison of the three transmission tools.

Transmission tool 1 2 3 4 5 Average value

Scp 253ms 263ms 288ms 229ms 254ms 257.4ms

Rsync 139ms 158ms 161ms 150ms 141ms 149.8ms

NetCat 124ms 135ms 123ms 145ms 141ms 133.6ms

Table 2: Results in the case of cloud-edge isomorphism.

Deployment scheme Accuracy Average delay

Thin system 83.22% 2.372 s

Our system 91.43% 1.321 s

Edge only 32.40% 1.83 s

Cloud only 99.6% 15.232 s

Table 3: Results in the case of cloud-edge heterogeneity.

Deployment scheme Accuracy Average delay

Thin system 79.21% 23.21 s

Our system 86.77% 9.82 s

Edge only 31.22% 13.29 s

Cloud only 99.8% 36.25 s

7Wireless Communications and Mobile Computing



is much more than several other mechanisms, so the proba-
bility of the recognition time before 2.5 s is always 0. Our
mechanism is marked by red dot lines, and the recognition
delay is basically distributed between 1 s and 2.5 s, and more
than 70% of the image recognition delay is lower than the
other mechanisms. That is to say, the scheduling strategy
of this paper can effectively control the average delay in a
low range, and it greatly reduces the average latency of query
requests. In fact, when the query delay of a certain frame is
too large, the query results of that frame are meaningless.
The edge real-time task scheduler in this paper enables a
cloud high-precision classifier in nonbusy time periods to
identify more images, significantly reducing the user waiting
time, which adaptively balances the system load and query
performance.

There are still some shortcomings in this study. We only
consider the images after the video stream was cut and did
not consider full video stream detection. This article makes
the following outlook for future work:

(i) Consider the situation where the actual scene is
input into the video stream. This situation requires
target detection of a large number of images and
requires better algorithms

(ii) Better scheduling strategies can be used to optimize
the scheduler designed in this paper, for example, by
making online decisions by reinforcement learning

(iii) Some basic scheduling algorithms can be implanted
into the cloud-edge collaborative framework, so that
the cloud-edge collaboration can be truly implemented

5. Conclusions

The maturity of target detection technology has brought
great convenience to the applications of various intelligent
visual application, such as intelligent transportation testing
and public safety. At the same time, the high hardware

requirements of target detection technology also bring new
challenges, such as insufficient computing power on edge
devices, too long cloud transmission time. In this situation,
this paper mainly performs the following two points:

(i) A data exchange mechanism for real-time object
detection in cloud-edge IoT system is proposed.
The system can significantly improve identification
accuracy and reduce query delay while ensuring sys-
tem stability

(ii) We experimentally implement the proposed system
separately on edge homogeneous/heterogeneous
devices and experimentally demonstrate the advan-
tages and effectiveness of the proposed cloud-edge
collaborative mechanism

Data Availability

We selected the open-source data set of YouTube-8M from
http://research.google.com/youtube8m.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Science and Technology
Project of State Grid Jiangsu Electric Power Company
(No. J2021028).

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 5, pp. 637–646, 2016.

[2] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia,
“NoScope,” Proceedings of the VLDB Endowment, vol. 10,
no. 11, pp. 1586–1597, 2017.

[3] K. Hsieh, G. Ananthanarayanan, P. Bodik et al., “Focus: query-
ing large video datasets with low latency and low cost,” in 13th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI ’18), Carlsbad CA, USA, 2018.

[4] G. Ananthanarayanan, P. Bahl, P. Bodik et al., “Real-time
video analytics: the killer app for edge computing,” Computer,
vol. 50, no. 10, pp. 58–67, 2017.

[5] A. G. Howard, M. Zhu, B. Chen et al., “Mobilenets: efficient
convolutional neural networks for mobile vision applications,”
2017, https://arxiv.org/abs/1704.04861.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778, Las
Vegas, NV, USA, 2016.

[7] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Pro-
ceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pp. 253–266, Budapest, Hun-
gary, 2018.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Pr
ob

ab
ili

ty

Recognition delay
0.0 0.5 1.0 1.5 2.0 2.5

Thin system
Our system

Edge only
Cloud only

Figure 4: Recognition delay probability distribution plots.

8 Wireless Communications and Mobile Computing

http://research.google.com/youtube8m


[8] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
P. Bahl, and M. J. Freedman, “Live video analytics at scale with
approximation and delay-tolerance,” in 14th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’17), Boston, MA, USA, 2017.

[9] D. Kang, P. Bailis, and M. Zaharia, “BlazeIt: optimizing declar-
ative aggregation and limit queries for neural network-based
video analytics,” 2018, https://arxiv.org/abs/1805.01046.

[10] Z. Cai and X. Zheng, “A private and efficient mechanism for
data uploading in smart cyber-physical systems,” IEEE Trans-
actions on Network Science and Engineering, vol. 7, no. 2,
pp. 766–775, 2020.

[11] Z. Cai and Z. He, “Trading private range counting over big IoT
data,” in 2019 IEEE 39th International Conference on Distrib-
uted Computing Systems (ICDCS), pp. 144–153, Dallas, TX,
USA, 2019.

[12] X. Zheng and Z. Cai, “Privacy-preserved data sharing towards
multiple parties in industrial IoTs,” IEEE Journal on Selected
Areas in Communications, vol. 38, no. 5, pp. 968–979, 2020.

[13] Y. Wang, Z. Cai, Z.-H. Zhan, B. Zhao, X. Tong, and L. Qi,
“Walrasian equilibrium-based multiobjective optimization for
task allocation in mobile crowdsourcing,” IEEE Transactions
on Computational Social Systems, vol. 7, no. 4, pp. 1033–1046,
2020.

[14] Z. Sun, Y. Wang, Z. Cai, T. Liu, X. Tong, and N. Jiang, “A two-
stage privacy protection mechanism based on blockchain in
mobile crowdsourcing,” International Journal of Intelligent
Systems, vol. 36, no. 5, pp. 2058–2080, 2021.

[15] Y. Wang, Y. Gao, Y. Li, and X. Tong, “A worker-selection
incentive mechanism for optimizing platform-centric mobile
crowdsourcing systems,” Computer Networks, vol. 171, article
107144, 2020.

[16] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge
with kubeedge,” in 2018 IEEE/ACM Symposium on Edge Com-
puting (SEC), pp. 373–377, Seattle, WA, USA, 2018.

[17] S. Abu-El-Haija, N. Kothari, J. Lee et al., “Youtube-8m: a large-
scale video classification benchmark,” 2016, https://arxiv.org/
abs/1609.08675.

[18] M. A. Wong and J. Hartigan, “Algorithm AS 136: a K-means
clustering algorithm,” Applied Statistics, vol. 28, no. 1,
pp. 100–108, 1979.

9Wireless Communications and Mobile Computing


	Data Exchange Mechanism for Real-Time Object Detection in Cloud-Edge IoT System
	1. Introduction
	2. Materials and Methods
	2.1. Cloud-Edge Collaborative System for Object Detection
	2.1.1. The Cloud-Edge Collaborative System
	2.1.2. Practice System Architecture

	2.2. Design of Data Exchange Mechanism
	2.2.1. The Edge Real-Time Task Scheduler
	2.2.2. Data Exchange Mechanism Analysis and Tool Selection

	2.3. Experimental Settings
	2.4. Experimental Data Set

	3. Results and Discussion
	3.1. Results in the Case of Cloud-Edge Isomorphism
	3.2. Results in the Case of Cloud-Edge Heterogeneity

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



