
Research Article
Authorization Recycling in Attribute-Based Access Control

Yan An and Nurmamat Helil

College of Mathematics and System Science, Xinjiang University, Urumqi, China

Correspondence should be addressed to Nurmamat Helil; nur924@sina.com

Received 6 May 2022; Revised 22 March 2023; Accepted 17 April 2023; Published 31 May 2023

Academic Editor: Hamza Mohammed Ridha Al-Khafaji

Copyright © 2023 Yan An and Nurmamat Helil. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

In most access control scenarios, the communication between the PDP (policy decision point) and the PEP (policy enforcement
point) can cause high authorization overhead. Authorization recycling enables PEP to use the previous access control decisions
fetched from the PDP to handle some upcoming access control requests, reduce authorization costs, and increase the efficiency
of access control decision-making. Inspired by the RBAC (role-based access control) authorization recycling mechanism, this
article first presents an ABAC (attribute-based access control) model based on Boolean expressions of subject and object
attributes. It then proposes an authorization recycling approach for this model. In this approach, we provide construction and
update methods for authorization data caches and access control decision-making rules for SDP (secondary decision point) by
using the caches. The proposed approach can deduce precise and approximate access control decisions from the cache of
authorization data, reducing communication between the PEP and the PDP. Finally, the feasibility of the proposed method is
verified by conducting a small-scale test. ABAC, SDP, authorization recycling, and authorization caching.

1. Introduction

Access control [1] is to restrict users of an application sys-
tem from performing illegal operations or prevent their
unauthorized access that can lead to security problems.
The main access control types are DAC (discretionary access
control) [2], MAC (mandatory access control) [3], and
RBAC (role-based access control) [4]. However, compared
to the DAC, MAC, and RBAC, the ABAC has the advantages
of high flexibility, strong scalability, and fine granularity,
making it widely used in distributed environments [5–9]
because it overcomes the limitations of the traditional access
control schemes.

As the scale of distributed applications has been expand-
ing, the authorization mechanism based on the traditional
single PDP (policy decision point) has become more fragile
and challenging to extend to large-scale systems. The archi-
tecture of traditional access control solutions has certain
shortcomings. Namely, the PDP can be a single point of fail-
ure, thus becoming a latent performance bottleneck, which
affects the system’s reliability and availability. Moreover,
the communication delay between the PDP and the PEP

(Policy Enforcement Point) can cause high authorization
overhead. To improve the above shortcomings, researchers
adopted authorization recycling [10]. The authorization
recycling mechanism makes full use of historical access con-
trol decision data to improve the efficiency of future access
control decisions. It has long been used to improve the avail-
ability and performance of access control systems. Some
simple authorization recycling methods have been proposed
[11, 12], which are based on the request-response model, in
which the PEP intercepts application requests and sends the
request to the PDP. The PDP returns the decision results to
the PEP according to the access control policy, and the PEP
enforces these decisions.

In order to save storage space and enhance the usability
and performance of a system, it is necessary to propose an
approximate authorization recycling mechanism. Beznosov
[13] extends the precise authorization recycling mechanism
and introduces approximate authorization recycling.
Crampton et al. [14] propose the SAAM (secondary approx-
imate authorization model) for the BLP (Bell-LaPadula)
model. The SDP (secondary decision point) is added to the
authorization architecture [15], as depicted in Figure 1.

Hindawi
Wireless Communications and Mobile Computing
Volume 2023, Article ID 4644778, 20 pages
https://doi.org/10.1155/2023/4644778

https://orcid.org/0009-0006-2880-319X
https://orcid.org/0000-0001-9215-8638
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4644778

The SDP is embedded with the PEP, which cannot only
handle repeated authorization requests but also can solve
approximate authorization requests through the calculation
in the authorization cache. The SAAM infers precise and
approximate responses using the relationship between sub-
ject and object inferred from the previous responses. In
Figure 1, paths 1–8 illustrate the authorization workflow
when the SDP cannot make a decision on the request and
the request needs to be sent to the PDP; paths (1)–(6)
illustrate the case where the SDP can make a decision on
the request.

Wei et al. [15] introduce the authorization recycling
method in a hierarchical RBAC system, which can not only
compress authorization data in the cache but also effectively
infer approximate decisions from the cached data. Reeja [16]
proposes an authorization recycling method using the CSAR
(cooperative secondary authorization recycling) in the cloud
computing system, which utilizes the cooperative cache of
access control decisions to improve the hit rate. Wei et al.
[17] propose a publish-subscribe system in which authoriza-
tion requests and responses are passed between applications
and authorization servers, which can enhance the availability
of the authorization system.

Inspired by the literature [15], we present an authoriza-
tion recycling approach in the ABAC system. However, the
two models are quite different. In RBAC, roles are associated
with permissions, which can be regarded as ABAC single
attribute; RBAC only considers positive authorization; in
ABAC, we consider the combination of multiple attributes
associated with permissions, so the processing of cache
construction and update is also different, which makes
authorization recycling more complicated but worthwhile.
Furthermore, the ABAC [18, 19] neither follows the closed
world policy nor the open world policy. Therefore, this
article mainly introduces the ABAC authorization recycling
approach under the closed-world, open-world, and hybrid
policy [20]. Firstly, we build a general-purpose ABAC model
which supports positive and negative but also hybrid autho-
rizations. CP-ABE [21, 22] (ciphertext-policy attribute-
based encryption) is one of the prominent attribute-based
cryptographic access control approaches for “read” permis-
sions on data objects in a cloud environment. Its access pol-
icy is a Boolean expression of attributes and has the essential

characteristics of the ABAC model. Therefore, we first con-
struct the ABAC model based on Boolean expressions of
subject and object attributes. Secondly, provide methods
for building and updating the authorization data caches
and specify SDP’s access control decision rules. Finally, the
feasibility of the authorization recycling approach is verified
by conducting a small-scale experiment.

The rest of the paper is organized as follows. Section 2
introduces the ABAC model and assumptions of authoriza-
tion recycling. Section 3 describes the ABAC authorization
recycling approach in detail. Section 4 presents the test
results of the proposed recycling approach. A discussion of
related works and comparisons is provided in Section 5.
Finally, the main conclusions and directions for future work
are given in Section 6.

2. ABAC Model

2.1. ABAC Model. The ABAC uses attributes to describe the
subject, object, and environment and uses these attributes to
formulate access control policies [23–25] to evaluate
whether the subject is allowed to perform specific actions
on the object.

The ABAC model considered in this paper basically fol-
lows the specifications in [26], and its essential components
are as follows:

(1) Attribute: attributes represent characteristics of the
subject and object; attributes have names and values

(2) Subject: a user or entity, such as a device, that makes
an access request and performs operations on an
object; the subject can have one or more attributes

(3) Object: system resources accessed by the subject; the
object can have one or more attributes

(4) Operation: operation represents the subject’s actions
on the object, including read, write, edit, delete, and
other actions

(5) Permission: permission is composed of an object and
an operation (action) on the object

Resource

Policy enforcement
point (PEP)

Policy decision
point (PDP)

Authorization server

Application
request

1 (1)

6 (4) 7 (5)

2 (2)

5 (3)8 (6)
Subject

Client
Authorization

response
Authorization

response

Authorization
request

Authorization
request

3
4

Secondary decision
point (SDP)

Application server

Application
response

Figure 1: General request-response mode access control architecture with authorization recycling.

2 Wireless Communications and Mobile Computing

(6) Policy: a policy consists of access control rules about
a subject and an object that determine whether to
allow the subject’s access request to an object based
on the attributes of the subject and the object

The rule is the basic unit of an ABAC policy [27]. We
first discuss the rule. R is used to represent a rule, and SR
and OR are used to describe rules related to subject and
object, respectively. The precise recursive definitions of rules
related to subject and object are given in the following.

Definition 1. The subject-related rule (subject-rule) can be
recursively defined as follows:

(1) Any subject attribute is a subject rule, and it is called
an atomic subject rule

(2) If SR1, SR2 are subject rules, then their conjunction
SR1∧SR2 is also a subject rule

(3) If SR1, SR2 are subject rules, then their disjunction
SR1∨SR2 is also a subject rule

(4) An expression obtained by (1)–(3) a finite number of
times is a subject rule

Definition 2. The object-related rule (object-rule) can be
recursively defined as follows:

(1) Any object attribute is an object rule, and it is called
an atomic object rule

(2) If OR1, OR2 are object rules, then their conjunction
OR1∧OR2 is also an object rule

(3) If OR1, OR2 are object rules, then their disjunction
OR1∨OR2 is also an object rule

(4) An expression obtained by (1)–(3) a finite number of
times is an object rule

If an attribute of a subject (object) in an access request
matches the atomic subject (object) rule, then we say the
subject (object) attribute satisfies the atomic subject (object)
rule.

In this work, the subject and object in the ABAC are
modeled as a set of attributes, respectively. Environmental
attributes have the same status as subject and object attri-
butes. For simplicity, environmental attributes are not con-
sidered in this article.

As we know, an attribute usually refers to a tuple
<attribute − name : attribute − value > . In most CP-ABE
schemes, an attribute name and a value are combined and
represented as an attribute. We follow the characteristics of
the CP-ABE access policy to define our ABAC policy. We
also try to improve the expressivity of access control policy
in our ABAC model. Here, we enumerate attributes that
can be supported in our ABAC and discuss how to define
rules about these attributes.

(1) Nominal attribute: it appears in the form of an
attribute name and an attribute value in the rule.
For example, SR = <name : Alice > . If a subject
attribute satt = <name : Alice > is included in a
request, then we say satt = <name : Alice > satisfies
SR since both the attribute name and attribute
value match the attribute name and attribute
values in SR

(2) Binary attributes: they appear in the form of an
attribute name and an attribute value in the rule.
For example, SR = <gender : 1 > (1 denotes male, 0
denotes female). If a subject attribute satt = <gende
r : 1 > is included in a request, then we say satt =
<gender : 1 > satisfies SR since both the attribute
name and attribute value matches the attribute name
and attribute values in SR

(3) Orderial attributes: there is a full order relation
among all values of an orderial attribute. For
example, an attribute level has five different values:
excellent, good, average, fair, poor, and excellent ≥ g
ood ≥ average ≥ f air ≥ poor. We can express a raw
subject-related rule }level ≥ average} as SR1∨SR2∨S
R3 in our ABAC rule, where SR1 = <level : excellent
> , SR2 = <level : good > ,SR3 = <level : average > .
If a subject attribute satt = <level : good > is included
in a request, then we say satt = <level : good > satis-
fies SR1∨SR2∨SR3 since both the attribute name and
attribute value match the attribute name and attribute
values in SR2

(4) Numeric attributes: it only supports discrete, finite
attribute values. For example, an attribute score has
five different values: 1, 2, 3, 4, and 5. We can express
a raw object-related rule 3 ≤ score ≤ 5 as OR1∨OR2
∨OR3 in our ABAC rule, where OR1 = <score : 3 > ,
OR2 = <score : 4 > , OR3 = <score : 5 > . If an object
attribute oatt = <score : 3 > is included in a request,
then we say object attribute oatt = <score : 3 > sat-
isfies OR1∨OR2∨OR3 since both the attribute name
and attribute value match the attribute name and
attribute values in OR1

According to the explanation above, we will directly dis-
cuss attributes. We will not discuss attribute name and value
separately and also will not discuss other kinds of mathe-
matical operations such as ≤, ≥, <, and >.

The formal specification of the ABAC model is as
follows:

(1) SðUSERSÞ, OB, OP, SATTR, OATRR, PERMS repre-
sent the subjects (the subject is usually assumed to
be a user), objects, operations, subject attributes,
object attributes, and permissions, respectively

(2) PERMS ⊆OP ×OB, where p = <op, ob > , op ∈OP,
ob ∈OB. Permissions represent the authorized
behavior of a subject; the object is expressed by a

3Wireless Communications and Mobile Computing

boolean combination of object attributes in object
rules

Closed-world policy, open-world policy, and a combina-
tion of both, hybrid policy, are meta-policies used in most
access control scenarios. Unfortunately, the hybrid policy
can lead to the absence of a satisfactory policy or the occur-
rence of policy conflicts against an access request [28]. Satisfi-
able policy absence indicates that the user access request meets
no authorization policy. Policy conflict means the user access
request meets both positive and negative authorization poli-
cies. To enhance system security, if there is a policy conflict,
the denial-take-precedence [29] is adopted. If there occurs sat-
isfiable policy absence, the denial-for-absence is used. In prac-
tice, different systems can define their own meta-policies for
satisfiable policy absence and policy conflicts.

Based on the definitions mentioned above, we define
three variants of the ABAC model, ABAC (P), ABAC (N),
and ABAC (H), that follow the closed-world policy, the
open-world policy, and the combination of these two poli-
cies, respectively.

In this article, it is assumed that there exists at least one
policy for each permission. An access control policy for per-
mission p is defined as a triple policy = <SR∧OR, p, effect > ,
where SR denotes the subject rule and OR denotes the object
rule, p = <op, ob > , effect∈ {permit, deny}. We use ðS Attr,
O Attr, pÞ to represent the request, where S Attr, O Attr,
and p represent the subject attribute set, object attribute
set, and permission to access, respectively. The supplemen-
tary definitions for the three variants are given in the
following.

Definition 3 (ABAC(P)) model. For a positive authorization
policy for permission p is defined as a triple policy+ = <SR+∧
OR+, p, permit > and an access requestðS Attr,O Attr, pÞ,
only if the subject and object attribute sets in the access request
satisfy SR+∧OR+, the final access control decision for permis-
sion p will be permit; otherwise, it will be deny.

Definition 4 (ABAC(N)) model. For a negative authorization
policy for permission p is defined as a triple policy− = <S
R−∧OR−, p, deny > and an access request ðS Attr,O Attr,
pÞ, only if the subject and object attribute sets in the access
request satisfy SR−∧OR−,the final access control decision
for permission p will be deny; otherwise, it will be permit.

Definition 5 (ABAC(H)) model. For an authorization policy
for permission p is defined as a triple police = <SR∧OR,
p, effect > , where effect ∈ fpermit, denyg and a request
ðS Attr,O Attr, pÞ, only if both the subject and object attri-
bute sets in the access request satisfy SR∧OR, the request
meets the access control policy. The final access control deci-
sion for permission p is specified as follows:

(1) If there are only one positive authorization policy
about permission p, then this case is regarded as
ABAC (P); if the request meets the policy, then the
decision result will be permit; otherwise, it will be
deny

(2) If there exists only one negative authorization policy
about permission p, then this case is regarded as
ABAC (N); if the request meets the policy, then the
decision result will be deny; otherwise, it will be
permit

(3) If there exist both positive and negative authoriza-
tion policies about permission p, then

(a) If the request meets only the positive authoriza-
tion policy, then the decision result will be
permit

(b) If the request meets only the negative authoriza-
tion policy, then the decision result will be deny

(c) If the request meets both polices, then the
denial-take-precedence will be adopted, and the
decision result will be deny

(d) If the request meets none of the policies, then the
denial-for-absence will be adopted, and the deci-
sion result will be deny

2.2. Authorization Recycling Assumptions. Before the autho-
rization recycling approach for the ABAC model is pre-
sented, the assumptions of the ABAC system should be
given, and they are as follows:

(1) Only the PDP can reach the whole access control
policy, while the SDP cannot

(2) The SDP generates precise, approximate responses
based on the cached decision data and request

Definition 6 (Precise and approximate decision). For an
authorization request, the authorization decision is precise
if PDP makes the decision or the SDP makes it, and there
exists the exact same previous request with a decision by
PDP. Otherwise, we say the decision is approximate.

The SDP is considered safe if it permits any request that
the PDP permits. Furthermore, the SDP is considered con-
sistent if it denies any request that the PDP denies [14]. Typ-
ically, a safe and consistent SDP that will return the same
response as the PDP for any request is expected. This article
aims to construct a safe and consistent SDP.

Next, the definition of minimal subject and object attri-
bute sets is given as follows to help us construct the cache.

Definition 7 (Minimal subject attribute set). Attribute set
SATT is a minimal subject attribute set of a subject-related
rule SR, if it satisfies the following requirements [30]:

(1) Attribute set SATT satisfies SR

(2) For all SATT′ ⊂ SATT, attribute set SATT′ does not
satisfy SR

4 Wireless Communications and Mobile Computing

Example 1. Suppose SR = ððsatt1∧satt2Þ∨satt3Þ∧ðsatt4∧satt5Þ.
Minimal subject attribute sets of SR are SATT1 = fsatt1, satt2,
satt4, satt5g and SATT2 = fsatt3, satt4, satt5g. Attribute sets
SATT1 and SATT2 satisfy subject-related rule SR; for all SAT
T1′ ⊂ SATT1, and SATT2′ ⊂ SATT2, attribute sets SATT1′ and
SATT2′ do not satisfy the subject-related rule SR.

Definition 8 (Minimal object attribute set). Attribute set
OATT is a minimal object attribute set of an object-related
rule OR, if it satisfies the following requirements:

(1) Attribute set OATT satisfies OR

(2) For all OATT′ ⊂OATT, attribute set OATT′ does
not satisfy OR

3. Authorization Recycling for ABAC Model

3.1. Preliminaries. It is reasonable to assume that there is at
least one policy for each permission, either a positive autho-
rization policy, a negative authorization policy, or both. If
there are multiple positive (or negative) authorization poli-
cies, then they can be merged into one positive (negative)
authorization policy using a Boolean expression, while dif-
ferent types of authorization policies, i.e., positive and nega-
tive, cannot be merged.

Suppose a subject has an access request ðS Attr,O Attr, pÞ,
where S Attr,O Attr, and p represent the subject attribute set,
object attribute set, and permission to access, respectively. We
use policy+ = <SR+∧OR+, p, permit > to represent the positive
authorization policy, S+ ATTRðpÞ = fSATT+

1 , SATT+
2 ,⋯,SAT

T+
s g to represent a set of minimal subject attribute sets of

SR+; O+ ATTRðpÞ = fOATT+
1 , OATT+

2 ,⋯,OATT+
t g repre-

sents a set of minimal object attribute sets of OR+. Similarly,
policy− = <SR−∧OR−, p, deny > represents the negative autho-
rization policy, S− ATTRðpÞ = fSATT−

1 , SATT−
2 ,⋯,SATT−

s g
represents a set of minimal subject attribute sets of SR−;
O− ATTRðpÞ = fOATT−

1 , OATT−
2 ,⋯,OATT−

t g represents a
set of minimal object attribute sets of OR−

This section considers different types of caches relying on
the responses fetched from the PDP and the existing policies.

(1) There exists only one positive authorization policy
for permission p:

(a) If a request ðS Attr,O Attr, pÞ satisfies the positive
authorization policy for p at the PDP side, then the
PDP permits the request and returns some attri-
bute sets fSATT+

ik
g
k≤s

and fOATT+
jl
g
l≤t

together

with the permit response to the SDP, where

SATT+
ik
∈ S+ ATTR pð Þ and SATT+

ik
⊆ S Attr, k ≤ s,

OATT+
jl
∈O+ ATTR pð Þ andOATT+

jl
⊆O Attr, l ≤ t:

ð1Þ

The corresponding permit response is denoted as
++ðS Attr,O Attr, pÞ.

(b) If a request ðS Attr,O Attr, pÞ does not satisfy the
positive authorization policy for p at the PDP side,
then the PDP denies the request, and return attri-
bute sets S Attr andO Attr together with the deny
response to the SDP, the corresponding deny
response is denoted as ∗−ðS Attr,O Attr, pÞ.

(2) There exists only one negative authorization policy
for permission p:

(a) If a request ðS Attr,O Attr, pÞ satisfies the nega-
tive authorization policy for p at the PDP side,
then then the PDP denies the request and
returns some attribute sets fSATT−

ik
g
k≤s

and

fOATT−
jl
g
l≤t

together with the deny response to

the SDP, where

SATT−
ik
∈ S− ATTR pð Þ and SATT−

ik
⊆ S Attr, k ≤ s,

OATT−
jl
∈O− ATTR pð Þ andOATT−

jl
⊆O Attr, l ≤ t:

ð2Þ

The corresponding deny response is denoted
as −−ðS Attr,O Attr, pÞ.

(b) If a request ðS Attr,O Attr, pÞ does not satisfy
the negative authorization policy for p at the
PDP side, then the PDP permits the request,
and return attribute sets S Attr and O Attr
together with the permit response to the SDP,
the corresponding permit response is denoted
as ∗+ðS Attr,O Attr, pÞ.

(3) There exist both positive and negative authorization
policies for permission p:

(a) If a request ðS Attr,O Attr, pÞ satisfies both the
positive and negative authorization policies, then
the PDP denies the request because the denial-
take-precedence is adopted, or if the request sat-
isfies only the negative authorization policy, then
the PDP denies the request, and the PDP returns
all attribute sets SATT−

i and OATT−
j together

with the deny response to the SDP, where

SATT−
i ∈ S

− ATTR pð Þ, i = 1, 2,⋯, s,

OATT−
j ∈O

− ATTR pð Þ, j = 1, 2,⋯, t:
ð3Þ

The corresponding deny response is denoted as
−ðS Attr,O Attr, pÞ.
This case is slightly different from the other cases
above. The PDP returns all the minimal sets that
meet the negative authorization policy to the
SDP while returning the deny response.

(b) If a request ðS Attr,O Attr, pÞ satisfies only the
positive authorization policy but not the negative

5Wireless Communications and Mobile Computing

one, then the PDP permits the request and
returns some attribute sets fSATT+

ik
g
k≤s

and

fOATT+
jl
g
l≤t

together with the permit response

to the SDP, where

SATT+
ik
∈ S+ ATTR pð Þ and SATT+

ik
⊆ S Attr, k ≤ s,

OATT+
jl
∈O+ ATTR pð Þ andOATT+

jl
⊆O Attr, l ≤ t:

ð4Þ

The corresponding permit response is denoted as
+ðS Attr,O Attr, pÞ.

(c) If a request ðS Attr,O Attr, pÞ does not satisfy
both the positive and negative authorization pol-
icies, then the PDP denies the request because
the denial-for-absence is adopted, and returns
attribute sets S Attr and O Attr together with
the deny response to the SDP, the corresponding
deny response is denoted as ~ ðS Attr,O Attr, pÞ.

The response content is specified as

++ S Attr,O Attr, pð Þ: ≜ <permit, SATT+
ik

n o
k≤s

, OATT+
jl

n o
l≤t
, p

� �
> ,where

SATT+
ik
∈ S+ ATTR pð Þ and SATT+

ik
⊆ S Attr, k ≤ s,

OATT+
jl
∈O+ ATTR pð Þ andOATT+

jl
⊆O Attr, l ≤ t,

∗− S Attr,O Attr, pð Þ: ≜ <deny, ~S Attr
n o

, ~O Attr
n o

, p
� �

> ,

ð5Þ

where

~S Attr = S Attr and ~O Attr =O Attr,

−− S Attr,O Attr, pð Þ: ≜ <deny, SATT−
ik

n o
k≤s

, OATT−
jl

n o
l≤t
, p

� �
> ,

ð6Þ

where

SATT−
ik
∈ S− ATTR pð Þ and SATT−

ik
⊆ S Attr, k ≤ s,

OATT−
jl
∈O− ATTR pð Þ andOATT−

jl
⊆O Attr, l ≤ t,

∗+ S Attr,O Attr, pð Þ: ≜ <permit, ~S Attr
n o

, ~O Attr
n o

, p
� �

> ,

ð7Þ

where

~S Attr = S Attr and ~O Attr =O Attr

− S Attr ,O Attr , pð Þ: ≜ <deny, SATT−
ik

n o
k≤s

, OATT−
jl

n o
l≤t
, p

� �
> ,

ð8Þ

where

SATT−
ik
∈ S− ATTR pð Þ, i = 1, 2,⋯, s,

OATT−
jl
∈O− ATTR pð Þ, j = 1, 2,⋯, t,

+ S Attr,O Attr, pð Þ: ≜ <permit, SATT+
ik

n o
k≤s

, OATT+
jl

n o
l≤t
, p

� �
> ,

ð9Þ

where

SATT+
ik
∈ S+ ATTR pð Þ and SATT+

ik
⊆ S Attr, k ≤ s,

OATT+
jl
∈O+ ATTR pð Þ andOATT+

jl
⊆O Attr, l ≤ t,

~ S Attr,O Attr, pð Þ: ≜ <deny, ~S Attr
n o

, ~O Attr
n o

, p
� �

> ,

ð10Þ

where

~S Attr = S Attr and ~O Attr =O Attr: ð11Þ

It is assumed that the PDP sends attribute sets included
in response to the SDP, which may threaten the privacy of
the policy. Therefore, these contents can be encrypted, and
the PDP sends the ciphertext to the SDP. However, since
our emphasis is on authorization recycling, we did not con-
sider policy privacy in our work.

3.2. Cache Building. Seven relations below are used for cache
construction:

Cache++ = SATT+
ik

n o
k≤s

, OATT+
jl

n o
l≤t
, p

� �
pj ∈ PERMS, SATT+

ik
∈ S+ ATTR pð Þ, OATT+

jl
∈O+ ATTR pð Þ

n o
,

Cache∗− = Su Attrf gu≥1, Ov Attrf gv≥1, p
À Á

pj ∈ PERMS, Su Attr ⊆ SATTR,Ov Attr ⊆OATTR
È É

,

Cache−− = SATT−
ik

n o
k≤s

, OATT−
jl

n o
l≤t
, p

� �
pj ∈ PERMS, SATT−

ik
∈ S− ATTR pð Þ, OATT−

jl
∈O− ATTR pð Þ

n o
,

Cache∗+ = Su Attrf gu≥1, Ov Attrf gv≥1, p
À Á

pj ∈ PERMS, Su Attr ⊆ SATTR,Ov Attr ⊆OATTR
È É

,

Cache− = SATT−
if gi=1,2,⋯,s, OATT−

j

n o
j=1,2,⋯,t

, p
� �

pj ∈ PERMS, SATT−
i ∈ S

− ATTR pð Þ, OATT−
j ∈O

− ATTR pð Þ
� �

,

Cache+ = SATT+
ik

n o
k≤s

, OATT+
jl

n o
l≤t
, p

� �
pj ∈ PERMS, SATT+

ik
∈ S+ ATTR pð Þ, OATT+

jl
∈O+ ATTR pð Þ

n o
,

Cache∗ = Su Attrf gu≥1, Ov Attrf gv≥1, p
À Á

pj ∈ PERMS, Su Attr ⊆ SATTR,Ov Attr ⊆OATTR
È É

:

ð12Þ

6 Wireless Communications and Mobile Computing

The basic idea is that under the condition that there is
only a positive authorization policy for permission p, the
permit response ++ðS Attr,O Attr, pÞ is used to build Cach
e++, and the deny response ∗−ðS Attr,O Attr, pÞ is used to
build Cache∗−

Similarly, under the condition that there is only a nega-
tive authorization policy for permission p, the deny response
−−ðS Attr,O Attr, pÞ is used to build Cache−−, and the per-
mit response ∗+ðS Attr,O Attr, pÞ is used to build Cache∗+

Lastly, under the condition that there exist both positive
and negative authorization policies for permission p, the
deny response −ðS Attr,O Attr, pÞ is used to build Cache−,
the permit response +ðS Attr,O Attr, pÞ is used to build
Cache+, and the deny response ~ ðS Attr,O Attr, pÞ caused
by satisfiable policy absence is used to build Cache∗

Caches Cache++, Cache∗−, Cache−−, Cache∗+, Cache−,
Cache+, and Cache∗ are all initialized as empty. When a sub-
ject sends access request ðS Attr,O Attr, pÞ to the PDP, the
PDP returns the access control decision to the SDP, relying
on the access control policies fpolicyi = <Rj, p, effect j > g
that are associated with permission p

Next, we mainly discuss the construction process of the
cache when the PDP traverses the policy repository. For a
certain permission p in the policy repository, there is either
only one positive authorization policy, or only one negative
authorization policy, or there are two policies, one positive
authorization policy and one negative authorization policy.
Here are different cases:

(1) There exists only one positive authorization policy
for permission p. According to Algorithm 1 in
Appendix, if the PDP permits the request, then it
adds ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ to Cache++; oth-

erwise, the PDP denies the request, and the construc-
tion of Cache∗− is as follows

(a) If attributes of both the subject and object in
the request do not meet rules SR+, OR+, then
ðf~S Attrg, f~O Attrg, pÞ is directly added to Cach
e∗−, where ~S Attr = S Attr, and ~O Attr =O Attr

(b) If, in the request, the subject’s attributes do not
meet SR+, but the object’s attributes meet OR+,
then ðf~S Attrg,∅,pÞ is added to Cache∗−, where
~S Attr = S Attr

(c) If, in the request, the subject’s attributes meet S
R+, but the object’s attributes do not meet OR+,
then ð∅,f~O Attrg, pÞ is added to Cache∗−, where
~O Attr =O Attr

(2) There exists only one negative authorization policy
for permission p. Reference Algorithm 1 , if the
PDP denies the request, then it adds ðfSATT−

ik
g
k≤s

,
fOATT−

jl
g
l≤t
, pÞ to Cache−−; otherwise, the PDP per-

mits the request, and the construction of Cache∗+ is
as follows:

(a) If attributes of both the subject and object in the
request do not meet rules SR−, and OR−, then
ðf~S Attrg, f~O Attrg, pÞis directly added to Cach
e∗+, where ~S Attr = S Attr, and ~O Attr =O Attr

(b) If, in the request, the subject’s attributes do not
meet SR− but the object’s attributes meet OR−,
then ðf~S Attrg,∅,pÞ is added to Cache∗+, where
~S Attr = S Attr

(c) If, in the request, the subject’s attributes meet S
R− but the object’s attributes do not meet OR−,
then ð∅,f~O Attrg, pÞ is added to Cache∗+, where
~O Attr =O Attr

(3) Both positive and negative authorization policies
coexist. Denote two policies as policy+ = <R+, p,
permit > and policy− = <R−, p, deny > , where R+ =
SR+∧OR+, R− = SR−∧OR−. According to Algorithm 3
in Appendix, the cache is built as follows:

(a) If the PDP denies the request and the SDP
receives the deny response −ðS Attr,O Attr, pÞ,
then it adds ðfSATT−

i gi=1,2,⋯,s, fOATT−
j gj=1,2,⋯,t

,
pÞ to Cache−. If only the minimal sets included
by the current request are returned, the SDP may
produce a permit response based on the content
of the cache for subsequent requests. However,
the request may consist of minimal sets of the neg-
ative authorization policy, which do not appear in
the cache. The request should be denied according
to the requirement for the SDP to be consistent
with PDP. The PDP returns all minimal attribute
sets that meet the negative authorization policy to
avoid producing such an incorrect response

(b) If the PDP permits the request and the SDP
receives the permit response +ðS Attr,O Attr,
pÞ, then it adds ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ

to Cache+

(c) If the PDP denies the request and the SDP
receives a deny response ~ ðS Attr,O Attr, pÞ
together with the information on the satisfiable
policy absence. Then the building process of
Cache∗ can be divided into three following cases:

(i) If attributes of both the subject and object in
the request do not meet rules SR+, SR−,OR+,
and OR−, then ðf~S Attrg, f~O Attrg, pÞ is
directly added to Cache∗, where ~S Attr = S
Attr, and ~O Attr =O Attr

(ii) If, in the request, the subject’s attributes do
not meet SR+ and SR−, but the object’s
attributes meet OR+ and/or OR−, then ðf~S
Attrg,∅,pÞ is added to Cache∗, where
~S Attr = S Attr

7Wireless Communications and Mobile Computing

Input: Cache = Cache++
S

Cache∗−; response q
Output: Cache
1: AddResponse(q)
2: if q == + +ðS Attr,O Attr, pÞ then
3: if the record of Cache+ w.r.t. permission p is empty then
4: add ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ to Cache++;

5: else // ðfSATT+
ik ′
g
k′≤s

, fOATT+
jl ′
g
l ′≤t

, pÞ ∈ Cache++
6: Cache++ = fðffSATT+

ik ′
g
k′≤s

S fSATT+
ik
g
k≤s

g, ffOATT+
jl ′
g
l ′≤t

S fOATT+
jl
g
l≤t
g, pÞg;

7: end if
8: else // q == ∗ −ðS Attr,O Attr, pÞ
9: if q == q1 then
10: if the record of Cache∗− w.r.t. permission p is empty then
11: add ðf~S Attrg, f~O Attrg, pÞ to Cache∗−;
12: else // ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗−
13: if ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr and ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr then
14: Cache∗− = fððff~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, fðf~Ov Attrgv≥1 \ ~O′ AttrÞ
S f~O Attrgg, pÞ;

15: else if ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr and ∀~O′ Attr ∈ f~Ov Attrgv≥1,O AttrU~O′ Attr then
16: Cache∗− = fðfðf~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, ff~Ov Attrgv≥1
S f~O Attrgg, pÞg;

17: else if ∀~S′ Attr ∈ f~Su Attrgu≥1, S AttrU~S′ Attr and ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr then
18: Cache∗− = fðff~Su Attrgu≥1

S f~S Attrgg, fðf~Ov Attrgv≥1 \ ~O′ AttrÞS f~O Attrgg, pÞg;
19: else Cache∗− = fðff~Su Attrgu≥1

S f~S Attrgg, ff~Ov Attrgv≥1
S f~O Attrgg, pÞg;

20: end if
21: end if
22: else if q == q2 then
23: Step1: // update Cache∗−

24: if the record of Cache∗− w.r.t. permission p is empty then
25: add ðf~S Attrg,∅,pÞ to Cache∗−;
26: else // ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗−
27: if ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr then
28: Cache∗− = fðfðf~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, f~Ov Attrgv≥1g, pÞg;
29: else Cache∗− = fðff~Su Attrgu≥1

S f~S Attrgg, f~Ov Attrgv≥1, pÞg;
30: end if
31: end if
32: Step2: // update Cache++

33: if the record of Cache++ w.r.t. permission p is empty then
34: add ð∅,fOATT+

jl
g
l≤t
, pÞ to Cache++;

35: else Cache++ = fðfSATT+
ik ′
g
k′≤s

, ffOATT+
jl ′
g
l ′≤t

S fOATT+
jl
g
l≤t
g, pÞg;

36: end if
37: else if q == q3 then
38: Step1: // update Cache∗−

39: if the record of Cache∗− w.r.t. permission p is empty then
40: add ð∅,f~O Attrg, pÞ to Cache∗−;
41: else // ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗−
42: if ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr then
43: Cache∗− = fðf~Su Attrgu≥1g, fðf~Ov Attrgv≥1 \ ~O′ AttrÞ

S f~O Attrgg, pÞg;
44: else Cache− = fðf~Su Attrgu≥1, ff~Ov Attrgv≥1

S f~O Attrgg, pÞg;
45: end if
46: end if
47: Step2: //update Cache++

48: if the record of Cache++ w.r.t. permission p is empty then
49: add ðfSATT+

ik
g
k≤s

,∅,pÞ to Cache++;

50: else Cache++ = fðffSATT+
ik ′
g
k′≤s

S fSATT+
ik
g
k≤s

g, fOATT+
jl ′
g
l ′≤t

, pÞg;
51: end if
52: end if
53: end if

Algorithm 1: Cache construction algorithm for ABAC(P) Model.

8 Wireless Communications and Mobile Computing

(iii) If, in the request, the subject’s attributes
meet SR+ and/or SR−, but the object’s
attributes do not meet OR+ and OR−, then
ð∅,f~O Attrg, pÞ is added to Cache∗, where
~O Attr =O Attr

Note: if, in the request, the subject’s attributes meet SR+

and the object’s attributes meet OR− or if the subject’s attri-
butes meet SR− and the object’s attributes meet OR+, then
nothing needs to be added to Cache∗

3.3. SDP Decision Rules. This subsection gives the SDP deci-
sion rules, which are used to infer accurate or approximate
access control decisions from a cache.

Case 1. If there is only one positive authorization policy for
permission p, the Cache++ and Cache∗− can be built.
According to Algorithm 2 in Appendix, the following two
rules are used to infer accurate or approximate access con-
trol decisions.

Rule++: Assume ðfSATT+
ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ ∈ Cach

e++, then request ðS∗ Attr,O∗ Attr, pÞ will be permitted by
the SDP, if ∃SATT+ ∈ fSATT+

ik
g
k≤s

, SATT+ ⊆ S∗ Attr and

∃OATT+ ∈ fOATT+
jl
g
l≤t
, OATT+ ⊆O∗ Attr.

Theorem 9. When a user sends a request, the SDP’s decision
to permit the request according to Rule++ is safe.

Proof. Assuming that SDP makes a permit decision for the
request ðS∗ Attr,O∗ Attr, pÞ by Rule++. According to Rul
e++, ∃i, jsuch that ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ ∈ Cache++,

where SATT+
i ∈ fSATT+

ik
g
k≤s

, OATT+
j ∈ fOATT+

jl
g
l≤t

and

SATT+
i ⊆ S∗ Attr, OATT+

j ⊆O∗ Attr.
Based on cache construction, SATT+

i and OATT+
j satisfy

rules SR+ and OR+ of policy+ = <SR+∧OR+, p, permit > ,

respectively; additionally, we also have SATT+
i ⊆ S∗ Attr,

OATT+
j ⊆O∗ Attr. So, the PDP should permit the request

ðS∗ Attr,O∗ Attr, pÞ. That is, the request permitted by
SDP according to the Rule++ would also be permitted by
the PDP.

Rule∗−: Assume ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cach
e∗+, then the request ðS∗ Attr,O∗ Attr, pÞ will be denied by
the SDP, if ∃~S Attr ∈ fSu Attrgu≥1, S∗ Attr ⊆ ~S Attr or ∃~O
Attr ∈ fOv Attrgv≥1,O∗ Attr ⊆ ~O Attr.

Theorem 10.When a user sends a request, the SDP’s decision
to deny the request according to Rule∗− is consistent.

Proof. Assuming that SDP makes a deny decision for request
ðS∗ Attr,O∗ Attr, pÞ by Rule∗−. According to Rule∗−, ∃ð
f~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗−, where ∃~S Attr ∈
fSu Attrgu≥1, S∗ Attr ⊆ ~S Attr or ∃~O Attr ∈ fOv Attrgv≥1,
O∗ Attr ⊆ ~O Attr.

Based on cache construction, ~S Attr and ~O Attr do not
satisfy rules SR+ and OR+ of policy+ = <SR+∧OR+, p,
permit > , respectively; additionally, we also have S∗ Attr ⊆
~S Attr, O∗ Attr ⊆ ~O Attr. So, the PDP should deny the
request ðS∗ Attr,O∗ Attr, pÞ. That is, the request denied by
SDP according to the Rule∗− the PDP would also deny.

Case 2. If there is only one negative authorization policy for
permission p, the Cache−− and Cache∗+ can be built. Refer-
ence Algorithm 2, the following two rules are used to infer
accurate or approximate access control decisions.

Rule−−: Assume ðfSATT−
ik
g
k≤s

, fOATT−
jl
g
l≤t
, pÞ ∈ Cach

e−−, then request ðS∗ Attr,O∗ Attr, pÞ will be denied by
the SDP, if ∃SATT− ∈ fSATT−

ik
g
k≤s

, SATT− ⊆ S∗ Attr and

∃OATT− ∈ fOATT−
jl
g
l≤t
, OATT− ⊆O∗ Attr.

Input: request ðS Attr,O Attr, pÞ, Cache++, Cache∗−
Output:permit; deny
1: EvaluateRequest ðS Attr,O Attr, pÞ;
2: for all ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ ∈ Cache++ do

3: compare S Attr with all SATT+
ik
and O Attr with all OATT+

jl
;

4: if ðS Attr ⊇ SATT+
ik
Þ∧ðO Attr ⊇OATT+

jl
Þ then

5: returnpermit;
6: end if
7: end for
8: for all ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗− do

9: compare S Attr with all ~Su Attr and O Attr with all ~Ov Attr;
10: if ðS Attr ⊆ ~Su AttrÞ∨ðO Attr ⊆ ~Ov AttrÞ then
11: returndeny;
12: else send the request to PDP
13: end if
14: end for

Algorithm 2: Access control decision algorithm by the SDP in ABAC(P) model.

9Wireless Communications and Mobile Computing

Input: Cache = Cache−
S

Cache+
S

Cache∗; response q′
Output: Cache
1: AddResponse(q′)
2: if q′ == −ðS Attr,O Attr, pÞ then
3: add ðfSATT−

ik
g
i=1,2,⋯,s

, fOATT−
jl
g
j=1,2,⋯,t

, pÞ to Cache−;

4: else if q′ == +ðS Attr,O Attr, pÞ then
5: if the record of Cache+ w.r.t. permission p is empty then
6: add ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ to Cache+;

7: else // ðfSATT+
ik ′
g
k′≤s

, fOATT+
jl ′
g
l ′≤t

, pÞ ∈ Cache+
8: Cache+ = fðffSATT+

ik ′
g
k′≤s

S fSATT+
ik
g
k≤s

g, ffOATT+
jl ′
g
l ′≤t

S fOATT+
jl
g
l≤t
g, pÞg;

9: end if
10: else // q′ == ~ ðS Attr,O Attr, pÞ
11: if q′ == q1′ then
12: if the record of Cache∗ w.r.t. permission p is empty then
13: add ðf~S Attrg, f~O Attrg, pÞ to Cache∗;
14: else // ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗
15: if ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr and ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr then
16: Cache∗ = fððff~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, fðf~Ov Attrgv≥1 \ ~O′ AttrÞ
S f~O Attrgg, pÞ;

17: else if ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr and ∀~O′ Attr ∈ f~Ov Attrgv≥1,O AttrU~O′ Attr then
18: Cache∗ = fðfðf~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, ff~Ov Attrgv≥1
S f~O Attrgg, pÞg;

19: else if ∀~S′ Attr ∈ f~Su Attrgu≥1, S AttrU~S′ Attr and ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr then
20: Cache∗ = fðff~Su Attrgu≥1

S f~S Attrgg, fðf~Ov Attrgv≥1 \ ~O′ AttrÞS f~O Attrgg, pÞg;
21: else Cache∗ = fðff~Su Attrgu≥1

S f~S Attrgg, ff~Ov Attrgv≥1
S f~O Attrgg, pÞg;

22: end if
23: end if
24: else if q′ == q2′ then
25: Step1: // update Cache∗

26: if the record of Cache∗ w.r.t. permission p is empty then
27: add ðf~S Attrg,∅,pÞ to Cache∗;
28: else // ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗
29: if ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr then
30: Cache∗ = fðfðf~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, f~Ov Attrgv≥1g, pÞg;
31: else Cache∗ = fðff~Su Attrgu≥1

S f~S Attrgg, f~Ov Attrgv≥1, pÞg;
32: end if
33: end if
34: Step2: // update Cache+

35: if the record of Cache+ w.r.t. permission p is empty then
36: add ð∅,fOATT+

jl
g
l≤t
, pÞ to Cache+;

37: else Cache+ = fðfSATT+
ik ′
g
k′≤s

, ffOATT+
jl ′
g
l ′≤t

S fOATT+
jl
g
l≤t
g, pÞg;

38: end if
39: else if q′ == q3′ then
40: Step1′: // update Cache∗

41: if the record of Cache∗ w.r.t. permission p is empty then
42: add ð∅,f~O Attrg, pÞ to Cache∗;
43: else // ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗
44: if ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr then
45: Cache∗ = fðf~Su Attrgu≥1g, fðf~Ov Attrgv≥1 \ ~O′ AttrÞ

S f~O Attrgg, pÞg;
46: else Cache∗ = fðf~Su Attrgu≥1, ff~Ov Attrgv≥1

S f~O Attrgg, pÞg;
47: end if
48: end if
49: Step2′: // update Cache+

50: if the record of Cache+ w.r.t. permission p is empty then
51: add ðfSATT+

ik
g
k≤s

,∅,pÞ to Cache+;

Algorithm 3: Continued.

10 Wireless Communications and Mobile Computing

Theorem 11.When a user sends a request, the SDP’s decision
to deny the request according to Rule−− is consistent.

Proof. Assuming that SDP makes a deny decision for the
request ðS∗ Attr,O∗ Attr, pÞ by Rule−−. According to Rul
e−−, ∃i, jsuch that ðfSATT−

ik
g
k≤s

, fOATT−
jl
g
l≤t
, pÞ ∈ Cache−−,

where SATT−
i ∈ fSATT−

ik
g
k≤s

, OATT−
j ∈ fOATT−

jl
g
l≤t

and

SATT−
i ⊆ S∗ Attr, OATT−

j ⊆O∗ Attr.
Based on cache construction, SATT−

i and OATT−
j satisfy

rules SR− and OR− of policy− = <SR−∧OR−, p, deny > ,
respectively; additionally, we also have SATT−

i ⊆ S∗ Attr,
OATT−

j ⊆O∗ Attr. So, the PDP should deny the request
ðS∗ Attr,O∗ Attr, pÞ. That is, the request denied by SDP
according to the Rule−− the PDP would also deny.

Rule∗+: Assume ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cach
e∗+, then request ðS∗ Attr,O∗ Attr, pÞ will be permitted by
the SDP, if ∃~S Attr ∈ f~Su Attrgu≥1, S∗ Attr ⊆ ~S Attr or ∃~O
Attr ∈ f~Ov Attrgv≥1,O∗ Attr ⊆ ~O Attr.

Theorem 12.When a user sends a request, the SDP’s decision
to permit the request according to Rule∗+ is safe.

Proof. Assuming that SDP makes a permit decision for
request ðS∗ Attr,O∗ Attr, pÞ by Rule∗+. According to Rul
e∗+, ∃ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗+, where ∃~S
Attr ∈ fSu Attrgu≥1, S∗ Attr ⊆ ~S Attr or ∃~O Attr ∈ fOv

Attrgv≥1, O∗ Attr ⊆ ~O Attr.
Based on cache construction, ~S Attr and ~O Attr do not

satisfy rules SR− and OR− of policy− = <SR−∧OR−, p, deny
> , respectively; additionally, we also have S∗ Attr ⊆ ~S Attr,
O∗ Attr ⊆ ~O Attr. So, the PDP should permit the request
ðS∗ Attr,O∗ Attr, pÞ. That is, the request permitted by
SDP according to the Rule∗+ would also be permitted by
the PDP.

Case 3. If both positive and negative authorization policies
coexist for permission p, the Cache−, Cache+, and Cache∗
can be built. According to Algorithm 4 in Appendix, the fol-
lowing three rules are used to infer accurate or approximate
access control decisions.

Rule−: Assume ðfSATT−
i gi=1,2,⋯,s, fOATT−

j gj=1,2,⋯,t
, pÞ

∈ Cache−, then request ðS∗ Attr,O∗ Attr, pÞ will be denied

by the SDP, if ∃SATT− ∈ fSATT−
i gi=1,2,⋯,s, SATT

− ⊆ S∗ Attr
and ∃OATT− ∈ fOATT−

j g j=1,2,⋯,t
, OATT− ⊆O∗ Attr.

Theorem 13.When a user sends a request, the SDP’s decision
to deny the request according to Rule− is consistent.

Proof. Assuming that SDP makes a deny decision for the
request ðS∗ Attr,O∗ Attr, pÞ by Rule−. According to Rule−,
∃i, j such that ðfSATT−

ugu=1,2,⋯,s, fOATT−
v gv=1,2,⋯,t , pÞ ∈

Cache−, where SATT−
i ∈ fSATT−

ugu=1,2,⋯,s, OATT−
j ∈

fOATT−
v gv=1,2,⋯,t and SATT−

i ⊆ S∗ Attr, OATT−
j ⊆O∗ Attr.

Based on cache construction, SATT−
i and OATT−

j satisfy
rules SR− and OR− of policy− = <SR−∧OR−, p, deny > ,
respectively; additionally, we also have SATT−

i ⊆ S∗ Attr,
OATT−

j ⊆O∗ Attr. So the PDP should deny the request ðS∗
Attr,O∗ Attr, pÞ. That is, the request denied by SDP
according to the Rule− the PDP would also deny.

Rule+: Assume ðfSATT+
ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ ∈ Cache+,

then request ðS∗ Attr,O∗ Attr, pÞ will be permitted by the
SDP, if ∃SATT+ ∈ fSATT+

ik
g
k≤s

, SATT+ ⊆ S∗ Attr and ∃O
ATT+ ∈ fOATT+

jl
g
l≤t
, OATT+ ⊆O∗ Attr.

Theorem 14.When a user sends a request, the SDP’s decision
to permit the request according to Rule+ is safe.

Proof. Assuming that SDP makes a permit decision for the
request ðS∗ Attr,O∗ Attr, pÞ by Rule+. According to Rule+,
∃i, j such that ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ ∈ Cache+,

where SATT+
i ∈ fSATT+

ik
g
k≤s

, OATT+
j ∈ fOATT+

jl
g
l≤t

and

SATT+
i ⊆ S∗ Attr, OATT+

j ⊆O∗ Attr.
Based on cache construction, SATT+

i and OATT+
j satisfy

rules SR+ and OR+ of policy+ = <SR+∧OR+, p, permit > ,
respectively; Additionally, we also have SATT+

i ⊆ S∗ Attr,
OATT+

j ⊆O∗ Attr. So the PDP should permit the request
ðS∗ Attr,O∗ Attr, pÞ. That is, the request permitted by
SDP according to the Rule+ would also be permitted by
the PDP.

Rule∗: Assume ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗,
then request ðS∗ Attr,O∗ Attr, pÞ will be denied by the
SDP, if ∃~S Attr ∈ f~Su Attrgu≥1, S∗ Attr ⊆ ~S Attr or ∃~O Attr
∈ f~Ov Attrgv≥1,O∗ Attr ⊆ ~O Attr.

52: else Cache+ = fðffSATT+
ik ′
g
k′≤s

S fSATT+
ik
g
k≤s

g, fOATT+
jl ′
g
l ′≤t

, pÞg;
53: end if
54: else if the subject’s attributes meet SR+ and the object’s attributes meet OR− then
55: goto Step2′;
56: else the subject’s attributes meet SR− and the object’s attributes meet OR+

57: goto Step2;
58: end if
59: end if

Algorithm 3: Cache construction algorithm for ABAC(H) model.

11Wireless Communications and Mobile Computing

Theorem 15.When a user sends a request, the SDP’s decision
to deny the request according to Rule∗ is consistent.

Proof. Assuming that SDP makes a deny decision for
request ðS∗ Attr,O∗ Attr, pÞ by Rule∗. According to Rule∗,
∃ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗, where ∃~S Attr ∈
fSu Attrgu≥1, S∗ Attr ⊆ ~S Attr or ∃~O Attr ∈ fOv Attrgv≥1,
and O∗ Attr ⊆ ~O Attr.

Based on cache construction, ~S Attr and ~O Attr do not
satisfy rules SR+ and OR+ of policy+ = <SR+∧OR+, p,
permit > , respectively; or ~S Attr and ~O Attr do not satisfy
rules SR− and OR− of policy− = <SR−∧OR−, p, deny > ,
respectively; additionally, we also have S∗ Attr ⊆ ~S Attr, O∗

Attr ⊆ ~O Attr. So, the PDP should deny the request ðS∗
Attr,O∗ Attr, pÞ. That is, the request denied by SDP accord-
ing to the Rule∗− the PDP would also deny.

The symbol } ≻ } is used to indicate the inference rule
reference priority, if there is only one positive authorization
policy for permission p, and the priority of the following two
rules is Rule++ ≻ Rule∗−. If there is only one negative autho-
rization policy for permission p, the priority of the following
two rules is Rule−− ≻ Rule∗+. If both positive and negative
authorization policies coexist for permission p, the priority
of the following three rules is Rule− ≻ Rule+ ≻ Rule∗. Once
a rule is applied to a request, the SDP stops evaluating the
request against lower priority rules.

3.4. Cache Update. When the SDP cannot make a decision
on the request, the request needs to be sent to the PDP,
and then the cache may be updated.

Under the condition, both positive and negative authori-
zation policies coexist, once the SDP receives the deny
response −ðS Attr,O Attr, pÞ, and then, all minimal sets
are added to Cache−, so Cache− does not need to be updated.

The update of Cache+ and Cache∗ are as follows:

(1) If a request ðS Attr,O Attr, pÞ satisfies only the pos-
itive authorization policy but not the negative one,
the PDP permits the request, and the SDP receives
the permit response +ðS Attr,O Attr, pÞ. The update
of Cache+ is divided into the following cases:

Case 1. If the record of Cache+ w.r.t. permission p is empty,
then the corresponding record is added to Cache+ according
to the building process of Cache+ that is given in Section 3.2.

Case 2. If ðfSATT+
ik ′
g
k ′≤s

, fOATT+
jl ′
g
l′≤t

, pÞ ∈ Cache+, then
Cache+is updated by replacing ðfSATT+

ik ′
g
k ′≤s

, fOATT+
jl ′
g
l′≤t

,
pÞ with ðffSATT+

ik ′
g
k ′≤s

S fSATT+
ikgk≤sg, ffOATT

+
jl ′
g
l′≤t

S
fOATT+

jl
g
l≤t
g, pÞ, where SATT+

ik ∈ S
+ ATTRðpÞ, SATT+

ik
⊆ S Attr, k ≤ s, and OATT+

jl
∈O+ ATTRðpÞ, OATT+

jl
⊆

O Attr, l ≤ t

(2) If both positive and negative authorization policies
are not satisfied, then the PDP denies the request,
and the SDP receives a deny response ~ ðS Attr, O
Attr, pÞ with the information on the satisfiable policy
absence. Then, the updating process of Cache∗ is
divided into the following cases:

Input: request ðS Attr,O Attr, pÞ, Cache−, Cache+, Cache∗
Output:permit; deny
1: EvaluateRequest ðS Attr,O Attr, pÞ;
2: for all ðfSATT−

ik
g
i=1,2,⋯,s

, fOATT+
jl
g
j=1,2,⋯,t

, pÞ ∈ Cache− do

3: compare S Attr with all SATT−
ik
and O Attr with all OATT−

jl
;

4: if ðS Attr ⊇ SATT−
ik
Þ∧ðO Attr ⊇OATT−

jl
Þ then

5: returndeny;
6: end if
7: end for
8: for all ðfSATT+

ik
g
k≤s

, fOATT+
jl
g
l≤t
, pÞ ∈ Cache+ do

9: compare S Attr with all SATT+
ik
and O Attr with all OATT+

jl
;

10: if ðS Attr ⊇ SATT+
ik
Þ∧ðO Attr ⊇OATT+

jl
Þ then

11: returnpermit;
12: end if
13: end for
14: for all ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗ do

15: compare S Attr with all ~Su Attr and O Attr with all ~Ov Attr;
16: if ðS Attr ⊆ ~Su AttrÞ∨ðO Attr ⊆ ~Ov AttrÞ then
17: returndeny;
18: else send the request to PDP
19: end if
20: end for

Algorithm 4: Access control decision algorithm by the SDP in ABAC(H) model.

12 Wireless Communications and Mobile Computing

Case 1. If attributes of both subject and object do not meet
rules SR+, SR−, OR+, OR−, the Cache∗ is updated as follows:

(1) If the record of Cache∗ w.r.t. permission p is empty,
then the corresponding record is added to Cache∗
according to the building process of Cache∗ that is
given in Section 3.2

(2) If ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗, then
Cache∗ is updated as follows:

(a) If ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr and
∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr, then
Cache∗ is updated by replacing ðf~Su Attrgu≥1,
f~Ov Attrgv≥1, pÞ with ðfðf~Su Attrgu≥1 \ ~S′ AttrÞS f~S Attrgg, fðf~Ov Attrgv≥1 \ ~O′ AttrÞS f~O
Attrgg, pÞ, where ~S Attr = S Attr, and ~O Attr =
O Attr

(b) If ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr and
∀~O′ Attr ∈ f~Ov Attrgv≥1, O Attr ⊈ ~O′ Attr, then
Cache∗ is updated by replacing ðf~Su Attrgu≥1,
f~Ov Attrgv≥1, pÞ with ðfðf~Su Attrgu≥1 \ ~S′ AttrÞS f~S Attrgg, ff~Ov Attrgv≥1

S f~O Attrgg, pÞ,
where ~S Attr = S Attr, and ~O Attr = O Attr

(c) If ∀~S′ Attr ∈ f~Su Attrgu≥1, S Attr ⊈ ~S′ Attr and
∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O Attr, then
Cache∗ is updated by replacing ðf~Su Attrgu≥1,
f~Ov Attrgv≥1, pÞ with ðff~Su Attrgu≥1

S f~S Attr
gg, fðf~Ov Attrgv≥1 \ ~O′ AttrÞS f~O Attrgg, pÞ,
where ~S Attr = S Attr, and ~O Attr = O Attr

(d) If ∀~S′ Attr ∈ f~Su Attrgu≥1, S Attr ⊈ ~S′ Attr and
∀~O′ Attr ∈ f~Ov Attrgv≥1, O Attr ⊈ ~O′ Attr, then
Cache∗ is updated by replacing ðf~Su Attrgu≥1,
f~Ov Attrgv≥1, pÞ with ðff~Su Attrgu≥1

S f~S Attr
gg, ff~Ov Attrgv≥1

S f~O Attrgg, pÞ, where ~S
Attr = S Attr, and ~O Attr = O Attr

Case 2. If the subject’s attributes do not meet SR+ and SR−,
but the object’s attributes meet OR+ and/or OR−, then
Cache∗ and Cache+ are updated as follows:

(1) Update Cache∗:

(a) If the record of Cache∗ w.r.t. permission p is
empty, then the corresponding record is added
to Cache∗ according to the building process of
Cache∗ that is given in Section 3.2

(b) If ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗, then
Cache∗ is updated as follows:

(i) If ∃~S′ Attr ∈ f~Su Attrgu≥1, ~S′ Attr ⊂ S Attr,
then Cache∗ is updated by replacing

ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞwith ðfð
f~Su Attrgu≥1 \ ~S′ AttrÞ

S f~S Attrgg, f~Ov
Attrgv≥1, pÞ, where ~S Attr = S Attr

(ii) If ∀~S′ Attr ∈ f~Su Attrgu≥1, S Attr ⊈ ~S′ Attr,
then Cache∗ is updated by replacing
ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞwith ðf
f~Su Attrgu≥1

S f~S Attrgg, f~Ov Attrgv≥1, pÞ,
where ~S Attr = S Attr

(2) Update Cache+:
(a) If the record of Cache+ w.r.t. permission p is

empty, then ð∅,fOATT+
jl
g
l≤t
, pÞ is added to

Cache+, where OATT+
jl
∈O+ ATTRðpÞ, and

OATT+
jl
⊆O Attr, l ≤ t

(b) IfðfSATT+
ik ′
g
k ′≤s

, fOATT+
jl ′
g
l′≤t

, pÞ ∈ Cache+,then
Cache+ is updated by replacing ðfSATT+

ik ′
g
k ′≤s

,
fOATT+

jl ′
g
l′≤t

, pÞ with ðfSATT+
ik ′
g
k ′≤s

, ffOAT
T+
jl ′
gl′≤t

S fOATT+
jl
g
l≤t
g, pÞ, where OATT+

jl
∈O+

ATTRðpÞ, OATT+
jl
⊆O Attr,l ≤ t

Case 3. If the subject’s attributes meet SR+ and/or SR−, but
the object’s attributes do not meet OR+ and OR−, then
Cache∗ and Cache+ are updated as follows:

(1) Update Cache∗:

(a) If the record of Cache∗ w.r.t. permission p is
empty, then the corresponding record is added
to Cache∗ according to the building process of
Cache∗ that is given in Section 3.2

(b) If ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ ∈ Cache∗, then
Cache∗ is updated as follows:

(i) If ∃~O′ Attr ∈ f~Ov Attrgv≥1, ~O′ Attr ⊂O
Attr, then Cache∗ is updated by replacing
ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ with ðf~Su
Attrgu≥1, fðf~Ov Attrgv≥1 \ ~O′ AttrÞS f~O
Attrgg, pÞ, where ~O Attr = O Attr

(ii) If ∀~O′ Attr ∈ f~Ov Attrgv≥1, O Attr ⊈ ~O′
Attr, then Cache∗ is updated by replacing
ðf~Su Attrgu≥1, f~Ov Attrgv≥1, pÞ with ðf~Su
Attrgu≥1, ff~Ov Attrgv≥1

S f~O Attrgg, pÞ,
where ~O Attr = O Attr

(2) Update Cache+:
(a) If the record of Cache+ w.r.t. permission p is

empty, then ðfSATT+
ikgk≤s,∅,pÞ is added to

Cache+, where SATT+
ik ∈ S

+ ATTRðpÞ, and SAT
T+
ik ⊆ S Attr, k ≤ s

13Wireless Communications and Mobile Computing

(b) If ðfSATT+
ik ′
g
k ′≤s

, fOATT+
jl ′
g
l′≤t

, pÞ ∈ Cache+,
then Cache+ is updated by replacing ðfSAT T+

ik ′
g

k ′≤s, fOATT+
jl ′
g
l′≤t

, pÞ with ðffSATT+
ik ′
g
k ′≤s

S
fSATT+

ikgk≤sg, fOATT
+
jl ′
g
l′≤t

, pÞ, where SATT+
ik

∈ S+ ATTRðpÞ, and SATT+
ik ⊆ S Attr, k ≤ s

Case 4. If the subject’s attributes meet SR+ and the object’s
attributes meet OR−; or if the subject’s attributes meet SR−

and the object’s attributes meet OR+, then Cache− does not
need to be updated. The update of Cache+ is as follows:

(1) If the subject’s attributes meet SR+, then the update
of Cache+ refer to (2) in Case 3

(2) If the object’s attributes meet OR+, then the update
of Cache+ refer to (2) in Case 2

If there exists only one positive authorization policy for
permission p, the update of Cache++ refer to Cache+; the
update of Cache∗+ refer to Cache∗

If there exists only one negative authorization policy for
permission p, the update of Cache−− refer to Cache+; the
update of Cache∗+ refer to Cache∗

Above, we provide the authorization recycling method
under the hybrid policy, including how to construct the
cache, define reasonable decision rules, and update the
cache.

The environment attributes E Attr can be added to the
presented ABAC model. Consequently, the access request
will be changed to ðS Attr, O Attr, E Attr, pÞ, and the access
control policy will be policy = <SR∧OR∧ER, p, effect > ,
where ER represents the environment rule. Only if the sub-
ject, object, and environment attribute sets in the access
request satisfy the rule SR∧OR∧ER, the request satisfies the
access control policy. We can similarly provide an authoriza-
tion recycling method. This article does not put the environ-
ment attribute into the model for brevity.

4. Experimental Results and Evaluation

4.1. Comparison with Different Approaches. Table 1 com-
pares the proposed work with some existing work in terms
of flexibility of policy expression, access granularity, authori-
zation recycling, and application scenarios. Compared to
[15], our approach is for ABAC and supports negative
authorization; ours is more flexible, has higher policy
expression ability, and supports fine-grained access control.

Compared to [5, 9], our emphasis is on providing authoriza-
tion recycling method, including building and updating the
cache and making precise or approximate decisions. Our
solution is based on the general-purpose ABAC model and
is not directed to specific applications.

4.2. Test Results. A small-scale experiment was conducted to
evaluate the hit rate of the authorization recycling approach
for the ABAC model under the hybrid policy. This approach
was carried out on a PC with an Intel (R) Core (TM) i7-
8750h CPU at 2.20GHz-2.21GHz, 8GB memory, and
Windows 10 x64. The application software was JetBrains
PyCharm Community Edition 2019.3, and the interpreter
was Python 3.7.

The experimental procedure was as follows. First, 50
subject attributes, 50 object attributes, and 10000 different
permissions were randomly generated. For one-third of per-
missions, there was only one positive authorization policy
for each permission; for another one-third of permissions,
there was only one negative authorization policy for each
permission; and lastly, for the remaining permissions, there
were both positive and negative authorization policies for
each permission. Each policy had a rule R = SR∧OR, where
SR represented a Boolean expression of subject attributes.
Attributes in the expression were randomly selected from
50 subject attributes in a random amount. Further, OR was
a Boolean expression of object attributes, and the attribute
in the expression was randomly selected from 50 object attri-
butes in a random amount. Next, we randomly generated a
request set containing 10000 access requests, and ðS Attr,
O Attr, pÞ represented a request, where S Attr denoted the
subject attribute set, whose attributes were randomly
selected from 50 subject attributes in a random amount,
and O Attr represented the object attribute set, whose attri-
butes were randomly selected from 50 object attributes in a
random amount, and lastly, p represented the permission
to access. The average number of both subject attributes
and object attributes in each policy is about 13, and the aver-
age number of both subject attributes and object attributes in
each access request is about 25.

The method proposed in this article was more suitable
for those situations where the same user or similar users in
the same organization have more concentrated permission
access over a certain period. So we randomly accessed 200,
500, 800, 1000, 2000, and 3000 out of 10000 permissions.
When a subject sent an access request for permission, the
PDP searched for the policy associated with that permission.
Then, it calculated the minimal subject and object attribute
sets according to Definitions 7 and 8, respectively. The
obtained test results are shown in Figure 2.

Table 1: Comparison of different approaches.

Scheme Policy expression Granularity Authorization recycling Application scenario

Reference [5] Flexibility Fine grained No Specific application

Reference [9] Flexibility Fine grained No General purpose

Reference [15] — — Yes General purpose

Ours Flexibility Fine grained Yes General purpose

14 Wireless Communications and Mobile Computing

1697

35873303

6413

463

13901302

2682

1 16

1764

4056

0

1000

2000

3000

4000

5000

6000

7000

5000 10000

Numbers of requests

Permitted responses resolved by PDP and SDP
Denied responses resolved by PDP and SDP
Permitted responses resolved by SDP
Denied responses resolved by SDP
Accurate responses
Approximate responses

N
um

be
rs

 o
f r

es
po

ns
es

(a) Random access to 200 permissions, the number of various responses

1833

3638
3167

6362

355
1028892

2299

1 4

1246

3323

0

1000

2000

3000

4000

5000

6000

7000

5000 10000

N
um

be
rs

 o
f r

es
po

ns
es

Numbers of requests

Permitted responses resolved by PDP and SDP
Denied responses resolved by PDP and SDP
Permitted responses resolved by SDP
Denied responses resolved by SDP
Accurate responses
Approximate responses

(b) Random access to 500 permissions, the number of various responses

1686

33763314

6624

289
818729

1944

1 2

1017

2760

0

1000

2000

3000

4000

5000

6000

7000

5000 10000

N
um

be
rs

 o
f r

es
po

ns
es

Numbers of requests

Permitted responses resolved by PDP and SDP
Denied responses resolved by PDP and SDP
Permitted responses resolved by SDP
Denied responses resolved by SDP
Accurate responses
Approximate responses

(c) Random access to 800 permissions, the number of various responses

Permitted responses resolved by PDP and SDP
Denied responses resolved by PDP and SDP
Permitted responses resolved by SDP
Denied responses resolved by SDP
Accurate responses
Approximate responses

1797

3609
3203

6391

251
716673

1876

0 1

924

2591

0

1000

2000

3000

4000

5000

6000

7000

5000 10000

Numbers of requests

N
um

be
rs

 o
f r

es
po

ns
es

(d) Random access to 1000 permissions, the number of various responses

Figure 2: Continued.

15Wireless Communications and Mobile Computing

The cache was initially empty, and the SDP used the
information fetched from the PDP to gradually build and
update the cache. As the number of requests increased, the
SDP achieved more information from the PDP, and the
cache records continued to increase. From Figure 2, it can
be seen that the number of approximate responses increased
with the number of requests and was much larger than the
number of precise responses. In the case of the same number
of requests sent, the more permission for random access, the
fewer the requests resolved locally by the SDP. In the case of
certain access permissions, the more the number of requests,
the more the requests are resolved locally by the SDP, and
the hit rate gradually increases, as shown in Figure 3.

In addition, we also tested the decision time in two con-
ditions: on-cache and off-cache. Under the off-cache condi-
tion, users’ requests are directly decided by the PDP and
sent to the PEP for enforcement. In the on-cache condition,
the PDP decides on the users’ requests first, the matching
policy contents or requests are cached in the corresponding
caches by the SDP, and then later requests are solved by the
SDP according to SDP decision rules. In the on-cache test,
we randomly accessed 100 permissions from 10,000 permis-
sions, sent 1,000 requests for these permissions, and
recorded the decision time. Then, we used the exact requests
and their related policies and did the same test with off-
cache. We conducted the same test for five rounds, and the
decision time was recorded and averaged. The average
response time for each round is listed in Table 2.

The average decision time in the on-cache condition is
119.743ms less than that in the off-cache condition. More-
over, if the network communication time is considered, the
average decision time with on-cache will be shorter than that
with off-cache.

Making access control decisions with the cache is more
advantageous than without the cache. In addition, if the
PDP cannot be reached, the SDP can handle some requests
using the cache to cover up the failure of the PDP. The pro-
posed system can overcome the shortcomings of the PDP to
some extent and reduce the workload of the PDP.

5. Related Work

The ABAC has been widely used in distributed environ-
ments in recent years due to its flexibility, scalability, and
fine-granularity access control. Li et al. [31] described the
overall framework of the ABAC. Hu et al. [26] provided a
comprehensive definition and guidance for implementing
the ABAC, becoming the NIST ABAC standard. In this
work, an ABAC model, which supports hybrid authoriza-
tions, is proposed. The proposed model relies on Boolean
expressions of subject and object attributes, capturing com-
mon characteristics of the ABAC practices.

In access control, caching authorization responses [11,
12] and reuse of them can increase the usability and perfor-
mance of the access control system, so authorization recy-
cling has attracted much attention recently. Beznosov [13]
presented approximate authorization recycling and pro-
posed to use the publish-subscribe architecture to share
and actively recycle authorization. However, this approach
uses many precomputed authorizations in the delivery chan-
nel and actively recycles authorizations on an immediate
basis; it also extends the precise caching mechanism. In
[17], a publish-subscribe model was proposed to transfer
access requests and responses between the application and
authorization server. This work presents an accurate and
approximate authorization recycling method for the ABAC.

1687

34613313

6539

113
460483

1418

0 0
596

1878

0

1000

2000

3000

4000

5000

6000

7000

5000 10000

N
um

be
rs

 o
f r

es
po

ns
es

Permitted responses resolved by PDP and SDP
Denied responses resolved by PDP and SDP
Permitted responses resolved by SDP
Denied responses resolved by SDP
Accurate responses
Approximate responses

Numbers of requests

(e) Random access to 2000 permissions, the number of various responses

1666

34273334

6573

46 309270

1145

1 0
315

1454

0

1000

2000

3000

4000

5000

6000

7000

5000 10000

N
um

be
rs

 o
f r

es
po

ns
es

Permitted responses resolved by PDP and SDP
Denied responses resolved by PDP and SDP
Permitted responses resolved by SDP
Denied responses resolved by SDP
Accurate responses
Approximate responses

Numbers of requests

(f) Random access to 3000 permissions, the number of various responses

Figure 2: Test results of authorization recycling for the ABAC model.

16 Wireless Communications and Mobile Computing

Permit response hit rate
Deny response hit rate
Total hit rate

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000

H
it

ra
te

Total requests

10000

(a) Random access to 200 permissions, the hit rate

variation with the number of requests

0

0.1

0.2

0.3

0.4

0 2000 4000 6000 8000 10000

H
it

ra
te

Permit response hit rate
Deny response hit rate
Total hit rate

Total requests

(b) Random access to 500 permissions, the hit rate

variation with the number of requests

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000

H
it

ra
te

Permit response hit rate
Deny response hit rate
Total hit rate

Total requests

10000

(c) Random access to 800 permissions, the hit rate

variation with the number of requests

Permit response hit rate
Deny response hit rate
Total hit rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2000 4000 6000 8000

H
it

ra
te

Total requests

10000

(d) Random access to 1000 permissions, the hit rate

variation with the number of requests

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000

H
it

ra
te

Permit response hit rate
Deny response hit rate
Total hit rate

Total requests

10000

(e) Random access to 2000 permissions, the hit rate

variation with the number of requests

0

0.05

0.1

0.15

0.2

0 2000 4000 6000 8000

H
it

ra
te

Permit response hit rate
Deny response hit rate
Total hit rate

Total requests

10000

(f) Random access to 3000 permissions, the hit rate

variation with the number of requests

Figure 3: The trend of the hit rate when accessing different numbers of permissions.

17Wireless Communications and Mobile Computing

Crampton et al. [14] proposed an authorization recy-
cling model-SAAM based on the BLP model, which uses
the relationship between the subject and object of the previ-
ous responses to deduce approximate responses. This model
formally defines SAAM and introduces the SDP. Namely,
SAAM provides an alternative source for access control deci-
sions. It builds a general-purpose, application-independent
authorization recycling framework to achieve a new authori-
zation response from the SDP. It reuses the previous
response to infer information about the underlying access
control policy and makes an approximate response consis-
tent with the policy. Compared to the approach presented
in [14], our authorization recycling approach is for the
ABAC model, in which permission access is based on rules
about subject and object attributes. It should be noted that
handling access requests in the ABAC model is much more
complicated than in the BLP model. Consequently, authori-
zation recycling in the ABAC is more complex than that of
the BLP model. Additionally, our authorization recycling
supports the hybrid policy, while the BLP model supports
only the closed-world policy.

In [16, 32], collaborative secondary authorization recy-
cling was studied. In [16], an authorization recycling method
using CSAR in the cloud computing system, which uses
cooperative caching of access control decisions to improve
the hit rate, was developed. Wei et al. [32] discussed the col-
laboration between multiple SDPs and proposed a collabora-
tive secondary authorization recovery method. This method
takes advantage of a large-scale, distributed cooperative sys-
tem to improve the hit rate of access control decisions.
Application servers share their recycled authorization results

with each other. Compared to analyses in [16, 32], in this
work, the cooperation between SDPs is not considered.
However, this work focuses on making full use of all infor-
mation fetched from the PDP when making secondary
authorization decisions to increase the hit rate. Additionally,
authorization recycling for a relatively complex ABAC
model is presented.

The RABC authorization recycling was studied in [15].
Crampton et al. [15] proposed the caching strategy SAAMR-
BAC. They provided an authorization recycling algorithm,
which includes the compression of an authorization cache.
The SDP can effectively infer precise and approximate deci-
sions from the cached data to overcome the shortcomings of
the PDP. In contrast to the RBAC, the ABAC has the advan-
tages of high flexibility, scalability, and fine granularity.
Inspired by the results in [15], a general-purpose ABAC
model, which supports hybrid authorizations, is developed
in this work. However, in the RBAC, roles associated with
permissions and only positive authorization is considered.
In the ABAC, a combination of several attributes associated
with a permission is considered, which makes authorization
recycling more complex but worthy.

6. Conclusion

This paper presents a general-purpose ABAC model that
supports the hybrid policy. It also introduces the authoriza-
tion recycling approach for this model, specifies reasonable
rules to construct the cache, and effectively renders precise
and approximate decisions from the cache. In the presented
model, the Boolean expressions of subject and object

Table 2: Average decision time in different states.

Rounds Round 1 Round 2 Round 3 Round 4 Round 5 Average

Average decision time per request with cache (ms) 312.677 316.53 374.909 334.898 307.645 329.332

Average decision time per request without cache (ms) 395.275 457.177 476.651 420.729 495.544 449.075

Table 3: Possible response contents of ABAC(P) model.

Response q Corresponding content

q = + + S Attr,O Attr, pð Þ
++ S Attr,O Attr, pð Þ: ≜ <permit, SATT+

ik

n o
k≤s

, OATT+
jl

n o
l≤t
, p

� �
> , where

SATT+
ik
∈ S+ ATTR pð Þ and SATT+

ik
⊆ S Attr, k ≤ s

OATT+
jl
∈O+ ATTR pð Þ andOATT+

jl
⊆O Attr, l ≤ t

q = ∗ − S Attr,O Attr, pð Þ

S Attr,O Attr do not meet the rule:

q = q1 == ∗ − S Attr,O Attr, pð Þ: ≜ <deny, ~S Attr
n o

, ~O Attr
n o

, p
� �

> , where

~S Attr = S Attr and ~O Attr =O Attr
S Attr does not meet the rule, but O Attr meets the rule:

q = q2 = ∗ − S Attr,O Attr, pð Þ: ≜ <deny, ~S Attr
n o

,∅,p
� �

> , where ~S Attr = S Attr;

OATT+
jl

n o
l≤t
, where OATT+

jl
∈O+ ATTR pð Þ, OATT+

jl
⊆O Attr, l ≤ t

S Attr meets the rule, but O Attr does not meet the rule:

q = q3 = ∗ − S Attr,O Attr, pð Þ: ≜ <deny, ∅, ~O Attr
n o

, p
� �

> , where ~O Attr =O Attr;

SATT+
ik

n o
k≤s

, where SATT+
ik
∈ S+ ATTR pð Þ, SATT+

ik
⊆ S Attr, k ≤ s

18 Wireless Communications and Mobile Computing

attributes are used, so an application system can extend this
model, adding other attributes, such as environmental attri-
butes. In the cache construction process, two principles are
adopted: (1) full use of information fetched from the PDP
in making authorization decisions at the SDP; and (2) do
not use the PDP if there is any chance to make a safe and
consistent authorization decision at the SDP, since fetching
a new response increases communication cost and searching
overhead. Finally, a small-scale experiment is conducted to
evaluate the effectiveness of the proposed approach.

It should be noted that the ABAC models and their
workflows can be much more complicated in practice, and
authorization policies may change all the time in some
ABAC systems. This work does not consider the impact of
policy changes on the cache. The ABAC cache supporting
dynamic policy change will be studied in our future work.
The applicability of the proposed approach in practical envi-
ronments will also be considered in the future.

Appendix

Cache Construction and Access Control
Decision Algorithm

If there exists only one positive authorization policy for per-
mission p. The possible contents of the response are as listed
in Table 3.

The corresponding cache construction (build and
update) algorithm is as follows.

The corresponding access control decision algorithm by
the SDP is as follows.

In the case of only one negative authorization policy for
permission p, the model becomes a dual model of that there
is only one positive authorization policy for permission p,
cache construction, and access control decision algorithm
are similar and will not be repeated here.

If both positive and negative authorization policies coex-
ist for permission p, the possible contents of the response are
listed in Table 4.

The corresponding cache construction (build and
update) algorithm is as follows.

The corresponding access control decision algorithm by
the SDP is as follows.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research work was supported by the National Natural
Science Foundation of China (grant numbers: 61862059,
61562085).

References

[1] R. Sandhu and P. Samarati, “Access control: principle and
practice,” IEEE Communications Magazine, vol. 32, no. 9,
pp. 40–48, 1994.

Table 4: Possible response contents of ABAC(H) model.

Response q′ Corresponding content

q′ = − S Attr,O Attr, pð Þ
− S Attr,O Attr, pð Þ: ≜ <deny, SATT−

ik

n o
k≤s

, OATT−
jl

n o
l≤t
, p

� �
> , where

SATT−
ik
∈ S− ATTR pð Þ, i = 1, 2,⋯, s,

OATT−
jl
∈O− ATTR pð Þ, j = 1, 2,⋯, t ;

q′ = + S Attr,O Attr, pð Þ
+ S Attr,O Attr, pð Þ: ≜ <permit, SATT+

ik

n o
k≤s

, OATT+
jl

n o
l≤t
, p

� �
> , where

SATT+
ik
∈ S+ ATTR pð Þ and SATT+

ik
⊆ S Attr, k ≤ s

OATT+
jl
∈O+ ATTR pð Þ andOATT+

jl
⊆O Attr, l ≤ t

q′ = ~ S Attr,O Attr, pð Þ

Attributes of both the subject and object in the request do not meet rules SR+, SR−, OR+ and OR−

q′ = q1′ = ~ S Attr,O Attr, pð Þ: ≜ <deny, ~S Attr
n o

, ~O Attr
n o

, p
� �

> , where

~S Attr = S Attr and ~O Attr =O Attr
The subjects attributes do not meet SR+ and SR−, but the objects attributes meet OR+ and/or OR−

q′ = q2′ = ~ S Attr,O Attr, pð Þ: ≜ <deny, ~S Attr
n o

,∅,p
� �

> , where ~S Attr = S Attr;

OATT+
jl

n o
l≤t
, where OATT+

jl
∈O+ ATTR pð Þ, OATT+

jl
⊆O Attr, l ≤ t

The subjects attributes meet SR+ and/or SR−, but the objects attributes do not meet OR+ and OR−

q′ = q3′ = ~ S Attr,O Attr, pð Þ: ≜ <deny, ∅, ~O Attr
n o

, p
� �

> , where ~O Attr =O Attr;

SATT+
ik

n o
k≤s

, where SATT+
ik
∈ S+ ATTR pð Þ, SATT+

ik
⊆ S Attr, k ≤ s

19Wireless Communications and Mobile Computing

[2] B. W. Lampson, “Protection,” ACM Sigops Operating Systems
Review, vol. 8, no. 1, pp. 18–24, 1974.

[3] D. Bell and J. Lapadula, “Secure computer systems: a mathe-
matical model,” The MITRE Corporation, vol. 4, pp. 229–
263, 1973.

[4] D. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramoull, “Proposed NIST standard for role-based
access control,” ACM Transactions on Information and System
Security, vol. 4, no. 3, pp. 224–274, 2001.

[5] Z. H. Xin, L. Liu, and G. Hancke, “AACS: attribute-based
access control mechanism for smart locks,” Symmetry,
vol. 12, no. 6, 2020.

[6] M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Dynamic
groups and attribute-based access control for next-generation
smart cars,” in Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, pp. 61–72, 2019.

[7] M. Gupta, F. Awaysheh, J. Benson, M. Alazab, F. Patwa, and
R. Sandhu, “An attribute-based access control for cloud
enabled industrial smart vehicles,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 6, pp. 4288–4297, 2021.

[8] M. Gupta, J. Benson, F. Patwa, and R. Sandhu, “Secure V2V
and V2I communication in intelligent transportation using
cloudlets,” IEEE Transactions on Services Computing, vol. 15,
no. 4, pp. 1912–1925, 2022.

[9] L. Karijmi, M. Abdelhakim, and J. Joshi, “Adaptive ABAC pol-
icy learning: a reinforcement learning approach,” 2021,
https://arxiv.org/abs/2105.08587.

[10] K. Beznosov, Recycling Authorizations: Toward Secondary and
Approximate Authorizations Model (SAAM)., University of
British Columbia, 2005.

[11] G. Karjoth, “Access control with IBM Tivoli access manager,”
ACM Transactions on Information and System Security, vol. 6,
no. 2, pp. 232–257, 2003.

[12] K. Borders, X. Zhao, and A. Prakash, “CPOL: high-
performance policy evaluation,” in Proceedings of the 12th
ACM conference on Computer and Communications Security,
pp. 147–157, 2005.

[13] K. Beznosov, “Flooding and recycling authorizations,” in Pro-
ceedings of the 2005 workshop on New security paradigms -
NSPW '05, pp. 67–72, 2005.

[14] J. Crampton, W. Leung, and K. Beznosov, “The secondary and
approximate authorization model and its application to Bell-
LaPadula policies,” in Proceedings of the eleventh ACM sympo-
sium on Access control models and technologies - SACMAT '06,
pp. 111–120, 2006.

[15] Q. Wel, J. Crampton, K. Beznosov, and M. Ripeanu, “Authori-
zation recycling in hierarchical RBAC systems,” ACM Trans-
actions on Information and System Security, vol. 14, no. 1,
pp. 1–29, 2011.

[16] S. Reeja, “Role based access control mechanism in cloud com-
puting using cooperative secondary authorization recycling
method,” International Journal of Emerging Technology and
Advanced Engineering, vol. 2, no. 10, pp. 444–450, 2012.

[17] Q. Wei, M. Ripeanu, and K. Beznosov, “Authorization using
the publish-subscribe model,” in 2008 IEEE International Sym-
posium on Parallel and Distributed Processing with Applica-
tions, pp. 53–62, Sydney, NSW, Australia, 2013.

[18] M. U. Aftab, Z. Qin, K. Hussain et al., “Negative authorization
by implementing negative attributes in attribute-based access
control model for internet of medical things,” in 2019 15th

International Conference on Semantics, Knowledge and Grids
(SKG), pp. 167–174, Guangzhou, China, 2019.

[19] P. Iyer and A. Masoumzadeh, “Mining positive and negative
attribute-based access control policy rules,” in Proceedings of
the 23nd ACM on Symposium on Access Control Models and
Technologies, pp. 161–172, Indianapolis, IN, USA, 2018.

[20] D. Brossard, G. Gebel, and M. Berg, “A systematic approach to
implementing ABAC,” in Proceedings of the 2nd ACM Work-
shop on Attribute-Based Access Control, pp. 53–59, 2017.

[21] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in 2007 IEEE Symposium on Secu-
rity and Privacy (SP '07), pp. 321–334, Berkeley, CA, USA,
2007.

[22] H. Cui, R. H. Deng, J. Lai, X. Yi, and S. Nepal, “An efficient and
expressive ciphertext-policy attribute-based encryption
scheme with partially hidden access structures, revisited,”
Computer Networks, vol. 133, pp. 157–165, 2018.

[23] L. Lin, J. P. Huai, and X. X. Li, “Attribute-based access control
policies composition algebra,” Journal of Software, vol. 20,
no. 2, pp. 403–414, 2009.

[24] K. Ge and B. Lang, “Research on the policy definition in the
attribute based access control,” Microcomputer Information,
vol. 24, no. 33, pp. 7–9, 2008.

[25] Z. C. Zhong, Research on Security Policy Optimization in
Attribute-Based Access Control, XIDIAN University, 2020.

[26] V. Hu, D. Ferraiolo, R. Kuhn et al., “Guide to attribute based
access control (ABAC) definition and considerations,”
National Institute of Standards and Technology Special Publi-
cation, vol. 162-800, p. 47, 2014.

[27] OASIS, “The eXtensible access control markup language
(XACML), version 3.0 plus errata 01, OASIS standard incor-
porating approved errata,” 2017, http://docs.oasis-open.org/
xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-
complete.html.

[28] C. Liu, Research on Conflict Detection and Resolution Method
of ABAC Security Policy, XIDIAN University, 2020.

[29] E. Bertino, P. Samarati, and S. Jajodia, “Authorizations in rela-
tional database management systems,” in Proceedings of the 1st
ACM conference on Computer and communications security -
CCS '93, pp. 130–139, New York, NY, USA, 1993.

[30] J. J. Du and N. Helil, “Fine-grained and traceable key delega-
tion for ciphertext-policy attribute-based encryption,” KSII
Transactions on Information Systems, vol. 15, no. 9,
pp. 3274–3297, 2021.

[31] X. F. Li, D. G. Feng, Z. W. Chen, and Z. H. Fang, “Model for
attribute based access control,” Journal of Communications,
vol. 29, no. 4, pp. 90–98, 2008.

[32] Q.Wei, M. Ripeanu, and K. Beznosov, “Cooperative secondary
authorization recycling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 20, no. 2, pp. 275–288, 2009.

20 Wireless Communications and Mobile Computing

https://arxiv.org/abs/2105.08587
http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.html
http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.html
http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.html

	Authorization Recycling in Attribute-Based Access Control
	1. Introduction
	2. ABAC Model
	2.1. ABAC Model
	2.2. Authorization Recycling Assumptions

	3. Authorization Recycling for ABAC Model
	3.1. Preliminaries
	3.2. Cache Building
	3.3. SDP Decision Rules
	3.4. Cache Update

	4. Experimental Results and Evaluation
	4.1. Comparison with Different Approaches
	4.2. Test Results

	5. Related Work
	6. Conclusion
	Appendix
	Cache Construction and Access Control Decision Algorithm
	Data Availability
	Conflicts of Interest
	Acknowledgments

