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In mobile edge computing, there are usually relevant dependencies between different tasks, and traditional algorithms are
inefficient in solving dependent task-offloading problems and neglect the impact of the dynamic change of the channel on the
offloading strategy. To solve the offloading problem of dependent tasks in a dynamic network environment, this paper
establishes the dependent task model as a directed acyclic graph. A Dependent Task-Offloading Strategy (DTOS) based on
deep reinforcement learning is proposed with minimizing the weighted sum of delay and energy consumption of network
services as the optimization objective. DTOS transforms the dependent task offloading into an optimal policy problem under
Markov decision processes. Multiple parallel deep neural networks (DNNs) are used to generate offloading decisions, cache the
optimal decisions for each round, and then optimize the DNN parameters using priority experience replay mechanism to
extract valuable experiences. DTOS introduces a penalty mechanism to obtain the optimal task-offloading decisions, which is
triggered if the service energy consumption or service delay exceeds the threshold. The experimental results show that the
algorithm produces better offloading decisions than existing algorithms, can effectively reduce the delay and energy
consumption of network services, and can self-adapt to the changing network environment.

1. Introduction

With the advent of the Internet era, smart devices are widely
used in our lives. Due to the limited computing power of
mobile devices, they sometimes cannot satisfy users’ needs.
In addition, mobile devices processing massive calculation
tasks can lead to excessive energy consumption, which results
in bad users’ experience [1]. To solve these problems, mobile
cloud computing has been brought up. Massive calculation
tasks can be offloaded to the cloud by mobile devices, where
the cloud server performs computing and returns the results
to the terminal [2]. Because the cloud server is far from the
terminal, the task transmission delay is high. At the same
time, increasingly, terminal devices upload data to the cloud
server, which also brings high pressure to the network.
Therefore, mobile edge computing (MEC) came into being
[3]. MEC offloads computing tasks from end devices to edge
servers that are closer to them for computing to reduce net-
work pressure, data transmission delay, and end device

energy consumption [4, 5]. How to make offloading deci-
sions is crucial, and the effectiveness of offloading decisions
depends on key indicators, such as energy consumption
and delay [6]. There are 2 forms of offloading, partial offload-
ing and fully offloading [7].

In recent years, there have been many research results
for the offloading of computing tasks for MEC. Fu and Ye
[8] described the offloading problem as a delay minimiza-
tion problem under energy consumption constraints. An
improved firefly swarm optimization algorithm was pro-
posed to generate the offloading decision, which signifi-
cantly reduced the system cost. Zhu and Wen [9] defined
the weighted sum of energy consumption and delay as an
optimization function of total overhead. An offloading
strategy based on an improved genetic algorithm was pro-
posed, which achieved better results on delay and load bal-
ance, but not on energy consumption reduction. Wei et al.
[10] proposed a maximum energy-saving priority algorithm
to reduce the energy consumption, which used greedy
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selection to solve the optimization problem, but only con-
sidered energy consumption and was not suitable for delay
sensitive scenarios. Yang et al. [11] and Guo and Liu [12]
proposed game theory-based offloading algorithm that
described the overhead minimization problem as a policy
game to reduce the energy consumption and delay of each
mobile device through joint optimization.

With the development of machine learning, great prog-
ress has been made in using machine-learning algorithms
to solve the computing offloading problem [13]. Liang
et al. [14] proposed a Distributed Deep Learning-based Off-
loading (DDLO) algorithm that used multiple parallel deep
neural networks to generate offloading decisions. The
network parameters were continuously updated using an
experience replay mechanism. The algorithm generates
near-optimal offloading decisions in a short time, but the
authors only considered the static network scenario. Li
et al. [15] proposed a deep reinforcement learning algorithm
for the complex computing offloading problem in collabora-
tive computing with heterogeneous edge computing servers.
The algorithm optimized the offloading decision based on
the real-time state of the network and the properties of the
task to minimize the task delay, but the authors only consid-
ered the delay, not energy consumption. Zhou et al. [16]
used deep reinforcement learning to study the joint optimi-
zation problem of computing offloading and resource alloca-
tion in dynamic multiuser MEC systems, using the DDQN
(Double Deep Q Network) algorithm to dynamically gener-
ate offloading decisions. In reference [17], a DDQN-based
trajectory and phase shift optimization method was pro-
posed to maximize RIS-UAV network capacity. In reference
[18], a new incentive-driven and deep Q network-based
method (IDQNM) was proposed for designing mobile node
incentive mechanisms and content-caching strategies in
D2D offloading. The reference [19] proposed an incentive
mechanism based on delay constraints and reverse auction.
With the maximization of mobile network operators’ reve-
nue as the optimization objective, two optimization methods
were proposed: the greedy winner selection method (GWSM)
and the dynamic planning winner selection method
(DPWSM). T. Yang and J. Yang [20] proposed a joint optimi-
zation method for offloading decisions and resource alloca-
tion, which improved the DQN algorithm, shortened the
finish time of computing tasks, and reduced the terminal
energy consumption. Zhu et al. [21] proposed a dynamic
resource allocation strategy based on K-means, where
resources were modeled as “fluids” and allocated using an auc-
tion algorithm. The throughput of the edge server was
improved and the transmission delay was reduced. Above
algorithms have not taken task dependency into account,
while task dependency is truly existed in practical applications.

The representative research results on the offloading
strategies of dependent tasks are as follows. Dong et al.
[22] proposed a computational-offloading strategy based
on genetic algorithms. This strategy encoded the offloading
location and offloading order of tasks, used delay and energy
consumption as evaluation criteria, and continuously opti-
mized the offloading decision by variation and crossover
operations. However, it did not consider the resource alloca-

tion of edge servers. The fine-grained offloading problem
with multiple users and multiple servers was studied in
[23]. The authors considered the fine-grained offloading of
Internet of Things (IoT) devices as a multiconstrained objec-
tive optimization problem and proposed an improved Non-
dominated Sorting Genetic Algorithm (NSGA-II) with the
objective of minimizing the average delay. Mao et al. [24]
proposed a delay-acceptance-based offloading strategy for
multiuser tasks. The strategy firstly used a nondominated
genetic algorithm to solve the optimal solution in a single-
user scenario for each user, then improved the convergence
speed with a probabilistic selection mechanism and nondo-
minated judging scheme, and finally proposed an adjust-
ment strategy based on the idea of time delay acceptance
in stable matching. It solved the multiuser-offloading prob-
lem with dependent task scenarios. Liu et al. [25] proposed
an energy-efficient collaborative task-offloading algorithm
based on semidefinite relaxation and stochastic mapping,
which generated offloading decisions for dependent tasks
in static network environments and reduced the total energy
consumption of IoT devices.

Above literatures only consider the offloading of depen-
dent tasks in static network environments, but in fact the
network environment is dynamic. In this paper, we use deep
reinforcement learning methods to generate dependent task-
offloading decisions, cache the optimal decisions for each
round, and then optimize DNN parameters using priority
experience replay mechanism to extract valuable experi-
ences. DTOS introduces a penalty mechanism, which is
triggered if the service energy consumption or service
delay exceeds the threshold. The algorithm can reduce
delay and energy consumption. When the network trans-
mission rate changes, the model can generate the corre-
sponding optimal-offloading decision and adapt to the
changing network environment by only obtaining the cur-
rent network rate in real time. The main contributions of
this paper are as follows:

(1) A dependent task-offloading model is built for the
scenario of a dynamic network environment. The
optimization objective of DTOS is derived by com-
prehensively considering the delay and energy con-
sumption of the service

(2) Transform the dependent task offloading into an
optimal policy problem under Markov decision pro-
cesses. A deep reinforcement learning-based depen-
dent task-offloading strategy is proposed, which can
obtain optimal task-offloading decisions using priority
experience replay mechanism and penalty mechanism

(3) The effectiveness of DTOS is verified through simu-
lation experiments. According to the simulated
experiment results, DTOS is effective and better than
the other four algorithms

2. DTOS Model

2.1. System Model. The model in this paper is built on the
scenario of multiple IoT devices and a single-edge server,
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the system model is shown in Figure 1. IoT devices can be
smart devices, wireless sensors, and other network-
connected devices. Unmanned Aerial Vehicle (UAV) is
adopted as the edge server. Suppose that we need to execute
an IoT service S, and that the service needs to be computed
collaboratively by K IoT devices. Each IoT device has a cer-
tain amount of computing power that can execute comput-
ing tasks locally. Each IoT device connects to the edge
server through a wireless network, and the wireless trans-
mission rate from each IoT device to the edge server varies
and is unstable because the UAV is moving at a low speed
in the area. The K fine-grained computational tasks of the
IoT service S are equally distributed in K different IoT
devices. There are data dependencies between different com-
putational tasks and these tasks are indivisible, each compu-
tational task is either computed locally or all uploaded to the
edge server for computation, i.e., binary offloading. The off-
loading decision at time t is represented as a list at = fx0,
x1,⋯, xK−1g with length K . xi determines whether the task
i should be offloaded to the edge server for computation.
When xi = 0, it means that the task is executed locally. When
xi = 1, the task will be offloaded to the edge server for execu-
tion. In this paper, the optimization goal is to minimize the
delay and energy consumption to generate the offloading
decision to determine whether the task is executed at the
local.

2.2. Communication Model. The wireless transmission rate
from each IoT device to the edge server at time t is
denoted as Rt = fv0, v1,⋯, vK−1g, where vi denotes the
wireless transmission rate from the IoT device i to the edge
server, and the wireless transmission rates of all devices are
different from each other. Assume that the flight altitude of
the UAV is constant H, its position at time t is denoted as
loc UAVðtÞ = ðxt , yt ,HÞ. The position of device i is denoted
as loc UEi = ðxi, yi, 0Þ, thus the distance between the UAV
and the IoT device i at time t is denoted as

Dit =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 + loc UAV tð Þ − loc UEi

2:
q

ð1Þ

It is assumed that the UAV and IoT devices are modu-
lated by Orthogonal Frequency Division Multiplexing
(OFDM) and accessed by Time Division Multiple Access
(TDMA). The wireless channels between UAV and IoT
devices are line-of-sight channels. Therefore, the channel
gain hiðtÞ between the UAV and the IoT device i at time t
can be expressed as follows:

hi tð Þ = φ0D
−2
it =

φ0

H2 + loc UAV tð Þ − loc UEi
2 , ð2Þ

where φ0 denotes the channel power gain at 1m.
According to the Shannon formula, vi is calculated as

follows:

vi = B log2 1 +
Psend
i hi tð Þ
σ2

 !
, ð3Þ

where B is the channel bandwidth of device i; Psend
i is the

transmission power of device i; and σ2 denotes the variance
of additive Gaussian white noise.

If the task i is offloaded to the edge server for calculation,
the transmission delay is calculated as follows:

Tsend
i = di

vi
, ð4Þ

where di denotes the data size of task i. After the task is fin-
ished computing at the edge server, the result is transmitted
back to the IoT device.

The energy consumption of device i during the task
transmission to the edge server is calculated as follows:

Esend
i = Psend

i Tsend
i ð5Þ

2.3. Computing Model

2.3.1. Local-Computing Model. If f locali is defined as the com-
puting resource of device i, the local computational delay of
task i is as follows:

T local
i =

diw

f locali

, ð6Þ

where w is the computation complexity parameter of the
task.

Defining Plocal
i as the local-computing power, the local-

computing energy consumption of device i is as follows:

Elocal
i = T local

i Plocal
i ð7Þ

2.3.2. Edge-Computing Model. Define f edge as the total com-

puting resources of the edge server and f edgei as the

IoT devices

Wireless Network

Offloading

Local

UAV
(MEC server)

D2DD2D

Figure 1: System model for dependent task offloading.
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computing resources allocated to task i by the edge server, so
the edge-computing delay of task i is as follows:

Tedge
i =

diw

f edgei

ð8Þ

When the task is offloaded to the edge server for calcula-
tion, the device i is in an idle state. During this period, the
energy consumption generated by device i is as follows:

Eedge
i = Tedge

i Pfree
i , ð9Þ

where Pfree
i is the power of device i when it is idle.

2.4. Task Dependency Model. The task dependency is consid-
ered as input dependency in this paper, i.e., the execution of
some tasks requires the execution results of other tasks as
input. The task dependency can be modeled as a directed
acyclic graph, where each node represents a computational
task. A single task can have multiple precursor and successor
tasks. If the task has no successor, it is the final task, and the
entire service is executed when its execution is finished.

Each successor task needs to wait all its precursor tasks
to end, which are in parallel, so the execution time of succes-
sor task equals the maximum of the finish time of all precur-
sor tasks. Denote the time when all tasks start to execute as
RT = frt0, rt1,⋯, rtK−1g, and the beginning node executes
at 0. Denote the finish time of all tasks as FT = fft0, ft1,⋯,
ftK−1g, then the finish time of task i equals the following
formula:

f ti = rti + Ti, ð10Þ

where Ti is the execution delay of task i. It is calculated as
follows:

Ti = 1 − xið ÞT local
i + xi Tedge

i + Tsend
i

� �
: ð11Þ

The start execution time of task i is as follows:

rti =
max f t j P ið Þ ≠ ϕ, j ∈ P ið Þ,
0 P ið Þ = ϕ,

(
ð12Þ

where PðiÞ is the set of direct predecessor tasks of task i. If
PðiÞ is the empty set, the task i is the starting task and its
start execution time is 0.

2.5. Problem Description. The optimization objective of the
offloading strategy is to minimize the weighted sum of the
delay and energy consumption of the service. From the
above model, the finish time of the entire service S can be
deduced as follows:

Ts =max fti, f ti ∈ FT: ð13Þ

The energy consumption generated by task i is as fol-
lows:

Ei = 1 − xið ÞElocal
i + xi Eedge

i + Esend
i

� �
: ð14Þ

The sum of the energy consumption generated by all
tasks is as follows:

Es = 〠
k−1

i=0
Ei: ð15Þ

The algorithm introduces a penalty mechanism, which is
triggered if the service energy consumption or service delay
exceeds the threshold. The weighted sum of the energy con-
sumption and delay generated by completing the service S is
as follows:

cost = αTs + 1 − αð ÞEs +
gt Ts − TMð Þ

TM
+
ge Es − EMð Þ

EM
, ð16Þ

where α is the weight, TM is the delay threshold, EM is the
energy consumption threshold, and gt ∈ f0, 1g and ge ∈ f0,
1g are the penalty factors for delay and energy consumption,
respectively. When the penalty mechanism is not triggered,
gt and ge are 0.

The optimization objective is to minimize the cost value,
and the formula is:

Min cost,

Subject to : C1 : xi ∈ 0, 1f g, i ∈ 0, K − 1½ �,
C2 : rti =max f t j, P ið Þ ≠ ϕ, j ∈ P ið Þ,
C3 : rti = 0, P ið Þ = ϕ,

C4 : α ∈ 0, 1½ �:
ð17Þ

Constraint C1 indicates that each task can only choose to
be computed locally or offloaded to an edge server for com-
puting. Constraint C2 indicates that a task starts execution at
the finish time of all its predecessor tasks. Constraint C3
indicates that the execution time of the starting task is 0.
Constraint C4 indicates weight α is a number between 0
and 1.

3. DTOS Algorithm

3.1. Model Training Process of DTOS. Offloading optimiza-
tion of dependent tasks in edge computing is an NP-hard
problem [25], and reinforcement learning can continuously
interact with the environment and can transform the off-
loading optimization problem of dependent tasks into an
optimal policy problem in Markov decision-making. The
model training process of DTOS is illustrated in Figure 2,
and the main steps are as follows.
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3.1.1. Forward Propagation. Firstly, the experimental param-
eters are initialized and nðn > 1Þ DNNs are constructed with
randomly generated weight parameters and bias parameters.
The number of neurons in the input and output layers of the
DNN is the number of IoT devices K , and the number of
neurons in the 1st hidden layer and the 2nd hidden layer
is L1 and L2, respectively.

The wireless transmission rate Rt = fv0, v1,⋯, vK−1g
from each IoT device to the edge server at time t is used as
the input layer data of the DNN and is input to the hidden
layer for calculation, and all hidden layer neurons use ReLu
as the activation function. The output layer neurons do not
need an activation function, and different offloading deci-
sions are directly after the data are calculated with the weight
parameters and bias parameters.

Each DNN outputs different offloading decisions after
one forward propagation is completed. The i-th DNN out-
puts the offloading decision as atðiÞ = fx0, x1,⋯, xK−1g.
Since xi ∈ f0, 1g, but the output of DNN is not always 0 or
1, the output of DNN needs to be transformed. The method
is to convert each value greater than 0 in the array to 1, oth-
erwise to 0, resulting in n offloading decisions.

3.1.2. Computational Resource Allocation. In existing studies,
the computational resources of the edge server are usually
distributed equally to all tasks offloaded to the edge server
for execution, which will waste computing resources and
increase the delay of edge computing in IoT services with
dependent tasks.

Computational resource allocation is a continuous con-
trol problem, so in this paper, the edge server is used as an

agent, and DDPG (Deep Deterministic Policy Gradient) is
used to allocate computational resources of the edge server.
Reinforcement learning has three key elements: state, action,
and reward. The state consists of two components

state = O,U½ �: ð18Þ

O = ½o0, o1,⋯, oK−1� denotes the network transmission
rate of the device that needs to offload the task to the edge
server, and the vector O is assigned values based on each off-
loading decision at generated by DNN and the wireless
transmission rate Rt from the device to the edge server. If
the task needs to be offloaded to the edge server for compu-
tation, the wireless transmission rate vi from device i to the
edge server will be assigned to oi; otherwise, oi is set to zero,
indicating that the task is computed locally. U denotes the
remaining computational resources of the edge server.

The action (Act) is the number of computational
resources allocated by the edge server to the task of each
device

Act = 0,Uð �: ð19Þ

At the start of task execution, DDPG selects a value from
the remaining computational resources based on the current
state as computational resources amount allocated to the
task by the edge server.

The reward is determined by the current state and the
current action with the following formula:

reward = R state, Actð Þ: ð20Þ

at(n)

DDPG

No

YesEnd

Yes

No

Yes

Input the wireless
transmission rate Rt

of each IoT device

Counter = 1
G = 4000
𝛽 = 512

Rt

If Counter > 𝛽 and
Counter%10 = 0

Backward
propagation

Counter++ If Counter > G Save (Rt,at)

Arg min
cost (Rt,at)

Calculate
cost value

Computational
resource allocation

Input each at into
DDPG as a binary

group with Rt

respectively

at(1)

at(2)

Figure 2: Model training process of DTOS.
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The reward function Rðstate, ActÞ is associated with the
objective function, and the optimization objective of
resource allocation is to minimize the total delay of edge
computing, which is calculated as follows:

Tedge = 〠
k−1

i=0
Tedge
i : ð21Þ

The reward function is as follows:

R state, Actð Þ = − Tedge
i

� �
: ð22Þ

The negative of the edge-computing delay of task i is
used as the reward value, which can minimize the edge-
computing delay. Each state-action group has a value Q∗ð
state, ActÞ, which represents the expectation of the long-
term reward obtained by performing the action Act under
state. For the state-action group, its Q∗ value is calculated
and stored in the table. The Q∗ value is updated by the fol-
lowing formula:

Q∗ statet , Acttð Þ =Q∗ statet , Acttð Þ + γ

× rewardt + δ ×maxActt+1 statet+1, Actt+1ð ÞÂ
−Q∗ statet , Acttð Þ�,

ð23Þ

where Q∗ðstatet , ActtÞ is called the action value function,
statet is the system state at moment t, γ is the learning rate,
and δ is the discount factor. We designs two deep neural net-
works, the action value network Qðstatet , Actt ∣ θQÞ and the
action network μðstatetjθμÞ, where θQ and θμ are network
parameters. The action network μðstatetjθμÞ is a mapping
of the state space and action space and can directly generate
the desired action according to the state. The action value
network Qðstatet , Actt ∣ θQÞ is used to approximate the
action value function and can provide gradient for the train-
ing of the action network. The training of this action value
network is to minimize the following loss function:

L θQ
� �

= rewardt + γQ′ statet+1, Actt+1jθQ′
� �

−Q statet , ActtjθQ
� �� �2

,

ð24Þ

where Q′ is the target value network. Q′ synchronizes the
weights from the Q network. The action network parameters
are updated by the policy gradient algorithm, and the gradi-
ent update is as follows:

∇θμQ state, ActjθQ
� ����

state=statet ,Act=μ statet jθμð Þ

= ∇ActQ state, ActjθQ
� ����

state=statet ,Act=μ statet jθμð Þ
∇θμμ statejθμð Þ

����
state=statet

:

ð25Þ

After inputting the state into the action network, the
action network generates the action required for the current

state, thus minimizing the computational delay of the edge
server.

3.1.3. Generate Optimal Offloading Decisions. Each offload-
ing decision at and the wireless transmission rate Rt are
substituted into the model to obtain the cost value under
each offloading decision. The offloading decision with the
smallest cost value is selected as the output of this round,
and the offloading decision at and the device transmission
rate Rt are stored in memory as one data entry. Set a counter,
and increase 1 when one data entry is stored.

3.1.4. Backward Propagation. Different from traditional
supervised learning, the offloading decision in the dynamic
network environment does not have a dataset with labels
for neural network training. Thus, DTOS uses the data in
memory to train DNNs through experience replay mecha-
nisms. When the counter is higher than the set threshold
β, the algorithm starts to perform backward propagation.
In this paper, we use priority experience replay mechanism
to extract valuable experiences. The lower the cost value of
the sample, the higher the priority of the sample. The expe-
rience extraction is performed in a probabilistic way. The
probability of each sample being selected is as follows:

Pro jð Þ = 1/cost j
∑mem

1 1/cost j
, ð26Þ

where mem is the number of samples in the current mem-
ory. The m data are selected in the memory cache as training
data. Input the Rt of them again to each DNN to generate
the offloading decision a∗t and calculate the cost function J
ðω, bÞ according to the following formula:

J ω, bð Þ = 1
m
〠
m

i=1
L at

∗, atð Þ, ð27Þ

where Lða∗t , atÞ is the cross-entropy loss function, which is
formulated as follows:

L at
∗, atð Þ = − at log at∗ + 1 − atð Þ log 1 − at

∗ð Þð Þ ð28Þ

To minimize the cross-entropy loss, a gradient descent
algorithm is used to optimize the network parameters of
each DNN by performing one backpropagation after every
10 forward propagations. When the memory capacity is full,
the oldest data entry will be discarded to store a new one.
The quality of the training data will become higher and
higher as the DNN parameters are continuously updated,
and the deep reinforcement learning network also gets closer
to the objective function. After reaching the set number of
training rounds G, the algorithm terminates.

3.2. Usage of DTOS. After the model is trained, the edge
server detects the wireless transmission rate of each device
at the start of using DTOS and inputs them into the deep
reinforcement learning network to generate the optimal-
offloading decision.

6 Wireless Communications and Mobile Computing



Using the offloading coordinator in the edge server as
the management module for computing offloading, the ser-
vice is executed as follows:

(1) When an IoT service is started, the service number is
transmitted to the edge server via remote command.
The edge server loads the corresponding network
model trained in advance according to the service
number. The offloading coordinator detects the cur-
rent network state, obtains the network transmission
rate of each IoT device, and inputs it into the net-
work model

(2) Execute DTOS, a deep reinforcement learning-based
dependent task-offloading policy, to obtain the
optimal-offloading decision

(3) Transmit the offloading decision to the correspond-
ing IoT device

(4) The IoT device that receives the offloading decision
determines whether the task is to be processed
locally or uploaded to the server for processing based
on the offloading decision. If it is uploaded to the
server for processing, the edge server dynamically
allocates computing resources

(5) The edge server finishes the calculation and trans-
mits the result back to the IoT device

3.3. Computational Complexity Analysis of DTOS. The wire-
less transmission rate of IoT devices is input to the neural
network, and the number of neurons in the input layer is
K since the number of IoT devices is K . The number of neu-
rons in the first hidden layer of the network is L1, then the
matrix operation from the input layer to the first hidden
layer is ½L1 × K� × ½K × 1�, and the computational complexity
of the matrix is OðL1K2Þ. The number of neurons in the sec-
ond hidden layer of the network is L2, then the matrix oper-
ation from the first hidden layer to the second hidden layer
is ½L2 × L1� × ½L1 × 1�, and the computational complexity of
the matrix is OðL2L12Þ. The number of neurons in the out-
put layer is K . The matrix operation from the second hidden
layer to the output layer is ½L2 × K� × ½K × 1�, and the com-
putational complexity of the matrix is OðL2K2Þ. The number
of DNNs is n, thus the computational complexity of DTOS
forward propagation is OðnððL1 + L2ÞK2 + L2L1

2ÞÞ.
During the model training process of DTOS, the gradi-

ent descent algorithm is used to update the network param-
eters several times until the algorithm converges.

The computational complexity of each parameter update
is equal to the computational complexity of forward propa-
gation, so the computational complexity of DTOS is OðnM
ððL1 + L2ÞK2 + L2L1

2ÞÞ, and M is the size of batch training.

4. Experiments and Analysis

4.1. Experimental Parameters Set. Simulation experiments
were performed using Python 3.8 and TensorFlow 2.2.0. Set-
ting up the scenario where there exists 1 edge server with 10
IoT devices, there are three dependencies among the com-
puting tasks, as shown in Figure 3.

Experimental parameter settings are shown in Table 1.

4.2. Effect of Weighting Factor α and Learning Rate γ.
Figure 3(c) is used to investigate the effects of the weighting
factor α and learning rate γ. In Figure 4, we show the effects
of different weighting factors α on the service delay and
energy consumption. When the weighting factor α is small,
the DTOS optimization objective focuses more on the ser-
vice energy consumption. The smaller the service power
consumption is, the larger the reward value is. As the
weighting factor α increases, the service delay will decrease,
while the service energy consumption will increase. For dif-
ferent IoT services, users can adjust the weight factor α
according to the delay and energy consumption require-
ments. To balance the effects of delay and energy consump-
tion on cost values, the following experiments set the
weighting factor α to 0.5.

For choosing the appropriate learning rate γ, the optimal-
offloading decision generated by the exhaustive method is
introduced as a comparison benchmark. The exhaustive
method selects the optimal solution by enumerating all off-
loading decisions. Figure 5 shows the ratio of the cost values
of DTOS and the exhaustive method, i.e., the gain ratio. As
indicated in Figure 5, DTOS performs best and the gain ratio
increases gradually when the learning rate is 0.01. The gain
ratio of both offloading strategies approaches 1.0 after 3000
rounds, which indicates that the offloading decision gener-
ated by DTOS is close to the optimal solution of the exhaus-
tive method. When the learning rate is 0.1, the algorithm
cannot converge. Because the learning rate is too large and
the parameter update ranges are too large, which causes the
network to fail to converge to the optimal solution. When
the learning rate is 0.001, because the learning rate is too
small and the parameter update range is too small, the net-
work cannot converge to the optimal solution in a short time.
The optimal value of the learning rate is 0.01, so the learning
rate is set to 0.01 in the following experiments.
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Figure 3: Three types of task dependency diagram.
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4.3. Analysis of Experimental Results

4.3.1. Convergence of DTOS. The convergence of DTOS is
firstly verified, and the experimental results are shown in
Figure 6. Three networks with three different dependencies
shown in Figure 3 are trained. The structure of networks A
and B is simpler and they converge at rounds 2153 and
1769, respectively. The structure of network C is the most
complex, which effects the speed of the algorithm. Network
C converges at round 2808.

4.3.2. Cost Values of Each Algorithm with Different
Dependencies. DTOS is compared with four other algo-
rithms, which are the local computing-only algorithm
(LOCAL), edge computing-only algorithm (EDGE), random
selection algorithm (RADOM), and DDQN algorithm
[16]. The local computing-only algorithm indicates that
all tasks are computed by the IoT device. The edge
computing-only algorithm indicates that all tasks are
uploaded to the edge server for computation. The random
selection algorithm indicates that all tasks are randomly
selected to be computed by the edge server or the IoT
device. The experiments are conducted 50 times and the
results are averaged. The experimental results are shown
in Figure 7. The cost of DTOS is the lowest for all various

dependencies. Since the structure of network C is the most
complex, its cost value is higher than the cost values of
networks A and B. Since the algorithm LOCAL schedules
all tasks to be computed locally, there is no transmission
delay, but it causes excessive energy consumption. The
algorithm EDGE offloads all tasks to the edge server for
computation, which results in less energy consumption,
but causes long transmission delay when the transmission
speed is low. Both DTOS and DDQN train DNNs through
experience replay mechanisms, and DDQN rewards DNNs
based on the cost value of a single-offloading decision. In
comparison, DTOS selects the optimal offload decision
from multiple parallel offload decisions and uses priority
experience replay mechanism and penalty mechanism

Table 1: Experimental parameters.

Parameter Value

Computing resources of the device if locali [0.1, 0.5] G cycles/s

Total edge server computing resources f edge
{18, 15, and 12} G

cycles/s

Power at the device i idle Pfree
i [0.004, 0.04]W

The data size of the task i di [30, 50]MB

The computational complexity of tasks w 600cycles/Kb

The device i wireless data transmission rate vi [0.1, 10]MB/s

Data sending power of the device iPsend
i 0.1W

The local calculated power of the
device iPlocal

i
10W

Delay threshold TM 200

Energy consumption threshold EM 200

Weighting factor α 0.5

Number of DNNs n 3

The memory size of experience replay 1024

Batch training size M 128

Learning rate γ 0.01

Number of training rounds G 4000

Threshold value β 512

Number of IoT devices K 10

Number of neurons in the first hidden
layer L1

120

Number of neurons in the second hidden
layer L2

80
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Figure 4: The effect of the weighting factor on service delay and
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according to their cost value; thus, DTOS has better per-
formance. To further verify the effectiveness of DTOS,
Figure 3(c) will be used for the subsequent experiments.

4.3.3. Cost Values of Each Algorithm with Different Task
Data Sizes. The variations of the cost value according to
the average data size of the computational task in different
algorithms are shown in Figure 8. The cost values generated
by each algorithm are positively correlated with the average
data size during the growth of the average data size from
40MB to 120MB. The reason is that the larger data size gen-
erates greater latency and energy consumption, whether for
local or edge computing. In comparison with other algo-
rithms, DTOS has the slowest growth in cost value and the

lowest cost value. It shows that DTOS outperforms all other
four algorithms for different task data sizes.

4.3.4. Cost Values of Each Algorithm with Different Task
Computational Complexity. Figure 9 shows the variation of
cost values with different task computational complexities.
The cost value is positively related to the task computation
complexity for DTOS, local computing-only algorithm, and
DDQN. The reason is that the increase in computational
complexity of tasks leads to an increase in computation
delay and energy consumption of IoT devices. However,
for an edge computing-only algorithm or random selection
algorithm, the cost value does not always increase when
the computational complexity increases. Since the edge
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Figure 6: Convergence diagram of DTOS algorithm under different dependencies.
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server’s computational resources are much larger than the
local computation resources, the computation delay is not
the main factor affecting the cost values of these two algo-
rithms. Overall, the cost value of DTOS is lower than the
other four algorithms, indicating that DTOS has the best
performance for different task computational complexity.

4.3.5. Cost Values of Each Algorithm at Different Network
Sizes. When the number K of IoT devices in the network is
10, 20, or 30, the variation of the cost value for each algo-
rithm is shown in Table 2. DTOS has the lowest cost value
at all network sizes, indicating that DTOS can adapt to dif-
ferent network sizes and perform well. DTOS outperforms
DDQN by 13.9%, 27.1%, and 11.9% when the number K
of IoT devices is 10, 20, and 30, respectively.

5. Conclusions

In this paper, we adopt deep reinforcement learning to
research dependent-task adaptive-offloading issues in
dynamic network environments in edge computing. A deep
reinforcement learning-based dependent task-offloading strat-
egy is proposed to transform dependent task offloading into
an optimal policy problem under the Markov decision
process, and the optimal task-offloading decision is obtained
by priority experience replay mechanism and penalty mecha-
nism. The experimental results show that DTOS outperforms
the local computing-only algorithm, edge computing-only
algorithm, random selection algorithm, and DDQN algorithm
all time in different task data size, different task computation
complexity, and different network size.
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