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The acquired hyperspectral images (HSIs) are affected by a mixture of several types of noise, which often suffer from information
missing. Corrupted HSIs limit the precision of the subsequent processing. In this paper, the weighted Total Variation-regularized
Hybrid Model of CP and Tucker (WTV-HMCT) is proposed to accurately identify the intrinsic structures of the clean HSIs. By
jointly minimizing CP rank and Tucker rank in the low-rank tensor approximation, WTV-HMCT fully exploits the high-
dimensional structure correlations of HSI. To ensure the piecewise smoothness of the recovered image, the hybrid low-rank
tensor decomposition approach integrates the weighted spatial spectral total variation regularization for the separation of the
noise-free HSI and mixed noise. By the Alternating Direction Method of Multipliers (ADMM), the optimization model is
transformed into two subproblems. Finally, an efficient proximal alternating minimization algorithm is developed to optimize
the proposed hybrid low-rank tensor decomposition efficiently. The experimental results show that the proposed model
effectively handles Gauss noise, striping noise, and mixed noise and that it outperforms the most advanced methods in terms
of evaluation metrics and visual evaluation.

1. Introduction

In the process of acquisition and transmission of HSIs, HSIs
are usually contaminated by a variety of noises, such as Gauss-
ian noise, stripes, deadlines, impulse noise, and their hybrids
[1], which make subsequent analysis and application of HSIs
difficult. Therefore, as a preprocessing step, HSI restoration
[2–6] is the main challenge faced by many researchers.

The high-dimensional HSI is composed of hundreds of
separate images banded together. The classical HSI restora-
tion algorithm is based on low-rank matrix approximation
[6], image denoising via spatiospectral total variation [7],
and the restoration method with nuclear norm minimization
[8]. However, conventional HSI restoration denoising
approaches can only investigate the structural characteristics
of each pixel or band individually, ignoring the significant
correlations between all spectral bands. As a result, the qual-
ity of their restored images is substantially low. To solve this

issue, many academics have proposed HSI restoration algo-
rithms based on low-rank tensor decomposition [9–13].
Furthermore, low-rank tensor factorization was applied to
spectral correlation representations for HSI noise reduction
to eliminate the calculation of singular value decomposition
and enhance the efficiency [11–13]. These approaches effi-
ciently explore the spatial structure throughout the denois-
ing process, but they fail to capture the high-order low-
rank structure of HSI.

1.1. Related Work. Tensors have a different form of decom-
position from matrix singular value decomposition, which
has applications in many scenarios, such as image dynamic
enhancement [14], medical image encryption [15], rib
segmentation [16], atrial fibrillation detection [17], and
video segmentation [18]. At the moment, tensor decomposi-
tion primarily includes Tucker model decomposition [13]
and CANDECOMP/PARAFAC (CP) model decomposition
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[19–21]. Tensor’s singular value decomposition (T-SVD)
[9], tensor train (TT) [22], and tensor ring (TR) are the
other tensor decompositions [23]. T-SVD is an extension
of SVD applied to matrix filling data, in which a third-
order tensor is decomposed into a singular tensor with nor-
mal property, and the number of channels with data in the
diagonal tensor is defined as the tensor rank [9], and the ten-
sor is then recovered by minimizing the tensor’s Tubal rank.
The TT decomposition of a tensor sequence is similar to
SVD in that it decomposes a higher-order tensor into a set
of third-order singular tensors. Tensor sequence-based
approaches include rank minimization and variational
energy minimization based on ALS to recover tensors. A
tensor tree is a hierarchical Tucker model that decomposes
a tensor to produce a subset of modules [24]. The TR
decomposition corresponds to the TT decomposition, which
decomposes a higher-order tensor into a set of cyclic con-
traction third-order tensors.

As a result, the Tucker model and the CP model are two
important tensor decomposition approaches, each of which
focuses on revealing the tensor structure in its way. To
enhance the overall performance of HSI image reconstruc-
tion, two decomposition algorithms are employed to con-
strain low-rank tensors and more accurately characterize
low-rank features.

1.2. Our Contributions. Contributions to this article are as
follows:

(1) To represent the low-rank structure and sparsity of
HSI, a Hybrid Low-Rank Tensor Decomposition
(WTV-HMCT) model is presented. The low-rank
hybrid tensor approximate decomposition model is
used to break down the CP model and Tucker Model
to fully use the high-dimensional structure informa-
tion of HSI

(2) By incorporating the weighted spatial total variation
into the hybrid tensor low-rank decomposition
model, the restored image is guaranteed to have a
good local smoothing structure as well as additional
spectral complementary information to reduce spec-
tral distortion

(3) Using the alternating direction method of multi-
pliers (ADMM), the optimization model is trans-
formed into two subproblems. The rank tensor
updating approach is utilized for the two main sub-
problems, respectively. Experiments demonstrate
that this method can effectively deal with Gauss
noise, strip noise, and mixed noise and that it out-
performs the most advanced methods in terms of
evaluation index and visual assessment

1.3. Organization of the Paper. This paper is organized as
follows. To facilitate our presentation, we first introduce
some notations and preliminaries of tensors in Section 2.
In Section 3, the TV-regularized low-rank hybrid tensor
decomposition model is introduced. We then develop an
efficient ADMM algorithm for solving the proposed model.

In Section 4, extensive experiments on both simulated and
real datasets are carried out to illustrate the merits of our
model. We then conclude this paper with some discussions
on future research in Section 5.

2. Low-Rank Tensor Decomposition

2.1. Symbolic and Data Representation. This subsection
introduces various tensor-related notes and preliminaries.
Tensors are multidimensional data arrays expressed by upper
case calligraphic letters, such as the elements of tensorY rep-
resented byYði1, i2,⋯, iNÞ orY i1i2::iN

. Matrix data Y is repre-
sented in capital bold letters, and vector data y is represented
in lowercase bold letters. In addition, scalars are represented
in lowercase letters, such as y. An n-dimensional tensor of a
real number is expressed as Y ∈ℝI1×I2×⋯IN , and a three-
dimensional tensor contains rows, columns, and tube fibers,
defined as Y i:k, Y :jk, and Y ij:, respectively. The two-
dimensional portion of a three-dimensional tensor is referred
to as a slice and is represented by all subscripts except two sub-
scripts. The lateral, horizontal, and front slips of the three-
dimensional tensor are represented by Y :j:, Y i::, and Y ::k;
YðnÞ is the expansion of the tensor’s mode n, which is formed
by arranging the mode n fibers into columns.

2.2. Tucker Decomposition for a Third-Order Tensor. For a
third-order tensor, the Tucker decomposition yields three-
factor matrices A ∈ℝI×P , B ∈ℝ J×Q, C ∈ℝK×R, and a kernel
tensor G ∈ℝP×Q×R, each factor matrix in mode is called the
tensor’s fundamental matrix or principal component in each
mode, so Tucker decomposition is also called higher-order
PCA, higher-order SVD, etc. Therefore, the Tucker decom-
position can be used in data dimension reduction, feature
extraction, and tensor subspace learning. For example, the
low-rank Tucker decomposition of an HSI image can
remove the hyperspectral image noise, we can also use the
tensor subspace to select the features of the HSI image and
use the Tucker decomposition to compress the data.

The Tucker decomposition represents a tensor as a core
tensor multiplied by a matrix along with each mode. For the
third-order tensor Z ∈ℝI×J×K , the Tucker decomposition is
defined by

Z ≈ ½½G ;A, B, C�� =G × 1A × 2B × 3C = 〠
I

i=1
〠
J

j=1
〠
K

k=1
gijkai ∘ bj ∘ ck:

ð1Þ

Factor matrices A ∈ℝI×P , B ∈ℝ J×Q, C ∈ℝK×R are usually
orthogonal and can be regarded as principal components
along with the corresponding mode. The Tucker decomposi-
tion is expressed in a matrix form. For example, the expan-
sion of the third-order Tucker decomposition is the matrix
form of the Tucker Decomposition:

Y 1ð Þ ≈AG 1ð Þ C ⊗ Bð ÞT , Y 2ð Þ ≈ BG 2ð Þ C ⊗Að ÞT , Y 3ð Þ ≈CG 3ð Þ B ⊗Að ÞT :
ð2Þ
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The rank uniqueness of the tensor cannot be guaranteed
by the Tucker decomposition, so additional constraints need
to be added. The core tensor G is usually required to be as
simple as possible so that the principal components of each
mode are as orthogonal or sparse as possible.

2.3. CP Decomposition for Third-Order Tensors. CP decom-
position is a different form of tensor representation from
Tucker decomposition, where a tensor is expressed as the
sum of a finite number of rank tensors. A third-order tensor
can be decomposed into Y ≈ ½½A, B, C�� =∑R

r=1ar ∘ br ∘ cr ,
where A = ½a1, a2,⋯, aR�, B = ½b1, b2,⋯bR�, and C = ½c1, c2,
⋯, cR� are the matrices of the corresponding vectors in the
three rank-one tensor, also known as a factor matrix.
According to the factor matrix, the CP decomposition of
the third-order tensor can be written as an expansion:

Y 1ð Þ ≈A C ⊙ Bð ÞT , Y 2ð Þ ≈ B C ⊙Að ÞT , Y 3ð Þ ≈C B ⊙Að ÞT : ð3Þ

Decomposed by a slice, CP decomposition of a third-
order tensor is sometimes written as

Yk ≈AD kð ÞBT ,D kð Þ ≡ diag ck:ð Þ: ð4Þ

Rank decomposition is a special CP decomposition, Y

=∑rank ðYÞ
r=1 að1Þr ∘ að2Þr ∘ ⋯ ∘ aðNÞ

r , similar to the SVD of the
matrix. There is no direct method to solve any given rank
of a tensor, which is proved to be an NP-hard problem.
Therefore, we generally use the tensor’s low-rank approxi-
mation to restore the tensor, but we need to satisfy the fol-
lowing conditions: ∑N

n=1kAðnÞ ≥ 2R +N − 1, kAðnÞ denote the
k-rank of the matrix A: Any K column is linearly indepen-
dent of the largest K . Compared with the SVD of the matrix,
the uniqueness of the rank decomposition of higher-order
tensors does not need the guarantee of orthogonality.

For the calculation of CP decomposition, there is no uni-
form perfect solution to the problem of how many rank-one
tensors (components) can be decomposed into the best one.
From the effect, the general approach is to start from rank-1,
using ALS (alternate Least Square) algorithm, and gradually
increase the rank until the error range. If you have a strong
application background and prior information, you can
specify the value of the ranknðYÞ rank in advance. Because
the ALS algorithm cannot guarantee convergence to a mini-
mum point, or even to a stable point, it can only find a point
where the objective function is no longer descending. The
initialization of the algorithm can be random or the factor
matrix can be initialized to the corresponding outspread sin-
gular vector, such as A which is initialized to the first R left
singular vectors Yð1Þ. From the two different methods of
CP decomposition and Tucker decomposition, it is also easy
to see that CP decomposition is a special form of Tucker
decomposition: If the core tensor is diagonal, then Tucker
decomposition will degenerate into CP decomposition.

3. Proposed WTV-HLRTD Model for
HSI Reconstruction

3.1. Problem Formulation. The hyperspectral image with
spatial size M ×N (spatial length and spatial width) and
spectral band number B is denoted as Y ∈ℝM×N×B, and the
HSI image to be recovered is usually degraded by additive
mixed noise, mainly including Gauss noise, impulse noise,
and band noise. Therefore, the HSI mixed noise degradation
model is defined by

Y =X + S +N , ð5Þ

where Y represents the noisy HSI image, X represents the
noise-free HSI image, S represents sparse noise, which
mainly consists of impulse noise, fringe noise, and trunca-
tion noise, and N is gauss noise; the four components Y ,
X , S , andN are third-order tensors of the same size M ×
N × B, whereM ×N is the space size of each band and B is
the number of spectral bands, the main task of HSI recon-
struction is to restore the latent image X from the observed
noise image.

3.2. Total Variational Regularization and Low-Rank Tensor
Recovery. Recovering a clean image X from a noised image
Y is a difficult and ill-posed problem. To solve this problem,
unknown variables need to be regularized by prior informa-
tion to improve the recovery effect. Therefore, the optimal
model for removing the mixed noise problem of hyperspec-
tral images is formulated as:

min
X,S

 R1 Xð Þ + γR2 Sð Þ

s:t:  Y −X − Sk k2F ≤ ξ:
ð6Þ

R1ðXÞ and γR2ðSÞ are the prior knowledge regulariza-
tion constraints describing the denoised hyperspectral image
X and the sparse noise S , respectively. γ is the regularization
parameter, and ξ is the variance of gauss noise density. Typ-
ically, R2ðSÞ is used to constrain the sparse regularization of
the sparse noise S , such as R2ðSÞ = kSk1. According to the
linear mixture model, hyperspectral images have a strong
correlation in spectral dimension, which shows that X has
a low rank prior, Therefore, different types of low-rank
matrices are used to explore the prior information R1ðXÞ .
All spectral bands are vectorized using the low-rank matrix
recovery method. All spectral bands are vectorized using
the low-rank matrix recovery method. However, the correla-
tion of spectral-spatial structure is not considered. Since the
hyperspectral image is a third-order tensor, it is more rea-
sonable to model it with tensor tools to preserve the details
and spatial structure. To simultaneously aggregate the
spatial-spectral correlation of hyperspectral images in 3D, a
valid Tucker decomposition can be used to constrain the
clean image X . By choosing suitable regularization parame-
ters, the regularization model (6) is equivalent to the follow-
ing optimization problem under the constraint of low-order
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Tucker decomposition, which can be transformed by

min
X ,S

  rank Xð Þ + γ Sk k1
s:t:  Y −X − Sk k2F ≤ ξ,

ð7Þ

whereX = G × 1U1 × 2U2 × 3U3,UT
i Ui = I and the factoriza-

tion matrices U1 ∈ℝM×r1 , U2 ∈ℝN×r2 , and U3 ∈ℝB×r3 are
orthogonal in space and spectral dimensions.

According to [20], a single band of the hyperspectral
image can be considered a grayscale image, so it has local
smoothness of the image structure in a spatial dimension.
Therefore, TV regularization [20] is introduced into the
low-rank matrix tensor decomposition framework using
both spatial and spectral prior information. The associated
TV normalized low-rank tensor model is mathematically
formulated as

min
X ,S

  rank Xð Þ + γ1 Xk kTV + γ2 Sk k1
s:t:  Y −X − Sk k2F ≤ ξ,

ð8Þ

where rank ðXÞ is the different low-rank matrix tensor
hyperspectral image approximation, kXkTV is the TV regu-
larization of the hyperspectral image, and γ1 and γ2 are the
regularization parameters, respectively. Due to the effective-
ness of TV regularization constraints, many improved ver-
sions of TV regularization have been proposed, such as
BANDTV [25], space-spectral TV [26], and 3D spectral
space Crossover TV [27]. With these extended full-
variation regularization constraints, anisotropic space-
spectral TV regularization based on the low-rank Tucker
decomposition method [1] has achieved excellent results in
hyperspectral image reconstruction.

By combining the hybrid low-rank tensor decomposition
with SSTV regularization and considering the global spatial-
spectral correlation and spatial-spectral smoothness of the
hyperspectral image, satisfactory hyperspectral image resto-
ration results can be obtained. However, this still poses some
problems. The frequency band TV and the TV regulariza-
tion model based on the spatial spectrum make full use of
the sparse prior of the spatial spectral difference image and
usually use the convex l1 norm to describe the sparse prior.
In general, sparsity is an effective constraint to promote
the smooth structure of each band segment. However, the
sparse prior only describes the number of nonzero elements,
ignoring the local structure of nonzero elements. Therefore,
to make up for this deficiency, space-spectral TV regulariza-
tion is implemented in the restoration tensor to better
describe the prior and improve the restoration effect of the
hyperspectral image.

3.3. Description of the WTV-HMCT Model. By integrating
CP decomposition and the Tucker model of the tensor, this
form is complementary to the characteristic of low rank and

sparsity, which can be expressed as

rank Xð Þ = rankCP Xð Þ + λ rankT Gð Þs:t:X =G × 1U1 × 2U2 × 3U3,

ð9Þ

where rankCPðXÞ is the rank of tensor X based on CP
decomposition, rankTðGÞ is the rank of core tensor derived
from tensor X based on Tucker decomposition, and λ is
the regularization parameter. This comprehensive consider-
ation of the new measure makes the tensor have two internal
sparse configurational nuclear tensors and low rank along
with each tensor module in the tensor subspace; thus, the
limitations of the Tucker decomposition on sparse elements
and the CP decomposition on low-rank features are solved.

In HSI reconstruction, TV regularization based on the
spatial domain is widely used to ensure the segmentation
and smooth structure of the image. There is also a strong
local smooth structure in the spectral domain. In [14,
25–27], because the spectrum is smooth, a 3D TV con-
strained optimization model is proposed to restore the
image. To describe the edge and structure more accurately,
the weighted space-spectral domain TV (WTV) is utilized
to reserve a better smooth structure.

Therefore, the WTV-HMCT model is described as
follows:

min
X ,G, Uif g3i=1,S

  rankCP Xð Þ + λ1 rankT Gð Þ + λ2 W ⊗DXk kSSTV + λ3 Sk k1

s:t:  Y −X − Sk k2F ≤ ξ,X =G × 1U1 × 2U2 × 3U3,UT
i Ui = I,

ð10Þ

where kW ⊗DXkSSTV is the space and the spectral mode
TV, W is the weight parameter, and D is the two differential
operators in the two-dimensional space dx and dy and is
defined as

DxX i, j, kð Þ =X i + 1, j, kð Þ −X i, j, kð Þ,
DyX i, j, kð Þ =X i, j + 1, kð Þ −X i, j, kð Þ,
DzX i, j, kð Þ =X i, j, k + 1ð Þ −X i, j, kð Þ,

8>><
>>:

ð11Þ

where i, j, and k represent the position coordinates in 3D,
respectively. It is worth noting that the proposed WTV-
HMCT model can capture the HSI of spatial and spectral
information well and has a strong mixed noise removal abil-
ity. In particular, the spectral similarity and structural corre-
lation of all pixels in the two spatial modes can be fully
utilized by combining CP model decomposition with the
rank of the Tucker Model, the rank estimation of CP model
decomposition has good recognition ability for sparse noise
items including impulse noise, dead-line noise, and fringe
noise, and the WTV norm term is designed to characterize
the piecewise smooth structure, which can remove gauss
noise in both spatial and spectral domains.

3.4. Decomposition and Optimization of the WTV-HMCT
Model. In the WTV-HMCT optimization model (11),
because rankCPðXÞ and rankTðGÞ are nonconvex, it is
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difficult to solve the rank of the tensor directly, which makes
the objective function difficult to be solved. Therefore, the
CP kernel norm and the Tucker kernel norm are used as
convex proxies for functions rankCPðXÞ and rankTðGÞ.
The approximate convex replacement functions RC and
RT are solved, and the model is transformed into the form of

min
X ,S

  Xk kCP,∗ + λ1 Gk kT ,∗ + λ2 W ⊗DXk k1 + λ3 Sk k1
s:t:  Y −X − Sk k2F ≤ ξ,X =G × 1U1 × 2U2 × 3U3,UT

i Ui = I,
ð12Þ

where kXkCP,∗ and kGkT ,∗ are the CP and Tucker nuclear
norms, respectively. The WTV-HMCT model is a convex
optimization problem, and the ADMM algorithm is used
to solve the corresponding model iteratively. To solve the
convex optimization problem (11), two tensor variables Z
and Q are introduced and reformulated as equivalent global
consistency problems, as shown in

min
X ,S ,Z ,Q

  Zk kCP,∗ + λ1 Gk kT ,∗ + λ2 W ⊗Qk k1 + λ3 Sk k1
s:t:  Y −X − Sk k2F ≤ ξ,X =G × 1U1 × 2U2 × 3U3,UT

i Ui = I,

ð13Þ

where Z =X ,DX =Q. Then, the ADMM algorithm is used
to solve the optimization model. Based on the ADMM algo-
rithm, the constraints of model (13) are transformed into the
optimization Lagrangian shown in

L X , S ,Z ,G,Ui,Q,W ið Þ = Zk kCP,∗ + λ1 Gk kT ,∗
+ λ2 W ⊗Qk k1 + λ3 Sk k1 + W 1,Y −X − Sh i
+
α

2
Y −X − Sk k2F + W 2,X −G × 1U1 × 2U2 × 3U3h i

+
α

2
X −G × 1U1 × 2U2 × 3U3k k2F + W 3,Z −Xh i

+ α

2
Z −Xk k2F + W 4,DX −Qh i + α

2
DX −Qk k2F :

ð14Þ

According to the optimization and Lagrangian, the
model can be decomposed into four subproblems.

(1) Solving X ,G,Ui subproblem, by fixing other vari-
ables, the subproblem is shown in

min
X ,G,Ui

 λ1 Gk kT ,∗ + W 2,X −G × 1U1 × 2U2 × 3U3h i

+
α

2
X −G × 1U1 × 2U2 × 3U3k k2F

ð15Þ

Tucker factorization factors G,Ui can be well solved by
the high-order orthogonal iterative HOOI Algorithm [28].
When you get the factorization factor G,Ui, then update
X by X =G × 1U1 × 2U2 × 3U3.

(2) To solve the Z subproblem, by fixing other vari-
ables, the subproblem is shown in

min
Z

  Zk kCP,∗ + W 3,Z −Xh i + α

2
Z −Xk k2F ð16Þ

The problem in (16) is solved by using the tensor kernel
norm minimization approach to low-rank CP.

The model described in (16) is reformulated as the
equivalent form of

min
C,K ið Þ

  Ck k1 + W 3, C × 1K
1ð Þ × 2K

2ð Þ × 3K
3ð Þ −X

D E

+
α

2
C × 1K

1ð Þ × 2K
2ð Þ × 3K

3ð Þ −X



 


2

F
:

ð17Þ

The iterative solutions KðiÞ andC are obtained by using
ADMM-BCD (alternate direction method of multipliers
and block coordinate descent (ADMM-BCD)).

When the ðk + 1Þth iteration is carried out, Kð1Þ
k+1 can be

directly solved as

K 1ð Þ
k+1 =

1
Ck

X × 2K
2ð Þ
k × 3K

3ð Þ
k − 〠

r−1

q=1
K 1ð Þ

q
T

X × 2K
2ð Þ
k × 3K

3ð Þ
k

� �K 1ð Þ
q

Ck
:

ð18Þ

Similarly, Kð2Þ
k+1 and Kð3Þ

k+1 can be obtained by the same
method.

C can be calculated according to the ℓ1 regularized soft
threshold algorithm and can be rewritten as

argmin
C

Ck k1 +
α

2
C × 1K

1ð Þ × 2K
2ð Þ × 3K

3ð Þ −X +
W 3
α











2

F

:

ð19Þ

Update

Cm = shrinkt Tð Þ =
T − t  T > tð Þ,
0  Tj j ≤ tð Þ,
T + t  T<−tð Þ,

8>><
>>:

ð20Þ

where shrinkt is the contraction operator, t = 1/α and T can

be obtained by ðX − ðW 3/αÞÞKð1ÞT × 2K
ð2ÞT × 3K

ð3ÞT . After

getting fKðiÞ
k+1g

3
i=1 and C, Zðk+1Þ is obtained by

Z k+1ð Þ = Ck+1 × 1K
1ð Þ
k+1 × 2K

2ð Þ
k+1 × 3K

3ð Þ
k+1 ð21Þ

(3) Solve the subproblem Q by fixing other variables, the
subproblem of solving Q can be formulated as
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min
Q

λ2  W ⊗Qk k1 + W 4,DX −Qh i + α

2
DX −Qk k2F

ð22Þ

The subproblem (22) can be solved precisely by using
the soft threshold contraction operator and can be directly
solved as

Q = shrinkage DX +
W 4
α

,
λ2
α

� �
, ð23Þ

where shrinkageða, bÞ = signðaÞmaxðjaj − b, 0Þ.

(4) Solve subproblem S , by fixing other variables; the
subproblem can be rewritten as

min
S

 λ3 Sk k1 +
α

2
Y −X − S +

W 1
α











2

F

ð24Þ

Similarly, by applying the soft threshold contraction
operator, the subproblem S in (24), as shown in (25), can
be solved precisely:

Q = shrinkage Y −X +
W 1
α

,
λ3
α

� �
ð25Þ

(5) Update multiplier W . According to the ADMM
algorithm, update Lagrange multiplier W i ði = 1, 2,
3, 4Þ be obtained by

W 1 =W 1 + ρ Y −X − Sð Þ,
W 2 =W 2 + ρ X −G × 1U1 × 2U2 × 3U3ð Þ,
W 3 =W 3 + ρ Z −Xð Þ,
W 4 =W 4 + ρ DX −Qð Þ:

8>>>>><
>>>>>:

ð26Þ

In addition, the weight W in (12) is updated by

W i, jð Þ = 1
DQ + W 4/ρð Þð Þ i, j, :ð Þ2 + ε

: ð27Þ

4. Experiment

To verify the performance of the proposed method, this sec-
tion will conduct experiments based on simulated data to
evaluate the performance of the proposed WTV-HMCT
model for hyperspectral image denoising. For illustrating
the superiority of the combination of the low-rank hybrid
tensor decomposition model and SSTV regularization, our
methods can contrast the performance of their correspond-
ing five most advanced hyperspectral image restoration
methods. These methods include low rank matrix factoriza-
tion and TV regularization methods (LRTV) [25], low-rank
tensor decomposition and TV regularization of anisotropic

spatial spectrum (LRTDTV) [25], tensor sparse recovery
based on Kronecker expression (KBR) [27], BM4D [28],
and WGLRTD [29]. The code for the comparison method
is available from the author’s home page. In addition, the
choice of parameters for these models in all experiments is
carefully determined by the author’s code or the suggestions
in the author’s paper to obtain the best performance.

Each band’s pixel values were scaled in the [0, 1] range
before the experiment began. All experiments were run in
Matlab R2018B on a laptop with an Intel Core i7-8750 h
CPU running at 2.20GHz and 32GB of RAM.

4.1. Simulation Experiment Environment

(1) Experimental environment: To verify the robustness of
the proposedWTV-HMCTmethod, we select two clear
HSI data sets for simulation. The first data set is the
Washington DC Mall (WDC) at http://lesson.weebly
.com/hyperspectral-data-set.html, which selects a sub-
image dataset of size 256 ∗ 256 ∗ 191. The second data-
set is a hyperspectral Pavia City data center set (PAC)
with a size of 200 ∗ 200 ∗ 80 pixels.

(2) Noise type description: To simulate the complex
noise in the real scene, three different types of noise
are added to the two original and clean hyperspectral
data sets. A detailed description of these noise types
is given below.

(i) Case 1: Add zero mean Gauss noise to all bands,
with a noise variance of 0.15 for each band.

(ii) Case 2: Gauss mixed impulse noise is added to each
band and Gauss noise is added in the same way. In
addition, different percentages are added to each
band and the percentages are randomly selected
within the range [0, 0.2].

(iii) Case 3: A mixture of Gauss noise, impulse noise,
deadline noise, and striping noise is added to the
hyperspectral image data. Gauss noise and impulse
noise are added in the same way as (2). In addition,
20% of the bands were randomly selected from all
bands, and the number of bands ranged from 3 to
10.

4.2. HSI Experiments and Analysis. The reconstruction per-
formance of all comparison methods is analyzed and evalu-
ated from three aspects: visual effect, quantity, and quality.

4.2.1. Visual Comparison. To achieve visual comparison, two
representative noise cases 1 and 3 are chosen to compare the
performance of the different methods. Figure 1 shows the
result of band 36 data recovery from the WDC dataset with
noise case 1. To make a better visual contrast, a random
region in the image was enlarged deliberately, and the
enlarged block was placed in the lower right corner of the
image to observe the restoration effect of each algorithm
model.
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In Figure 1, the recovery results of all comparisonmethods
are compared and analyzed. The results show that LRTDTV,
KBR, and BM4D cannot eliminate the noise in the enlarged
images, while LRTV can remove the noise, it appears serious
oversmoothing and loses a lot of detailed information in the
images. On the contrary, WGLRTD and WTV-HMCT have
better restoration effects and obvious noise elimination effects.
Compared with other methods, the WTV-HMCT model rep-

resented in Figure 1(c) can eliminate all mixed noise and pre-
serve the edges and details of the image effectively, and it
shows the performance of the proposedWTV-HMCTmethod
in recovering the WDC Dataset is improved clearly.

Figure 2 shows the results of six algorithmic models
recovering 30 bands of PAC 6 data contaminated by noise
case 3. After visual comparison, it is not difficult to find that
the results of LRTV, LRTDTV, and BM4D still contain part

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Comparison of data recovery results of each algorithm under case 1: (a) original image, (b) noisy image, (c) WTV-HMCT, (d)
LRTV, (e) LRTDTV, (f) WGLRTD, (g) KBR, and (h) BM4D.
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of the noise. The WGLRTD removes the noise but loses the
detail of the image, resulting in a pattern and verification.
WTV-HMCT designed in this section can get rid of all noise
and preserve the original details of the image and get a good
visual effect. In short, from the two data sets of Figures 1 and
2, WTV-HMCT for image restoration achieved obvious
visual effect and better restoration effect.

4.2.2. Quantitative Comparison. The comparison of the
restored visual effect between Figures 1 and 2 shows the
effectiveness of the WTV-HMCT designed in this paper. In

this subsection, four objective quantitative evaluation indica-
tors prove the good performance of the WTV-HMCT model
in all simulation experiments. These indicators are the aver-
age peak signal-to-noise ratio (MPSNR) of all bands, average
structural similarity (MSSIM) of all bands, average charac-
teristic structural similarity (MFSIM) of all bands, and Spec-
tral Angle Mapper (SAM).

In this experiment, MPSNR, MSSIM, and MFSIM were
evaluated by averaging all bands of the two datasets. The
results of the four indicators are shown in Tables 1 and 2.
The higher values represented the better MPSNR, MSSIM,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Comparison of 65 band data recovery results of PAC data set under type 3: (a) original image, (b) noisy image, (c) WTV-HMCT,
(d) LRTV, (e) LRTDTV, (f) WGLRTD, (g) KBR, and (h) BM4D.
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and MFSIM of the restoration results. Concerning the SAM
index, the lower values indicate a better recovery.

The experimental results show that the performance of
WTV-HMCT is better than other methods based on ten-
sor decomposition, thanks to the combination of hybrid
low-rank tensor decomposition and WTV regularization,
as well as the joint minimization of CP rank and Tucker
rank. Compared with other algorithms, our WTV-HMCT
obtains the best evaluation index in all cases with four
indicators.

The sparse structure and low-rank features of the tensor
cannot be fully explored due to the traditional decomposi-
tion method, which is compensated by the WTV-HMCT
model. In particular, all indicators of the WDC data set have
been improved, and this method can achieve better results
than all other comparison methods because the model
makes full use of the same local smoothing property in all
spatial and spectral regions, the ℓ1 norm can be used to cap-
ture the difference image effectively. To sum up, the robust-
ness and effectiveness of the WTV-HMCT method are

verified by the quantitative comparison of three different
noise conditions in two noise-free data sets.

4.2.3. Qualitative Comparison. In the discussion above, we
quantitatively analyzed the effectiveness of the algorithm
by averaging the evaluation metrics. Figure 3 shows the
PSNR and SSIM evaluation index curves for case 2 at each
band over both datasets.

Furthermore, Figures 3(a) and 3(c) show the PSNR
value of each band for the PAC and WDC data sets. It
is evident that the results obtained by the proposed
WTV-HMCT method achieve much higher PSNR for
almost every band and indicate the robustness of the pro-
posed method. Figures 3(b) and 3(d) show the SSIM value
of each band for the PAC and WDC data sets; the pro-
posed WTV-HMCT method can better retain most of
the details of each band. Therefore, the WTV-HMCT
achieves the highest PSNR and SSIM values in all bands
of WDC and PAC data sets.

Table 1: All algorithms compare the performance of WDC data set under different noise types.

Noise type Index Noisy LRTV WTV-HMCT BM4D WGLRTD KBR LLRT

Case 1

MPSNR 28.230 31.179 38.431 37.049 37.610 36.874 40.021

MSSIM 0.869 0.940 0.987 0.981 0.982 0.980 0.989

MFSIM 0.941 0.959 0.992 0.987 0.989 0.990 0.992

SAM 0.215 0.117 0.057 0.069 0.062 0.049 0.042

Case 2

MPSNR 18.589 25.162 31.459 30.255 31.959 31.102 32.623

MSSIM 0.521 0.779 0.938 0.921 0.946 0.935 0.949

MFSIM 0.776 0.875 0.968 0.949 0.963 0.962 0.969

SAM 0.484 0.163 0.112 0.120 0.101 0.065 0.074

Case 3

MPSNR 8.135 20.241 23.151 23.651 25.469 24.515 25.839

MSSIM 0.109 0.449 0.740 0.697 0.791 0.742 0.813

MFSIM 0.490 0.694 0.878 0.832 0.887 0.846 0.895

SAM 0.949 0.213 0.216 0.180 0.199 0.089 0.109

Table 2: All the algorithms compare the performance metrics for PAC data sets under different noise types.

Noise type Index Noisy LRTV WTV-HMCT BM4D WGLRTD KBR LLRT

Case 1

MPSNR 28.147 32.521 38.924 37.709 39.460 40.911 39.033

MSSIM 0.838 0.933 0.985 0.975 0.983 0.989 0.983

MFSIM 0.909 0.953 0.990 0.981 0.989 0.991 0.989

SAM 0.263 0.129 0.071 0.087 0.058 0.050 0.046

Case 2

MPSNR 14.163 24.510 29.275 28.179 30.290 30.646 30.489

MSSIM 0.219 0.659 0.864 0.834 0.887 0.906 0.893

MFSIM 0.584 0.791 0.910 0.881 0.930 0.939 0.930

SAM 0.773 0.201 0.153 0.140 0.147 0.081 0.079

Case 3

MPSNR 8.135 21.671 25.479 24.453 26.484 26.898 27.164

MSSIM 0.065 0.451 0.710 0.663 0.768 0.785 0.792

MFSIM 0.405 0.683 0.819 0.801 0.863 0.870 0.859

SAM 1.060 0.232 0.195 0.154 0.221 0.095 0.086
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Figure 3: Continued.
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In summary, extensive simulation experiments demon-
strated that the proposed WTV-HMCT method outper-
forms the existing denoising approaches.

5. Conclusion

Previous strategies of hyperspectral image reconstruction
based on low-rank tensor decomposition could not effec-
tively capture the high-dimensional structure of the tensor,
making adaption to different mixed noise hyperspectral
image denoising challenging. Furthermore, the lack of con-
straints on the local smoothness of the spectrum results in
spectral curve distortion and distortion. In this paper, a
hybrid tensor decomposition (WTV-HMCT) is proposed
to describe the low-rank structure and sparsity of hyperspec-
tral images. The low-rank hybrid tensor decomposition
model, on the one hand, is proposed by integrating the
Tucker model rank into the CP model rank. The weighted
spatial and spectral total variation regularization is intro-
duced into the low-rank hybrid tensor decomposition
model, which constrains the spatial structure information
and local smoothness of the spectral information so that
the mixed noise is eliminated. The model is solved by using
the joint alternating direction multiplier and block coordi-
nate descent optimization method, which ensures the
restored image has a good local smooth structure. From sev-
eral data experiments, it is shown that the proposed WTV-
HMCT method is more effective than the state-of-the-art
denoising methods.

In the future, we hope to combine the proposed WTV-
HMCT with the deep learning model to learn a more appro-
priate regularization and improve the ability to remove
mixed noise.
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