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Considering the shortcomings of the existing network key node identification methods based on multiattribute fusion, which have
single evaluation methods and low decision accuracy, combined with the advantages of the high accuracy of TOPSIS (Technique
for Order Preference by Similarity to an Ideal Solution) algorithm and the applicability of grey relational analysis method for
incomplete information evaluation, the concept of relative closeness is proposed, and nodes are ranked in importance based on the
relative closeness; a key node identification method algorithm based on improved multiattribute fusion is designed. First, the
identification problem of key nodes is transformed into multiattribute decision-making method, and the decision matrix is
obtained. Second, the weighting matrix is obtained by weighting them in both subjective and objective dimensions, the relative
closeness is calculated for the weighting matrix. Finally, sort the network nodes by relative closeness, and network performance
simulation experiments are designed using various combinations of evaluation methods and key node identification methods. The
simulation results show that this method is more adaptable and improves the identification accuracy of the network key nodes.

1. Introduction

Complex networks have attracted much attention from
researchers owing to their scale-free, fragility, self-organization,
and other characteristics. In real life, many systems, such as
social networks, power networks, and transportation networks,
can be represented using complex networks. The key nodes of
various types of complex networks play an important role in
the network structure and function, and knowing how to iden-
tify the key nodes is crucial for complex network reliability.
Mining important nodes in social networks can help with
decision-making in areas such as public opinion monitoring
and advertising and marketing [1, 2]. In transportation net-
works, identifying key nodes of transportation hubs in advance
can effectively prevent traffic congestion problems [3, 4]. In
power networks, identifying key nodes of power networks in
advance can implement protection and maintenance measures
for key grid nodes [5]; as can be seen, discovering key nodes of
various types of complex networks has high practical value.

Many network critical node identification methods have
been proposed, such as degree centrality, betweenness central-
ity, K-shell, and structural holes. On this basis, many scholars
have proposed improvements to these identification methods.
Considering the characteristics of directed weighted networks,
Zhao et al. [6] proposed JP-degree centrality in view of the
shortage of traditional degree centrality that cannot be applied
to directed weighted networks. The literature addressed the
lack of degree centrality, which is difficult to directly apply to
community networks, and proposed semilocal centrality algo-
rithm that combined community structure with node degree
[7]. Wang et al. [8] considered the form of vectors and pro-
posed multiorder neighbor shell vector centrality. Wang et al.
[9] introduced hierarchical flow betweenness to improve the
structural hole method. Wang et al. [10] proposed and applied
an improved efficiency centrality method to weighted net-
works. Hu et al. [11] proposed an importance identification
method for network nodes based on neighborhood informa-
tion entropy. Considering that the PageRank algorithm is only
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suitable for static networks, Xu and Wang [12] proposed an
ALR algorithm that combines H-index and LeaderRank to
adapt to changes in network topology. The aforementioned
methods are single-index identification and their improve-
ment, which describe the importance of nodes in a network
from different perspectives; however, different networks have
different structural characteristics, and even different parts of
the same network have different structures. Therefore, a single
metric identification and improving its performance in differ-
ent networks can be difficult. For this reason, many scholars
have applied multiattribute decision-making to key node
identification.

The multiattribute decision method uses multiple key node
identification methods as metrics for comprehensive evaluation
of nodes, which no longer emphasizes the influence of a single
factor one-sidedly and is often used for comprehensive evalua-
tion of network key nodes. Yu et al. [13] and Liu et al. [14] used
the subjective weighting method to determine the weights of
evaluation metrics and applied it to network key node identifi-
cation in combination with TOPSIS (Technique for Order Pref-
erence by Similarity to an Ideal Solution) method to achieve
better results; Yang et al. [15] used information on the decision
matrix to objectively assign weights to each metric. Other stud-
ies introduced the SIR (Susceptible Infected Recovered) model
to dynamically calculate the weights of each evaluation metric
[16, 17]. A combined centrality to the gravitational law to com-
prehensively identify the influence of the network nodes was
applied [18]. Some studies proposed further improvements to
the multiattribute decision method in terms of weights [19,
20]. The above methods often use only one method, TOPSIS
or Vikor, when calculating the evaluation results, and directly
use the sample data for analysis; however, in real networks, it
is difficult to ensure the integrity of information acquisition in
the system, and the decision results will cause certain errors.

The grey relational analysis is a method for measuring the
degree of association between factors based on the similarity
or dissimilarity of their trends; that is, “grey relational degree”
is a simple and reliable method in the analysis system that
can solve this problem well. It is better suited to situations
where the system information is incomplete. Therefore, this
study proposes a key node identification method based on
improved multiattribute fusion, which fully combines the
advantages of the high accuracy of the TOPSIS algorithm and
the grey relational analysis method for incomplete information
evaluation and improves the identification accuracy of the net-
work key nodes.

The main contributions of this study are in the following
areas:

(1) An improved multiattribute fusion key node identifi-
cation method combining TOPSIS and grey rela-
tional analysis is proposed

(2) The subjective and objective comprehensive weight-
ing method is proposed, and the relative closeness
is proposed to calculate the evaluation results

(3) Example algorithms were designed to analyze and
compare the network performance of different com-

binations of node importance evaluations and differ-
ent networks

This study is organized as follows: Section 2 introduces
several typical key node identification methods. Section 3
elaborates the algorithm flow and specific steps of this study.
Section 4 illustrates the effectiveness and applicability of the
proposed method by designing different simulation experi-
ments. Section 5 is the conclusion section, which summa-
rizes the research and provides future directions.

2. Metrics for Evaluating the Importance

The typical key node identification method is used as an
evaluation metric of node importance. The node importance
metrics are as follows.

2.1. Degree Centrality (DC). Degree centrality is the most
direct metric to characterize the centrality of a node in net-
work analysis. The larger the node degree of a node, the
higher the DC of the node, and the more important the node
is in the network. The formula is as follows:

DCi =
ki

N − 1 , ð1Þ

where N is the number of nodes and ki is the degree of the
node i.

2.2. Structural Hole (SH). There is no direct or indirect
connection between the two nodes in the network, so the
vacancy between the nodes is a structural hole. Burt
proposed to calculate the network constraint coefficient to
measure the structural hole, and the formula is as follows:

SHi =〠
j

Pij + 〠
q≠i≠j

PiqPqj

 !2

, ð2Þ

where Pij is the ratio of the energy invested by node i to
maintain the neighbor relationship with node j to the total
energy and q is the indirect node between node i and node
j. The smaller the constraint coefficient SHi, the larger the
SH and the more important the position of the node.

2.3. Closeness Centrality (CC). Closeness centrality reflects
the proximity between a node and other nodes in the net-
work. The formula is as follows:

CCi =
N

∑N
j=1dij

, ð3Þ

where N is the number of nodes and dij is the shortest dis-
tance between node i and node j. The higher the value of
the CC of a node, the more important its position is.

2.4. Betweenness Centrality (BC). Betweenness centrality is a
measure of graph centrality based on the shortest path. The
centrality of a node is the number of shortest paths through
that node. The formula is as follows:
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BCi = 〠
N

j≠i≠k∈V

gjk ið Þ
gjk

, ð4Þ

where gjkðiÞ represents the number of shortest paths
between nodes j and k through node i and gjk represents
the number of all shortest paths between nodes j and k.
The larger the value of BC, the more important position
the node assumes in the information flow of the network.

The degree centrality is simple and suitable for all kinds
of basic networks, but not very accurate. Since the structural
hole can calculate the dependence of nodes on other nodes
in the network, and the regular network has a high clustering
coefficient, clustering coefficient is a measure of how well a
node’s neighbors are connected to each other. Structural
holes are suitable for regular networks and small-world net-
works with a high degree of clustering coefficient. Degree
centrality and structural hole only utilizes the local features
of the network, and it has certain limitations. Closeness
centrality and betweenness centrality make use of the global
features of the network, that is, the position of a node in the
whole structure. The closeness centrality can avoid being
affected by the distance extremes generated by individual
isolated nodes. The betweenness centrality represents the
degree of independence between nodes; they are suitable
for random networks and scale-free networks. Most of the
real networks cover all or part of the characteristics of the
above-mentioned standard networks. For example, scale-
free networks are universal, and social networks, biological
networks, trade networks, and other types of networks have
scale-free network characteristics. Therefore, this study inte-
grate the locality and globality of several metrics, combines
the advantages of each method, and applies these metrics
to multi-indicator fusion.

3. The Specific Flowchart

The idea of the node importance identification method based
on multiattribute decision-making is to regard the nodes in
the complex network as a scheme, regard multiple basic
evaluation metrics for evaluating the importance of nodes as
attributes of each scheme, and then judge the importance of
nodes through the decision results. The specific implementa-
tion method of the method is as follows.

3.1. Constructing the Decision Matrix. Let there be N nodes
in the complex network, and then, the corresponding set of
decision schemas can be denoted as A = fA1, A2,⋯ANg. If
there are m metrics to evaluate the importance of each node,
the corresponding set of schema attributes is denoted as S
= fS1, S2,⋯Smg. The value of the jth metric of the ith node
is denoted as AiðSjÞ, which constitutes the decision matrix.

X =

A1 S1ð Þ : : A1 Smð Þ
: : : :

: : : :

AN S1ð Þ : : AN Smð Þ

0
BBBBB@

1
CCCCCA: ð5Þ

Then, the metrics were regularized as follows:

rij =
Ai Sj
À Á

Ai Sj
À Ámax ,

rij =
Ai Sj
À Ámin

Ai Sj
À Á ,

ð6Þ

where

Ai Sj
À Ámax = max Ai Sj

À Á
, 1 ≤ i ≤Nð ÞÈ É

Ai Sj
À Ámin

= min Ai Sj
À Á

, 1 ≤ i ≤Nð ÞÈ É
:

ð7Þ

The standardized decision matrix is denoted as R =
ðrijÞN∗m

.

3.2. Calculation of the Weight of each Metric

3.2.1. The AHP Method to Calculate Subjective Weights of
Metrics. First, the three-scale method is used to build a com-
parison matrix for each metric after a two-by-two compari-
son of each metric. Table 1 lists the values in the comparison
matrix B constructed according to the three-scale method in
the following equation:

B = bij
À Á

=
2, Metric i is more important thanmetric j,
1, Metric i is as important asmetric j,
0, Metric j ismore important thanmetric i:

8>><
>>:

ð8Þ

The comparison matrix is then used to construct a judg-
ment matrix C using the difference method, and a consis-
tency test is performed. Finally, the metrics’ weights are
obtained by the following method.

Mi =
Y4
j=1

cij,

Wi =
ffiffiffiffiffiffi
Mi

4
p

,

ð9Þ

where C = ðcijÞ. After normalizing Wi, the final weight can
be obtained.

3.2.2. The Entropy Method for Calculating Objective Weights
of Metrics. In information theory, entropy is used to deter-
mine the degree of dispersion of a metric. The greater the
degree of dispersion of a metric, the greater its weight in

Table 1: Comparison matrix of node importance metrics.

DC SH CC BC

DC 1 0 0 0

SH 2 1 1 0

CC 2 1 1 0

BC 2 2 2 1
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the composite weight. This is a classical method for assign-
ing weights. The entropy of the jth metric is calculated as
follows:

ej = −
1

ln Nj j〠
Nj j

i=1
pij ln pij

� �
, j = 1, 2,⋯m,

pij =
rij

∑N
i=1rij

, i = 1, 2,⋯N , j = 1, 2,⋯m,
ð10Þ

where ej is the entropy of the jth column of metrics and pij is
the weight of the jth indicator of the ith node in that column of
metrics. Finally, the weight of each is determined as follows:

wj =
1 − ej

∑m
j=1 1 − ej
À Á , ð11Þ

where 1 − ej is the information entropy redundancy and wj

satisfies ∑wj = 1.

3.2.3. Calculation of Composite Weights. This algorithm inte-
grates the subjective and objective weights and reasonably
allocates the subjective and objective weight coefficients,
and the final combined weight is expressed as follows:

wj = αwj1 + βwj2, ð12Þ

where wj1 is the subjective weight calculated using the AHP
method and wj2 is the objective weight calculated using the
entropy weight method. α and β are the weighting coeffi-
cients, solved as follows:

α =
∑N

i=1∑
m
j=1wj1rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i=1∑

m
j=1wj1rij

� �2
+ ∑N

i=1∑
m
j=1wj2rij

� �2r ,

β =
∑N

i=1∑
m
j=1wj2rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i=1∑

m
j=1wj1rij

� �2
+ ∑N

i=1∑
m
j=1wj2rij

� �2r :

ð13Þ

The coefficients obtained from the above equation are
then normalized to give the final weight coefficients α and β.

3.3. Relative Closeness Calculation. First, we construct the
weighting matrix Y as follows:

Y = yij
� �

= wjrij
À Á

=

w1r11 ⋯ wmr1m

:

:

⋯

⋯

:

:

w1rN1 ⋯ wmrNm

0
BBBB@

1
CCCCA: ð14Þ

3.3.1. Calculate the Euclidean Distance. The positive and
negative ideal decision schemas are determined from the
matrix Y . The Euclidean distance between each option and
the positive and negative ideal options is then calculated
using the following equation:

D+
i = 〠

m

j=1
yij − ymax

j

� �2" #1/2
,

D−
i = 〠

m

j=1
yij − ymin

j

� �2" #1/2
:

ð15Þ

3.3.2. Calculate the Grey Relational Degree. Calculate the
grey relational coefficient between the ith sample and the
positive ideal sample on the jth metric based on the
weighted normalization matrix:

S+ij =
min

i
min
j

Δyij + ρ max
i

max
j

Δyij

Δyij + ρ max
i

max
j

Δyij
, ð16Þ

where Δyij = jy+j − yijj, min
i

min
j

Δyij is the two-level mini-

mum difference, max
i

max
j

Δyij is the two-level maximum

difference, and ρ ∈ ½0, 1� is the discrimination coefficient;
the smaller the discrimination coefficient, the greater the dif-
ference between the correlation coefficients and the stronger
the discrimination ability, usually taken as 0.5. Then, the
grey relational coefficient matrix of each sample and the pos-
itive ideal sample is determined as follows:

W+ =

s+11 ⋯ s+1m

:

:

⋯

⋯

:

:

s+N1 ⋯ s+Nm

0
BBBB@

1
CCCCA: ð17Þ

The grey relational of the ith sample with the positive
ideal sample is expressed as follows:

W+
i =

1
m
〠
m

j=1
s+ij: ð18Þ

Similarly, replacing Δyij = jy−j − yijj in Equation (16) with
Δyij, the grey relational degree of each sample with the neg-
ative ideal sample can be obtained.

W−
i =

1
m
〠
m

j=1
s−ij: ð19Þ

3.3.3. Calculate the Relative Closeness. First, the Euclidean
distance and grey relational degree are made dimensionless
separately as follows:

φi =
Φi

max
1≤i≤N

Φið Þ , ð20Þ

where Φi represents the D
+
i , D

−
i , W

+
i , and W−

i derived and is
represented by d+i , d

−
i , w

+
i , and w−

i , respectively, after it is
made dimensionless. Combining the Euclidean distance

4 Wireless Communications and Mobile Computing



and the grey relational degree, we obtain the following:

T+
i = e1d

−
i + e2w

+
i ,

T−
i = e1d

+
i + e2w

−
i ,

ð21Þ

where e1 + e2 = 1. The values of e1 and e2 can be set accord-
ing to preferences. This study takes e1 = e2 = 0:5. Finally, the
relative closeness is calculated, and the final comprehensive
evaluation result can be obtained using the following equa-
tion:

δi =
T+
i

T+
i + T−

i
: ð22Þ

3.4. Steps of Algorithm. The steps of the key node identifica-
tion algorithm based on improved multiattribute fusion are
shown in Figure 1.

Step 1. Calculate basic evaluation metrics of the network,
such DC and SH.

Step 2. Construct decision matrix and normalize it to form a
multiattribute decision matrix.

Step 3. Substitute the weights of each metric obtained from
the combination of subjective and objective methods into
decision matrix to obtain the weighted matrix.

Step 4. Calculate Euclidean distance and grey relational
degree by using weighted matrix.

Step 5. The relative closeness is calculated to get the compre-
hensive importance of the nodes, which is ranked from larg-
est to smallest. The larger the closeness, the higher the
importance of the node in the network.

4. Algorithm Analysis

4.1. Evaluation Methodology. Different network models are
deliberately attacked, and the key nodes identified by each
algorithm are removed one by one. The impact of removing
key nodes on the network is measured using three indexes:
average network efficiency, network connectivity coefficient,
and maximum-connected subgraph ratio, and then, the rec-
ognition accuracy of different algorithms is compared.

4.1.1. The Average Network Efficiency. This is defined as the
average of the sum of the reciprocal of the distances between
any two points in the network, which reflects the ability of
information to flow in the network. The higher the average
network efficiency, the better the integrity of the network
when it is under attack. It is defined as follows:

η = 1
N × N − 1ð Þ ×〠

i≠j

1
dij

, ð23Þ

where dij denotes the distance between nodes i, j.
The accuracy of the algorithm’s identification is deter-

mined using the average rate of decline in the network’s effi-
ciency. The faster the decline, the faster the network is down,
and the more important the identified nodes are.

4.1.2. Network Connectivity Coefficient. This measures the
relationship between the network invulnerability and the
number of connected branches. It can analyze the partitioning

Start
Calculate 

basic 
metrics

Construct 
decision 
matrix

Matrix 
weighting

Calculate 
euclidean 

distance and 
grey relational 

degree

Sort by 
relative 

closeness
End

Figure 1: Flowchart of the algorithm.
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8 9 10 11 12 13 14 15

1

23456

21 20 19 18 17 16

Figure 2: ARPA network topological structure.

Table 2: Ranking results of node importance evaluation on ARPA
network.

Ranking DC SH CC BC Proposed method

1 3 2 14 3 3 3 3

2 6 12 15 19 14 19 12 12

3
1 4 5 7 8 9
10 11 13 16
17 18 20 21

12 19 12 19 19

4 6 18 6 14

5 2 4 13 14 4 6

6 15 17 14 2

7 17 2 20 13 4

8 13 18 5 6 5 13

9 4 11 11 5

10 5 7 11 15 2 11
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of the network after the deletion of nodes. The smaller the net-
work connectivity coefficient, the more severely segmented the
network is and the worse the invulnerability is, indicating that
the deleted node is more important. The expression of net-
work connectivity coefficient is expressed as follows:

Φ = 1
ω∑ω

i=1 Ni/Nð Þ × ξi
, ð24Þ

whereω is the number of connected subgraphs of the network,
Ni is the number of nodes inside the ith connected subgraph,

and ξi and is the average distance inside the ith connected sub-
graph, expressed as follows:

ξ = 1
N × N − 1ð Þ × 〠

N

i=1
〠
N

j=i+1
dij: ð25Þ

4.1.3. The Maximum-Connected Subgraph Ratio. This is
defined as the ratio of the number of nodes in the
maximum-connected subgraph in the network to the total
number of nodes in the network, expressed as follows:

S = Em

E
, ð26Þ

where Em is the number of nodes in the maximum-connected
subgraph and E is the total number of nodes in the initial net-
work. The faster the maximum-connected subgraph ratio
decreases, the more severely the network is segmented, indi-
cating that the more removed points are important.

4.2. Algorithm Examples

4.2.1. Analysis of the Effectiveness. In order to illustrate the
effectiveness of this method, ARPA network is used in this
paper. Figure 2 shows the ARPA (Advanced Research Pro-
jects Agency) network topology, which consists of 21 nodes
and 23 links.

Table 2 gives the results of the ranking of the node
importance determined by the algorithm proposed in this
study and DC, SH, CC, and BC on the ARPA network.

The method of this study and DC, SH, CC, and BC all
have 10 identical nodes with different rankings, showing that
the proposed method has certain feasibility. From the overall
view of the sorting results, DC, SH, and CC all have different
nodes in the same ranking, and it is obviously difficult to dis-
tinguish their importance; BC and the proposed method can
perform better. From the point of view of a single node,
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Figure 3: Comparison of average network efficiency of different
methods.
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Figure 4: Comparison of different combinations of two metrics
with the method in this study.
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node 2 is more important than node 4 different from CC and
BC. As shown in Figure 2, node 2 links with more nodes and
plays an important role in information flow, which is obvi-
ously more important than node 4, similarly for the compar-
ison between node 12 and node 14.

In order to further illustrate the effectiveness of the algo-
rithm in this paper, the average network efficiency is used for

comparative analysis; the importance of nodes is judged by
the rate of decline of the average network efficiency after
deleting nodes.

It can be seen from the Figure 3 that the average network
efficiency of the algorithm in this paper decreases the fastest
when the first 2 nodes are deleted, same as BC; explain that
node 12 is more important. With the deletion of nodes, the
average network efficiency of the algorithm in this paper
decreases faster than these four methods, indicating that
the above description of a single node is more precise; the
algorithm in this study is more reasonable than other
algorithms.

4.2.2. Analysis of Different Metric Combinations. To verify
the effectiveness of the method itself in this study, the ARPA
network was also used for the analysis to verify the effective-
ness of the multiattribute fusion method by comparing it
with different combinations of individual metric. The results
are shown in Figures 4 and 5.

From Figures 4 and 5, the overall decline rate of the aver-
age network efficiency of this study’s method is higher than
the different combination methods of each metric.

When comparing two metric combination methods,
this method performs significantly better in removing the
first five key nodes and the first ten key nodes than other
methods.

Similarly, when comparing three metric combination
methods, this method outperforms the others. It is clear that
the combination proposed in this study is reasonable and its
performance is better than other combination methods.

Figure 6: C2 network.

e1 = 0.1 & e2 = 0.9
e1 = 0.2 & e2 = 0.8
e1 = 0.3 & e2 = 0.7
e1 = 0.4 & e2 = 0.6
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e1 = 0.6 & e2 = 0.4
e1 = 0.7 & e2 = 0.3
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e1 = 0.9 & e2 = 0.1
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Figure 7: Comparison of different combinations of preference
coefficient.
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4.2.3. Analysis of Different Preference Coefficient Combinations.
For the setting of the preference coefficient, the influence of the
preference coefficient (e1, e2) on the experimental results is ver-
ified by setting 9 pairs of different combinations. The method
of this study is applied to the C2 (command and control) net-
work with 121 nodes, which is a typical air defense command
and control system network, and the network is constructed

by modeling method. The network structure is shown in
Figure 6. The average network efficiency is also used for com-
parative analysis. The experimental results are shown in
Figure 7.

It can be seen from the Figure 7 that the different com-
binations of preference coefficient have little change in the
performance of the network. e1 = e2 = 0:5 has slightly better
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performance and is taken in the subsequent simulations of
this paper.

4.2.4. Performance Analysis of Different Evaluation Method.
In order to prove the superiority of the evaluation method
combining TOPSIS and GRA (grey relational analysis) in
this paper, a comparison test between the single evaluation
method and the combination method proposed in this paper

is designed, and C2 network was used for experiments. The
average network efficiency, network connectivity coefficient,
and maximum connectivity subgraph ratio are used for
comparative analysis. The experimental results are shown
in Figure 8.

For the average network efficiency, the performance of
the proposed method is slightly better than the single evalu-
ation method. For the network connectivity coefficient, the
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Figure 11: Comparison of different evaluation metrics under the biocelegans network.

Av
er

ag
e n

et
w

or
k 

ef
ci

en
cy

Number of deleted points
20 3010 40 500

0

0.12

0.1

0.04

0.02

60 70

0.08

0.06

N
et

w
or

k 
co

nn
ec

tiv
ity

 co
ef

ci
en

t

Number of deleted points
20 3010 40 500

0

0.2

0.15

60 70

0.1

0.05

M
ax

im
um

-c
on

ne
ct

ed
 su

bg
ra

ph
ra

tio
Number of deleted points

20 3010 40 500
0

1

0.8

60 70

0.4

0.6

0.2

Yu method
Proposed method

Figure 12: Comparison of different evaluation metrics under the power network.
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Figure 13: Comparison of different evaluation metrics under the retweet network.
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proposed method is slightly inferior to the single TOPSIS,
but significantly better than the single GRA, and for the
maximum connectivity subgraph ratio, the performance is
just the opposite, slightly inferior to a single GRA, but better
than a single TOPSIS. In general. The combined method
proposed in this paper is feasible, and because it can com-
bine the advantages of the two methods, it performs better
than the single evaluation method.

4.2.5. Performance Analysis of Different Networks. To further
illustrate the applicability of this method, the method of this
study is applied to other different networks including com-
puter generated network C2 network and real-world net-
works including Ca-netscience network, biocelegans
network, power network, and retweet network.

The method in this study is compared with Yu et al.’s
method [13], and the evaluation methods used for analysis
are network efficiency, network connectivity coefficient,
and maximum connectivity subgraph ratio. Because remov-
ing 5%-10% of the important nodes in the network is
enough to bring down the network, the top ranked nodes
are removed in different network. The performance of each
method is observed, and the simulation plots are shown in
Figures 9–13.

In this paper, five real networks are selected as test
networks, and the statistical characteristics of each network
are shown in Table 3. Except C2 network constructed by
modeling method, other networks are from https://
networkrepository.com/

(1) C2 Network. The analysis results of C2 network are
shown in Figure 9; for average network efficiency and max-
imum connectivity subgraph ratio, the performance is
slightly better than Yu et al.’s method when the first 15
nodes were deleted. However, this method is significantly
better than Yu et al.’s method after the 15th node is deleted.
For network connectivity coefficient, the performance of this
method is slightly inferior to the method in some periods,
and the method in this paper is still improved in general.

(2) Ca-netscience Network. In Figure 10, for average network
efficiency and maximum connectivity subgraph ratio, the
performance is slightly inferior to Yu et al.’s method when
the first 10 nodes were deleted, but the effect of this paper
is obviously better than after the 10th node is deleted. For
network connectivity coefficient, our method outperforms

Yu et al.’s method in the whole process. On the whole, our
method performs slightly better than Yu et al.’s method.

(3) Biocelegans Network. As shown in Figure 11, the perfor-
mance of our method in this study is slightly inferior to Yu
et al.’s method when the first 10 nodes were deleted, but after
that, the effect of this method is obviously better in different
evaluation methodology.

(4) Power Network. In Figure 12, for average network effi-
ciency, the performance of our method in this paper is
slightly worse than Yu et al.’s method when deleting 20th
nodes to 30th nodes, and others period perform better. For
network connectivity coefficient and maximum connectivity
subgraph ratio, our method works significantly better.

(5) Retweet Network. As shown in Figure 13, for retweet net-
work, the performance of the approach in this paper is
almost identical to Yu et al.’s method. But for maximum
connectivity subgraph ratio, the improvement effect of our
method in this paper is more obvious.

We notice that the method in this paper is slightly worse
in some periods; the reason for this phenomenon is related
to the network structure of the network itself. The basic eval-
uation metrics selected in this study are not quite suitable for
these networks, which leads to the difference in the evalua-
tion performance. It is necessary to select more suitable met-
rics for the structure of the different network, which is one of
the future research directions. But in general, our method is
clearly more suitable for various networks and performs bet-
ter in different evaluation methods.

In summary, this method shows better performance in
different combinations of node importance evaluation and
has good algorithmic applicability to be applied in different
networks, which has some practical value.

5. Conclusions

In this study, a subjective and objective comprehensive
weighting method is proposed to weight the decision matrix,
and combined with the advantages of TOPSIS and grey rela-
tional analysis algorithm, the relative closeness is proposed
and applied to the node importance identification of com-
plex networks. Finally, different comparative experiments
and evaluation methodology are designed to analyze the

Table 3: Statistical characteristics of each network.

Network Nodes number Edges number Attribute

C2 121 256
Air defense command and control system network; nodes are command

entities, and edges are abstractions of relationships between entities

Ca-netscience 379 914
Scientific collaboration network in network theory and experiments;

nodes are scientists, and edges are cooperative relationship

Biocelegans 453 4600 Metabolic network of celegans; nodes are substrates, edges are metabolic reactions

Power 662 906 Power networks; nodes are power lines, edges are substations

Retweet 761 1000
Retweet and mentions network from the UN conference held in Copenhagen;

nodes are twitter users and edges are retweets.
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performance of the algorithm. For the effectiveness of the
algorithm itself in this study, its performance outperforms
the combined approach with different metrics. Furthermore,
this algorithm outperforms Yu et al.’s method in terms of
average network efficiency, network connectivity coefficient,
and maximum connectivity subgraph ratio for different
types of networks, which indicates that this scheme is more
reasonable and the evaluation results of nodes are closer to
the actual situation and achieve good results.

The paper also has potential limitations, such as the selec-
tion of indicators in different networks, AHP will cause rank
inversion problems, and whether the algorithm is still applica-
ble in dynamic network link prediction. As future research,
look for new weight calculation methods, such as alpha-
discounting method to solve the problem [21], and try to use
LSTM [22, 23] to solve the link prediction problem.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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