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This paper presents a low-carbon vehicle routing optimizationmodel to reduce energy consumption and carbon emissions in logistics
and distribution. The model is solved using a hybrid algorithm of simulated annealing and ant colony optimization. It enhances the
information pheromone concentration update process and directionality by introducing a carbon emission factor and a multifactor
operator. Additionally, an adaptive elite individual reproduction strategy is employed to improve algorithm efficiency. In this case
study focusing on cold chain logistics distribution, both the model and algorithm under consideration were evaluated. The findings
affirm the effectiveness of the model in reducing carbon emissions and demonstrate the efficiency and robustness of the algorithm.
Through this analysis, the paper sheds light on environmentally sustainable practices in logistics distribution.

1. Introduction

In a world increasingly affected by global warming, the imper-
ative to reduce carbon emissions has taken center stage. This
concern is particularly pronounced in China, a major energy-
consuming nation, which has committed to achieving carbon
neutrality by 2060 [1, 2]. In response to China’s broader goals
of ecological civilization and emissions reduction, industries
such as transportation and logistics are actively seeking green
and low-carbon solutions. Notably, the logistics and transpor-
tation sector ranks as the second-largest contributor to fuel
energy loss, accounting for over 30% of total societal losses.
This has prompted efforts to integrate green logistics practices
throughout the entire logistics chain to curb carbon emissions.

Under the guidance of China’s macropolicy of ecological
civilization development and the call for energy saving and
emission reduction, the transportation and logistics industries
are constantly seeking to develop green and low-carbon ways
[3]. According to statistics, the logistics and transportation
industry is the second largest fuel energy loss industry after

the manufacturing industry, and the fuel energy loss accounts
for more than 30% of the total social loss. In 2013, the Minis-
try of Transport issued a document. It proposed integrating
ecological civilization into the logistics dispatch chain. This
integration aimed to achieve the low-carbon goal of green
logistics [4]. The road cargo transportation, as the main logis-
tics mode in China, has high carbon emission cost and energy
loss, although the shipment volume can be small. The supply
chain is the most important source of carbon emissions in the
logistics and transportation industry and is the main link in
the operation process of the logistics system [5, 6]. Therefore,
the realization and development of green low-carbon logistics,
especially the optimization of logistics dispatch links will have
an important impact on our ecosystem.

One significant facet of this transformation is the adop-
tion of Internet of Things (IoT) technology. IoT, which inte-
grates technologies like RFID, GPS, and artificial intelligence,
offers real-time vehicle monitoring and intelligent control
over factors such as refrigerated freight temperatures. This
not only enhances distribution efficiency but also ensures
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complete traceability of carbon footprints, thereby contrib-
uting to the overarching goals of carbon reduction [7].

Domestic scholars have done a lot of research on the
application of IoT in logistics in recent years. Literature [8]
was based on radio frequency identification (RFID) technol-
ogy to supervise the whole process of fresh agricultural pro-
ducts from the origin to the consumer. This guarantees food-
enhanced consumer security. Literature [9] studied the risk
control assessment of the agricultural products supply chain
in the IoT environment, identified the supply chain risks at
three levels, and came up with some specific methods and
opinions. Literature [10] introduced WSN technology along
with RFID-based technology. The purpose was to enable
real-time transmission of environmental information for
fresh agricultural products. This information would be mon-
itored 24/7 by the information management system to ensure
the quality of the produce. Literature [11] focused on the
inclusion of the IoT and some modern information technol-
ogy to make the quality of fresh agricultural products was
effectively guaranteed. This solves the problem of no recourse
for safety and quality problems in the traditional logistics of
agricultural products. von Stietencron et al. [12] proposed a
software framework for streaming analytics in edge cloud
computing environments. The proposed framework leverages
emerging technologies such as the IoT, edge computing
[13, 14] techniques, and optimized decision making to sus-
tainably meet customer needs by optimizing service costs.
Lim et al. [15] used a text mining approach to explore cus-
tomer satisfaction in cold chain logistics. The study mined
and embedded contextual knowledge in deep networks
through deep learning [16] and IoT techniques thereby effec-
tively analyzing the factors affecting customer satisfaction in
cold chain logistics.

Foreign scholars mostly focus on the application of IoT
technology to the information traceability of fresh agricul-
tural products. For example, literature [17] proposed the
application of IoT RFID technology to supply chain manage-
ment at a very early stage and made a detailed analysis of its
role in supply chain management. Literature [18] used a
sensor specialized in monitoring phytotoxic flavins together
with RFID radio frequency devices. This allows monitoring
whether toxic substances have contaminated fresh produce
and ensures product quality. Literature [19] proposed a new
information service system that solves the problem of diffi-
cult management of IoT data and traceability of agricultural
products. Literature [20] used the new IoT technology to
provide near-continuous monitoring of agricultural products
from planting to harvesting. It can effectively store and
retrieve information about the agricultural products, thus
achieving real-time monitoring and ultimately promoting
the improvement of the agricultural products supply chain.

To this end, how to reduce costs, improve efficiency, and
be low-carbon while ensuring product safety has become one
of the pressing issues in the logistics industry. In this context,
this paper takes carbon emission minimization as the main
goal and introduces IoT technology in modeling to efficiently
manage the whole distribution process in order to expect to

provide a reference direction for a new model of green and
low-carbon logistics and distribution.

The purpose and significance of this paper is to create a
low-carbon vehicle routing model using IoT. It reduces
energy consumption and carbon emissions in logistics. The
model combines simulated annealing (SA) and ant colony
optimization, preventing local optimization issues. Innova-
tions include integrating a carbon emission factor into pher-
omone updates, using adaptive strategies, and multifactor
operators. Through experiments, the study proves the model’s
effectiveness, offering a blueprint for green logistics with lower
carbon emissions, aligning with global environmental goals.

2. State of the Art

2.1. Internet of Things. In 1991, Professor Kevin Ash-ton of
MIT proposed the concept of Electronic Product Code (EPC)
as the prototype of IoT, and since then IoT has entered our
vision [21]. The IoT connects the Internet to any object
through various information-sensing devices and uses an
agreed network protocol for information exchange and com-
munication. The simple IoT structure is shown in Figure 1.

2.2. Low-Carbon Logistics. Low carbon refers to a philosophy
of life that aims to reduce carbon emissions and create a safe
and healthy living environment. Low-carbon economy is the
core of green development, energy saving, and emission
reduction, weighing the mission of environmental protection
while gaining economic benefits to make economic develop-
ment sustainable. Low-carbon logistics is derived from the
concept of low-carbon economy, which is a product of
adhering to the purpose of the concept of sustainable devel-
opment. To achieve low-carbon logistics, advanced modern
information technology such as the IoT is essential. The addi-
tion of the IoT enhances management efficiency, enabling
informed decisions. Furthermore, transitioning to electric
vehicles reduces energy consumption and carbon emissions,
thereby achieving low-carbon logistics.

IoT name
resolution service

IoT information
release service

IoT middleware

Reader

Electronic label

RFID
Item

information

RFID

FIGURE 1: IoT structure diagram.
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Low-carbon logistics has the following characteristics: (1)
the systemic nature of low-carbon logistics. According to a
renowned Chinese scholar, a system is an organic entity
comprised of specific functions resulting from the interac-
tion and interdependence of various components. Logistics is
actually an organic whole composed of transportation, stor-
age, loading and unloading, packaging, circulation proces-
sing, distribution, information processing, and other links.
Therefore, only when every part of the logistics system is
decarbonized can low-carbon logistics be truly realized. (2)
The two-way nature of low-carbon logistics. Low-carbon
logistics is mobile, and the existence of the chain form leads
to the characteristics of two-way low-carbon logistics. Posi-
tive and negative logistics exist simultaneously, forming a
closed loop of the supply chain. In order to realize the low
carbon logistics of the whole system, we should not only
focus on the low carbon research of the forward logistics
but also pay attention to the green development of the
reverse logistics. (3) Horizontal and vertical integration of
low-carbon logistics. The horizontal integration of low-
carbon logistics refers to the cooperation between enterprises
on a certain activity, through the integration and mutual use
of resources between enterprises, to avoid waste and achieve
low carbon. (4) The multiobjective nature of low-carbon
logistics. Low-carbon logistics should be scientific and rea-
sonable, multiobjective, and an organic whole coordinated
with economic development. This approach ensures both the
enterprise’s interests and the green development of consu-
mers’ rights and the natural environment while guided by the
principles of constructing an ecological civilization.

2.3. Low-Carbon Distribution Mode of Cold Chain Logistics
under the IoT Environment. The addition of the IoT has
creatively activated the modern agricultural products service
distribution system. It makes the whole process of distribu-
tion fully intelligent and information-based operation, thus
accelerating the transformation of fresh agricultural products

market to intensive type and improving resource utilization
and information level. This paper takes cold chain logistics
distribution as an example and proposes a low-carbon dis-
tribution mode of cold chain logistics under the IoT environ-
ment. The purpose is to actively develop modern agricultural
products circulation mode and promote the transformation
and upgrading of traditional agricultural industry chain by
intelligent agriculture. Large supermarkets are encouraged to
collaborate directly with farmers in fresh agricultural prod-
uct production regions. These products are transported using
professional cold chain storage and logistics platforms, estab-
lishing an efficient cold chain logistics network to minimize
inventory and reduce spoilage rates. According to the basic
system of IoT, the low-carbon distribution model proposed
in this paper is shown in Figure 2.

The cold chain logistics distribution mode under IOT
environment makes the whole distribution process more
“intelligent.” It not only provides users with more accurate
information and precise decisions but also the intelligent
information management platform can improve logistics
efficiency. At the same time of efficient and intelligent man-
agement, the information is open and transparent, and the
products are traceable, which also enhances the satisfaction
of consumers.

3. Methodology

3.1. Model Construction.Vehicle carbon emissions are mainly
generated by the fuel consumed during the vehicle driving
process. There are two types of methods for estimating vehi-
cle fuel consumption: the MEET method and the CMEM
method. Most of the CMEM methods use fuel consumption
as the target to build a model to estimate carbon emissions.
However, the CMEMmethods are vulnerable to the influence
of incomplete combustion of fuel. The MEET method has a
wide range of applications. In this paper, MEET method is
used. The calculation formula is shown below:
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FIGURE 2: Low-carbon distribution model of cold chain logistics under the IoT environment.
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θp qð Þ ¼ g0 þ g1qþ g2q
2 þ g3q

3 þ g4
q
þ g5

q2
þ g6

q3
: ð1Þ

The values of g0;g1;⋯;g6 are 110, 0, 0, 0.000375, 8702,
0, 0, respectively. For the purpose of intracity distribution, a
4.5-ton freight vehicle is used in this paper.

The carbon emission of freight vehicles is directly pro-
portional to the cargo capacity. The carbon emission θl qð Þ of
a fully loaded vehicle at different speeds for different types of
vehicles is calculated as follows:

θl qð Þ ¼ θp qð Þ ⋅ h1 þ h2qþ h3q2 þ h4q3 þ
h5
q

� �
: ð2Þ

According to the load capacity of freight vehicles, the
values of h0; h1;⋯; h5 are different, and the values of 4.5-
ton vehicles are 1.27, −0.00235, 0, 0, and −1.33, respectively.
The following shows the variation of carbon emission factors
for a 4.5-ton vehicle at different speeds with full load and no
load (see Figure 3).

It can be seen that, under the full load of 4.5 tons freight
vehicle, after the speed q is higher than 23 km/hr, the faster
the speed, the lower the carbon emission factor and the less
the unit carbon emission.

In summary, the dynamic real-time carbon emission θ of
the freight vehicle can be expressed as follows:

θ q; awð Þ ¼ θl qð Þ − θp qð ÞÀ Á
⋅
aw
A

þ θp qð Þ; ð3Þ

where m stands for a freight vehicle and aw stands for real-
time cargo capacity.

The service time includes the loading and unloading time
of the freight vehicle and the handover time with the cus-
tomer. The freight vehicle does not produce carbon emis-
sions during the service time. The vehicle loading is done at
the distribution origin, so its loading time nsw is not included
in the vehicle travel distribution model. Only the unloading
time ns1y and the handover time ns2y need to be considered for
the service time nsy of customer y. The unloading time is

related to the demand vy of customer y and the unloading
quantity vn (tons/hr) per unit time, i.e., ns1y ¼ vy=vn. If ns1y ¼
0, it means that no goods are unloaded. nsj ¼ ns2j ¼ 0, it
means that the service time is 0 when no customer node is
reached. The service time of customer y can be expressed by
the following equation:

nsy ¼ ns1y þ ns2y ¼
vy
vn

þ ns2y: ð4Þ

In the low-carbon distribution model of cold chain logis-
tics, three optimization objectives are selected: The total car-
bon emissions generated by all vehicles in 1 day of distribution
process is minimized, the total vehicle mileageD is minimized,
and the total vehicle travel time T is minimized, C is the main
optimization objective, the vehicle carbon emissions andD are
closely related, andD is also themain optimization objective of
VRP. In addition, T is also very important because there is a
delivery time window constraint, and T is closely related to
vehicle driver and vehicle daily management cost. In this
paper, C,D, and T are selected as the three optimization objec-
tives of themodel.T,D, andC optimization objective functions
are as follows:

min ∑
Z

z¼1
  ∑
T

x¼1
  ∑
T

y¼1
  ∑
W

w¼1
  ∑
R

r¼1
  ∑

U

u¼0
 

druxj
qruxj

þ nsy

 !
⋅ Iwrxy ⋅ Jwzxy ; ð5Þ

min ∑
Z

z¼1
  ∑
T

x¼1
  ∑
T

y¼2
  ∑
W

w¼1
  ∑
R

r¼1
 drxy ⋅ Iwrxy ⋅ Jwzxy ; ð6Þ

min ∑
Z

z¼1
  ∑
T

x¼1
  ∑
T

y¼1
  ∑
W

w¼1
  ∑
R

r¼1
  ∑
U

u¼1
 druxy ⋅ θ qruxy; awxy

À Á
⋅ Iwrxy ⋅ Jwzxy :

ð7Þ

Equation (5) indicates that the sum of total time T for
completing all distribution tasks is minimized, including
travel time, loading and unloading, and handover procedure
time. Equation (6) indicates that the total distance traveled D
is minimized. Equation (7) indicates that the total carbon
emission C of all vehicles is minimized. Where θ qruxy;

À
awxyÞ

is the carbon emission per unit mile traveled by vehicle w
from node x to y, with speed q after the uth time change and
real-time cargo capacity a.

3.2. Objective Function Constraint Subject To

∑
T

y¼1
 vy ∑

T

x¼1
 Iwxy ⩽ A; x; yð Þ 2 1; 2;⋯;Tf g; r 2 R: ð8Þ

τy ⩽ ny ⩽ τy; y 2 2; 3;⋯;Tf g: ð9Þ

∑
T

x¼1
 Iwxe − ∑

T

y¼1
 Iwey ¼ 0; e 2 2; 3;⋯;Tf g;w 2W: ð10Þ

∑
T

x¼2
 Iw1x ¼ ∑

T

y¼2
 Iwy1 ¼ 1; x; yð Þ 2 2; 3;⋯;Tf g;w 2W: ð11Þ
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FIGURE 3: Carbon emission factor versus speed for fully loaded
freight vehicles.
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Itrxy ¼ 0; 1½ �; x; yð Þ 2 1; 2;⋯;Tf g; r 2 R: ð12Þ

Iwxy ¼ 0; 1½ �; x; yð Þ 2 1; 2;⋯;Tf g: ð13Þ

Jwzxy ¼ 0; 1½ �; x; yð Þ 2 1; 2;⋯;Tf g; z 2 Z: ð14Þ

Equation (8) represents the maximum vehicle load limit.
Equation (9) represents the customer time window con-
straint. Equation (10) indicates that the vehicle needs to
leave after completing the delivery task of any customer.
Equation (13) represents the decision variables for selecting
customer nodes. Equation (14) represents the decision vari-
able of rescheduling in case of insufficient path optimization.

3.3. Algorithm Design. VRP is a traveler problem, which has
been verified as NP-complete (nondeterministic polynomial
complete) problem, i.e., difficult to solve by mathematical
analysis. The ant colony optimization (ACO) and SA algo-
rithms are more effective in solving VRP optimization. ACO
needs to reconstruct the whole population every time, so it is
less efficient and easy to fall into stagnation. SA accepts the
updated solution with some probability, which is easy to
jump out of local optimum and stagnation, the control is
simple and coding is easy to implement. However, its com-
putation time is longer, the effect of finding the optimum is
average, and the optimization efficiency is not high. There-
fore, in this paper, we propose a hybrid ant colony algorithm
(SA-ACO) by combining the advantages of the above two
algorithms. The algorithm achieves fast convergence by con-
trolling the annealing temperature in SA and uses the
Metropolis criterion of SA to prevent falling into local opti-
mum and premature stagnation. Metropolis is a stochastic
optimization method that is commonly used in the simula-
tion of complex systems in statistical physics and related
fields. It is often used to sample from probability distribu-
tions that are difficult to sample directly. A major advantage
of the Metropolis algorithm is that it avoids local optimiza-
tion, which allows it to explore a wider range of probability
distributions and find the global optimum. It also has a
faster convergence rate than other methods. The Metropolis
algorithm works by proposing a new state or configuration
of the system and then accepting or rejecting the offer based
on the probability of the new state. The Metropolis algo-
rithm avoids local optimization by allowing the system to
occasionally accept proposals with a lower probability than
the current state. This is because the acceptance probability
is determined by the ratio of probabilities, not just the
difference in probabilities. Thus, the algorithm can explore
a wider range of probability distributions and find the
global optimum. In addition to avoiding local optimization,
the Metropolis algorithm has a faster convergence rate com-
pared to other methods because it is a Markov chain Monte
Carlo (MCMC) method. MCMC methods aim to generate a
sequence of samples from a probability distribution and
converge to the true distribution over time. The Metropolis
algorithm is an MCMC method that in some cases, it has
been shown to converge faster than other MCMC methods.
Overall, the Metropolis algorithm is a powerful stochastic

optimization method that is widely used in statistical phys-
ics and related fields. Its ability to avoid local optimization
and its relatively fast convergence make it a valuable tool for
modeling complex systems and sampling from difficult
probability distributions.

The multiparameter pheromone concentration calcula-
tion in ACO is used to update the population and increase
the memory of the population. A carbon emission factor is
also designed to enhance the directionality of population
optimization. The flow of the hybrid ant colony algorithm
is shown in Figure 4.

The criterion for jumping out of the inner loop is to reach
a set constant value of a certain number of cycles Cr1. The
criterion for jumping out of the outer loop is to set a constant
value of a certain number of cycles Cr2 within which the
fitness of the optimal solution no longer changes. In this
paper, the algorithm follows the Metropolis sampling crite-
rion to accept whether the individual sx nð Þ is updated to
s0x nð Þ to avoid prematureness or stagnation. The probability
function Ω is accepted as follows:

Ω¼ exp −
f s

0
x nð ÞÀ Á

− f sx nð Þð Þ
Γ

 !
; ð15Þ

where Г is the annealing and temperature control parameter,
and its iterative calculation is shown in Equation (16). L is
the number of iterations of the algorithm.

Γgþ1 ¼ Γg ⋅
L

Lþ 0:1
: ð16Þ

In this paper, the algorithm is encoded in a real number
way, and each feasible solution is a matrix with two rows.
The first row of the matrix is the information on the order of
delivery customer nodes, and the number “0” indicates the
delivery origin. The vehicle starts from the origin and returns
to the origin after completing the delivery task. The second
row of the feasible solution matrix is the path selection infor-
mation, and the path between some nodes contains multiple
sequential sections (see Figure 5).

In Figure 5, the first line of code [0, 4, 3, 11, 0] indicates
that a delivery vehicle starts from the origin “0,” reaches the
customer nodes 4, 3, and 11 for delivery service in order, and
finally returns to the origin. The second line of path selection
information, i.e., the vehicle selects the second path between
nodes 0 and 4, the first path between nodes 4 and 3, the third
path between nodes 3 and 11, and the second path from
customer node 11 to the origin. The other delivery vehicles
travel in the same order, until all the customer delivery ser-
vices are completed.

In this paper, the adaptation degree of the individual
population is related to the optimization objective. The
model contains three optimization objectives, namely, car-
bon emission C, total travel path D, and total travel time T.
The three optimization objectives have different units and
are of different orders of magnitude. Therefore, it is neces-
sary to adjust the order of magnitude of the optimization
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objectives to fit their weight coefficients in the process of
individual fitness calculation. In this paper, an adaptive fit-
ness function f(s) is used to eliminate the difference in order
of magnitude of multiple objectives. The f(s) is expressed as
follows:

f sð Þ ¼ λ1
Cmax sð Þ − C sð Þ

Cmax sð Þ þ λ2
Dmax sð Þ − D sð Þ

Dmax sð Þ
þ λ3

Nmax sð Þ − N sð Þ
Nmax sð Þ ;

ð17Þ

where λ1, λ2, and λ3 represent the weighting coefficients of
the three individuals, respectively, which need to be decided
according to the degree of concern of the enterprise.

This paper proposes an adaptive elite individual repro-
duction strategy to renew individuals. It guarantees that the
entire solution space can be searched. By dynamically retain-
ing the good genes of elite individuals, the algorithm can
improve its evolutionary efficiency. The population indivi-
duals of this algorithm are updated locally at two points, as
shown in Figure 6.

Customer
node

2 0 –2 0 0 2023

0 4 00 5 9 2 0113

Path selection

FIGURE 5: Coding.

Start: code and generate
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Calculate the population individual
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FIGURE 4: Hybrid algorithm flow.
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In the customer distribution node information code, the
origin of each vehicle departure is set as code 0. All P vehicle
distribution origins “0” are found, and the two distribution
origins p1 and p2 are randomly selected, and the codes in the
middle of the two distribution origins are reconstructed
according to the pheromone concentration in ACO. Then,
the information codes of the other parts beyond the two
random points were directly copied to form the new popu-
lation of individuals. The length p12 between these two points
is calculated as follows:

p12 ¼ int
fmax sð Þ − f sð Þ

fmax sð Þ ⋅ P
� �

þ 1: ð18Þ

The int½ � in Equation (18) is rounded downward. fmax sð Þ
is the maximum fitness value in the population of this gen-
eration. And if p12>P− p1, then p2 is the last distribution
origin of the individual, i.e., all the parts after p1 are updated.

The adaptive elite individual reproduction strategy can
quickly search the entire solution space. By constructing the
individual localization according to the pheromone concen-
tration, it can make the update directional while retaining the
good information of other parts.

In this paper, we designed a multifactor calculation
method including carbon emission factor to construct the
pheromone visibility and pheromone increment update of
ACO. This pheromone concentration is present in the path
h between any two customer nodes (x, y) and in the road
section r included in b. The probability that vehicle w starts
from node x and selects the next node y is uwbxy . The calcula-
tion formula is given below:

uwbxy ¼
τtbxy nð ÞÂ Ã

α ⋅ ηtbxy nð ÞÂ Ã
β

∑
y02 allowed y0

  τwbxy0 nð Þ
h i

α
ηwbxy0 nð Þ
h i

β
;      y 2 allowed y0

0; other

8>>><
>>>:

;

ð19Þ

where allowed y0 denotes the set of customer nodes that have
not been delivered yet.

(1) The update method for multifactor visibility of car-
bon emission factors. ηwbxy nð Þ is the visibility of ACO.
Unlike the general calculation method that only con-
siders distance, this paper uses a multifactor visibility
calculation that includes carbon emission factor and
service time factor. Its calculation method can be
expressed as follows:

rwbxy nð Þ ¼ ω1
1

cwbxy
þ ω2

1

dwbxy
þ ω3 ∑

U

u¼0
 

druxy
qruxy

þ nsy

 !
−1

;

ð20Þ

where cwbxy is the carbon emission factor, which denotes the
carbon emission generated by vehicle w choosing path b
between customer nodes x, y. dwbxy is the distance factor,

∑U
u¼0 

druxy
vruxy

þ nsy is the service time factor. ω1, ω2, and ω3 are

the weighting factors.

(2) Calculation of multifactor pheromone increments of
carbon emissions. In Equation (19), τwbxy tð Þ represents
the pheromone concentration of the path b between
customer nodes x, y selected by vehicle w. It is calcu-
lated as follows:

τwbxy nð Þ ¼ 1 − σð Þτwbxy þ ∑
M

m¼1
 Δτwbmxy ; ð21Þ

where 0< σ≤ 1 is the pheromone evaporation rate. m is the
number of ants. m 2 {1, 2, …, M}, Δτwbmxy is the pheromone
increment. In this paper, the carbon emission factor Cm, the
total path length factor Dm, and the total travel time factor
Tm are added to the calculation of the pheromone increment
constructed in this paper. The calculation equation is
expressed as follows:

0000

0 0000Customer
node

p1 p1

Path selection

Update

Reconstruction by pheromone
concentration

FIGURE 6: Update operator.
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Δτtbmxy ¼ ε1 Cmð Þ−1 þ ε2 Dmð Þ−1 þ ε3 Nmð Þ−1;      m goes through y

0; other

(
; ð22Þ

where Cm, Dm, and Tm are the total carbon emissions, dis-
tance traveled, and total travel time in a feasible solution
generated by the path taken by ant m, respectively. ε1, ε2,
and ε3 are the weighting coefficients.

The parameter settings used in the algorithm have a
direct impact on its efficiency and effectiveness. In order to
improve the convergence speed of the algorithm, this paper
adopts the uniform design test method to determine the
parameters. The population size is taken as 500, the initial
annealing temperature Г0= 1,500, the cooling factor 0.99, the
number of inner cycles Cr1= 1,000, and the termination con-
dition of the algorithm (jumping out of the outer cycle) is
Cr2= 1,000 iterations, and the optimal solution fitness of the
algorithm does not change anymore. The values of α and β in
the path selection probability function of the algorithm are
taken as 1, and the evaporation rate of pheromone σ = 0.58.
The coefficients λ1, λ2, and λ3 of the weight of the optimiza-
tion objectives are taken as 1, i.e., equal importance is given
to the three optimization objectives.

4. Results Analysis and Discussion

In this paper, IoT technology connects smart devices, sen-
sors, and controllers to the network, i.e., by installing IoT
devices on the delivery vehicles, the information of the deliv-
ery vehicles (location, speed, temperature, vehicle weight,
etc.) is monitored and reported to the cloud server in real
time to facilitate real-time scheduling and management. The
basic information and scheduling strategies of the delivery
vehicles used in the algorithm of this paper are dependent on
the application of IoT technology.

4.1. Case Description. In this chapter, we introduce a model
for optimizing low-carbon distribution pathways within cold
chain logistics, specifically tailored for an IoT environment.
We also present an algorithm to solve this model. To provide
a practical illustration, we select the frozen food factory of
SW Company located in P city as the backdrop for our case
study. Utilizing this setting, we design a simulation example
that adheres to the conditions stipulated by our model. The
company currently has a group of professional teams, and its
products and services are fully covered in P city and radiated
to many counties and cities around P city, with a deep cus-
tomer base. In recent years, as the demand for fresh produce
from supermarkets has increased, the number of companies
providing fresh produce delivery to supermarkets like SW
has also increased year by year, and the competition pressure
has increased. Seeking to reduce costs, improve operations,
and increase competitiveness, SW has begun to focus on the
expenses formed by the logistics chain. Therefore, this paper
selects the data of 20 supermarkets that need to be delivered
in P city on the same morning as the object of optimization
for rational route planning. It is expected that a scientific
method will be used to reduce the logistics cost and increase

the competitiveness of the company. In this paper, the super-
markets within 10 km of P city are taken as the distribution
objects of fresh agricultural products; the intersection of
West Central Road and South Central Street is taken as the
coordinate origin; the distance of the supermarkets from the
coordinate origin indicates the corresponding positions (X,
Y). The specific simulation data are shown in Table 1.

Since the carbon emissions of heterogeneous freight
vehicles (freight vehicles of different models and different
capacities) of less than 5 tons do not differ much. Therefore,
SW company uses the same model of freight vehicle with the
maximum load capacity of 4.5 tons for the simulation calcu-
lation of distribution and transportation. The fixed cost of
using this type of refrigerated freight vehicle is 200 RMB per
freight vehicle. Considering the distribution in the city road,
the average speed is 50 km/hr, and the cost per kilometer is 3
yuan/km.

Due to the weight restriction on city roads, the paper
stipulates that the maximum amount of refrigerated carriage
is 9 tons at a time. The cost of the vehicle arriving at the
supermarket in advance is 10 yuan/min, and the cost of
delayed arrival is 60 yuan/min. The unit value of agricultural
products is 6,000 yuan/ton. The unit refrigeration cost is 1.5
yuan/kcal and the heat load factor is 4944.69 kcal/hr. The
fuel consumption per kilometer is 0.377 L/km when the
refrigerated carriage is at the maximum cargo capacity and
0.165 L/km per kilometer when empty. 0.0066 g/(kg km) of
CO2 is generated from 1 km of refrigeration when the refrig-
erated carriage is loaded with 1 kg. The distance distribution
between the distribution center and the supermarkets is
shown in Table 1.

4.2. Analysis of Simulation Results. In the simulation experi-
ment, a computer with CPU 3.3GHz, 16G of RAM, and 64-
bit Windows 11 operating system was used. In this paper,
MATLAB R2017a is used as the simulation platform to test
and analyze the algorithm. The population size is taken as
500, the initial annealing temperature Г0= 1,500, the cooling
factor 0.99, the number of inner cycles Cr1= 1,000, and the
termination condition of the algorithm (jumping out of the
outer cycle) is Cr2= 1,000 iterations, and the optimal solution
fitness of the algorithm does not change anymore. The values
of α and β in the path selection probability function of
the algorithm are taken as 1, and the evaporation rate of
pheromone σ = 0.58. The coefficients λ1, λ2, and λ3 of the
weight of the optimization objectives are taken as 1, i.e.,
equal importance is given to the three optimization objectives.
The initialization parameters of the algorithm in this paper are
the same. The distribution center and the location of each
supermarket are drawn according to the supermarket demand
information in Table 1.

According to the supermarket demand information data
in Table 1, the distribution center and the location of each
supermarket are drawn, as shown in Figure 7. Zero represents
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the distribution center, and 1–20 represent the location of
each supermarket.

According to MATLAB run and decode to get the opti-
mal path, the optimal path of this example is shown below
(see Figure 8).

To sum up, the optimal solution of this paper is that
three vehicles start from the distribution center, and the first
one is 0-9-8-11-12-18-13-14-0 in sequence. The second vehi-
cle is 0-6-17-20-16-10-2-19-0 in sequence. The third vehicle
is 0-4-5-3-15-1-7-0 in sequence. The total delivery cost
under this strategy is 9,776.53 yuan, and the carbon emission
is 63.93 kg.

In this paper, the algorithm is solved using a hybrid ant
colony genetic algorithm. The initialized population size is
set to pop= 100, in which 50 individuals come from the

ACO algorithm and the remaining individuals are randomly
generated. Different values of carbon tax are taken and ana-
lyzed to study the effect on carbon emission, total cost, cus-
tomer satisfaction, and vehicle delivery routes (see Figure 9).

Figure 9 reveals a close alignment between total cost
fluctuations and carbon emissions. Carbon emissions pri-
marily arise from fuel consumption and refrigeration equip-
ment. The largest cost components are refrigeration and
vehicle usage. Hence, carbon emissions reflect total costs.
Customer satisfaction consistently exceeds 90%, confirming
study expectations.

4.3. Robustness Analysis. The algorithm in this paper and
three algorithms in literatures [22–24] and [25] have been
run 50 times, respectively, and the average time t, error ξ, and
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TABLE 1: Supermarket demand information.

Number Location (km) Demand (ton) Service time (min)

Distribution origin “0” (6.9530, 7.6339) 0 0
Supermarket 1 (8.0139, 4.0506) 1.5 20
Supermarket 2 (5.5130, 3.6810) 0.5 10
Supermarket 3 (6.6681, 4.6419) 2 25
Supermarket 4 (6.9171, 6.3211) 1.5 20
Supermarket 5 (6.0134, 5.4363) 1.5 20
Supermarket 6 (2.9396, 1.2160) 1 15
Supermarket 7 (8.0371, 5.4265) 2 25
Supermarket 8 (4.1195, 2.4294) 1.5 20
Supermarket 9 (4.1418, 4.4869) 2 25
Supermarket 10 (5.7041, 1.8888) 1.5 20
Supermarket 11 (2.9996, 3.2988) 1.5 22
Supermarket 12 (1.7042, 3.7640) 1 15
Supermarket 13 (2.4039, 6.8323) 1 15
Supermarket 14 (4.2771, 6.5825) 0.5 10
Supermarket 15 (7.0333, 4.1502) 0.5 10
Supermarket 16 (6.2205, 1.1196) 1 15
Supermarket 17 (3.8067, 1.3939) 1.5 20
Supermarket 18 (0.9981, 5.3535) 0.5 10
Supermarket 19 (5.2214, 5.4478) 1 15
Supermarket 20 (4.7994, 1.6351) 2.5 30
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stable robustness r of each algorithmwere recorded. Equations
are as follows:

ξ¼ ave − best
best

; ð23Þ

r ¼m
n
; ð24Þ

where ave denotes the average total mileage, best is the opti-
mal total mileage, n is the number of experiments, and m is
the number of times the optimal solution is found. The data
for each of the four algorithms are shown in Table 2.

The results are presented in Table 2, which shows that
the algorithm achieved the best total mileage, average total
mileage, error value, robustness r, and algorithm time con-
sumption compared to other methods tested. These findings
suggest that the algorithm performs well in terms of compu-
tational complexity and robustness. This indicates that the
optimal result of this paper’s algorithm is better than the
single ant colony algorithm, with low error, high accuracy,
and stable robustness.

4.4. Comparative Analysis of Path Optimization Algorithms.
In order to verify the effectiveness, stability, and convergence
of the hybrid algorithm, the algorithm in this paper is com-
pared with the other three algorithms. Table 3 shows the

comparison of the four algorithms in terms of carbon emis-
sions, total distribution time, and total distribution distance.

As can be seen from Table 3, the experimental results of
the algorithm in this paper are the minimum in the above
four aspects. In terms of calculation time, the proposed algo-
rithm greatly improves the operation efficiency because the
ant colony algorithm is added into the SA algorithm as the
initial population.

Figure 10 shows the comparison of the convergence
effect between the proposed algorithm and other algorithms.
Compared with the other algorithms, the convergence speed
of the proposed algorithm is significantly better than the
other algorithms after 100 iterations. The figure shows that
literature [22] has a long computation time and slow conver-
gence, but its solution effect is good and its global optimization-
seeking ability is strong. Literature [23] is easy to fall into the
local optimal solution, with poor mining ability and short solu-
tion time. The methods of literature [24] and literature [25]
converge quickly, but they are more susceptible to the influence
of the individual size of the population. The algorithm in this
paper has a better global convergence ability and converges
faster. Therefore, the algorithm in this paper is effective for
solving the proposed model.

In order to further analyze the efficiency of the proposed
algorithm, this paper adopts three classical examples in
TSPLIB for optimization analysis. And compared with other
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TABLE 2: Robustness analysis of the four algorithms.

Algorithm Best Ave ξ (%) r (%) t (s)

Literature [22] 384.52 385.57 2.79 2.00 12.15
Literature [23] 378.82 389.79 2.48 5.00 9.57
Literature [24] 375.38 378.16 2.65 10.00 6.79
Literature [25] 372.29 377.53 1.27 14.00 5.81
Proposed 372.17 375.03 0.75 20.00 1.54

Bold values represent the best result.
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three state-of-the-art algorithms (literatures [26–28]), the
optimization results are shown in Table 4.

As can be seen from Table 4, the algorithm in this paper
has a good effect on the optimization calculation of the TSP
problem.

5. Conclusion

Achieving sustainable low carbon development is an impor-
tant direction for logistics technology innovation and opti-
mization. In this paper, an optimization model is presented,
focusing on minimizing carbon emissions. This model con-
siders time, distribution distance, and carbon emissions as
primary constraints within the IoT environment. The num-
ber of good genes in the population is increased by the adap-
tive elite individual reproduction strategy. Afterward, the
multifactor operator including carbon emission is intro-
duced to enhance the directionality of the pheromone

update. The validity of the model and algorithm is verified.
The assumption conditions in this paper are more ideal and
have some distance from reality. For example, the distribu-
tion centers in reality may have different delivery models,
different delivery temperatures for different models, different
refrigerated environments for different types of fresh agricul-
tural products, and different spoilage rates. In future research,
more complex and realistic assumptions can be set to adapt
the model to the real situation and make it better used in the
enterprise.
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